Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.032
Filter
1.
J Nanobiotechnology ; 22(1): 432, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034393

ABSTRACT

Rheumatoid arthritis (RA) involves chronic joint inflammation. Combining acupuncture and medication for RA treatment faces challenges like spatiotemporal variability, limited drug loading in acupuncture needles, and premature or untargeted drug release. Here, we designed a new type of tubular acupuncture needles, with an etched hollow honeycomb-like structure to enable the high loading of therapeutics, integrating the traditional acupuncture and drug repository into an all-in-one therapeutic platform. In these proof-of-concept experiments, we fabricated injectable hollow honeycomb electroacupuncture needles (HC-EA) loaded with melittin hydrogel (MLT-Gel), enabling the combination treatment of acupuncture stimulation and melittin therapy in a spatiotemporally synchronous manner. Since the RA microenvironment is mildly acidic, the acid-responsive chitosan (CS)/sodium beta-glycerophosphate (ß-GP)/ hyaluronic acid (HA) composited hydrogel (CS/GP/HA) was utilized to perform acupuncture stimulation and achieve the targeted release of injected therapeutics into the specific lesion site. Testing our therapeutic platform involved a mouse model of RA and bioinformatics analysis. MLT-Gel@HC-EA treatment restored Th17/Treg-mediated immunity balance, reduced inflammatory factor release (TNF-α, IL-6, IL-1ß), and alleviated inflammation at the lesion site. This novel combination of modified acupuncture needle and medication, specifically melittin hydrogel, holds promise as a therapeutic strategy for RA treatment.


Subject(s)
Acupuncture Therapy , Arthritis, Rheumatoid , Hydrogels , Melitten , Needles , Animals , Melitten/pharmacology , Melitten/chemistry , Mice , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/drug therapy , Hydrogels/chemistry , Acupuncture Therapy/methods , Chitosan/chemistry , Hyaluronic Acid/chemistry , Male , Disease Models, Animal , Mice, Inbred C57BL
2.
Clin Respir J ; 18(7): e13805, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39003635

ABSTRACT

In previous studies, we developed a novel fusion protein named "melittin-MIL-2" which exhibited more anti-tumor activity. However, it remains unclear whether melittin-MIL-2 possesses antitumor immune effect on lung adenocarcinoma. In this study, the immune effect and mechanism of melittin-MIL-2 inhibiting the growth and invasion of lung adenocarcinoma will be investigated, in order to provide novel perspectives for the immunotherapy of lung cancer. The results indicated that melittin-MIL-2 promoted T cell proliferation, enhanced NK cell cytotoxicity, and boosted IFN-γ secretion in PBMCs. After melittin-MIL-2 stimulation, perforin expression and LAK/NK-like killing activities of human PBMCs and NK cells were significantly enhanced. Melittin-MIL-2 is capable of hampering the development and proliferation of lung adenocarcinoma cell A549. ICAM-1 and Fas expression in A549 cells exposed to melittin-MIL-2 rose significantly. The expression levels of TLR8 and VEGF in A549 cells decreased significantly after melittin-MIL-2 stimulation. In vivo, melittin-MIL-2 substantially impeded the growth of lung adenocarcinoma and formed an immune-stimulating microenvironment locally in tumor tissues. In conclusion, the novel fusion protein melittin-MIL-2 exhibits strong anti-tumor immune effect in lung adenocarcinoma cell A549 via activating the LFA-1/ICAM-1 and Fas/FasL pathways to enhance cytolytic activity, upregulating the secretion of IFN-γ and perforin, and boosting LAK/NK-like killing activities. Immuno-effector cells and their secreted cytokines can form immune stimulation microenvironment locally in lung adenocarcinoma Lewis mice tissue.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Melitten , Melitten/pharmacology , Humans , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Mice , A549 Cells , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Cell Proliferation/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Interleukin-2/metabolism , Adenocarcinoma/drug therapy , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/genetics , Immunotherapy/methods
3.
Clinics (Sao Paulo) ; 79: 100407, 2024.
Article in English | MEDLINE | ID: mdl-38889502

ABSTRACT

BACKGROUND: NSCLC is one of the most common causes of death. The hypoxia microenvironment contributes to cancer progression. The purpose was to explore the effects and mechanism of melittin on NSCLC cells in the hypoxic microenvironment. METHODS: NSCLC cell lines (A549 and H1299) were cultured in normoxia or hypoxia conditions with or without melittin treatment. The viability of the cells was detected via MTT assay and the proliferation ability was evaluated by EdU assay. QRT-PCR was performed to evaluate GLUT1, LDHA, HK2, VEGF and LATS2 mRNA levels. Glucose transport was assessed by the 2-NBDG uptake assay. The angiogenesis was determined by the tubule formation assay. The protein expressions of GLUT1, LDHA, HK2, VEGF, LATS2, YAP, p-YAP and HIF-1α were detected via western blotting assay. The tumor formation assay was conducted to examine the roles of melittin and LATS2 in vivo. RESULTS: Melittin inhibited hypoxia-induced cell viability, proliferation, glycolysis and angiogenesis as well as suppressed YAP binding to HIF-1α in NSCLC. Melittin inactivated the YAP/HIF-1α pathway via up-regulation of LATS2, ultimately inhibiting cancer progression of NSCLC. Moreover, melittin suppressed tumor growth via up-regulation of LATS2 in vivo. CONCLUSION: Melittin inactivated the YAP/HIF-1α pathway via up-regulation of LATS2 to contribute to the development of NSCLC. Therefore, melittin is expected to become a potential prognostic drug for the therapy of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Lung Neoplasms , Melitten , Neovascularization, Pathologic , Protein Serine-Threonine Kinases , Tumor Suppressor Proteins , Up-Regulation , YAP-Signaling Proteins , Humans , Protein Serine-Threonine Kinases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/blood supply , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Up-Regulation/drug effects , Glycolysis/drug effects , Tumor Suppressor Proteins/metabolism , Neovascularization, Pathologic/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , YAP-Signaling Proteins/metabolism , Melitten/pharmacology , Melitten/therapeutic use , Cell Line, Tumor , Transcription Factors/metabolism , Animals , Adaptor Proteins, Signal Transducing/metabolism , Signal Transduction/drug effects , Cell Survival/drug effects , Phosphoproteins/metabolism , Angiogenesis
4.
Biomolecules ; 14(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38927102

ABSTRACT

Leucine residues are commonly found in the hydrophobic face of antimicrobial peptides (AMPs) and are crucial for membrane permeabilization, leading to the cell death of invading pathogens. Melittin, which contains four leucine residues, demonstrates broad-spectrum antimicrobial properties but also significant cytotoxicity against mammalian cells. To enhance the cell selectivity of melittin, this study synthesized five analogs by replacing leucine with its structural isomer, 6-aminohexanoic acid. Among these analogs, Mel-LX3 exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria. Importantly, Mel-LX3 displayed significantly reduced hemolytic and cytotoxic effects compared to melittin. Mechanistic studies, including membrane depolarization, SYTOX green uptake, FACScan analysis, and inner/outer membrane permeation assays, demonstrated that Mel-LX3 effectively permeabilized bacterial membranes similar to melittin. Notably, Mel-LX3 showed robust antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Furthermore, Mel-LX3 effectively inhibited biofilm formation and eradicated existing biofilms of MDRPA. With its improved selective antimicrobial and antibiofilm activities, Mel-LX3 emerges as a promising candidate for the development of novel antimicrobial agents. We propose that the substitution of leucine with 6-aminohexanoic acid in AMPs represents a significant strategy for combating resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Biofilms , Melitten , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Melitten/pharmacology , Melitten/chemistry , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Methicillin-Resistant Staphylococcus aureus/drug effects , Humans , Hemolysis/drug effects , Aminocaproic Acid/chemistry , Aminocaproic Acid/pharmacology , Gram-Negative Bacteria/drug effects , Animals
5.
Int J Mol Sci ; 25(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732255

ABSTRACT

This research aimed to explore the healing impacts of Melittin treatment on gastrocnemius muscle wasting caused by immobilization with a cast in rabbits. Twenty-four rabbits were randomly allocated to four groups. The procedures included different injections: 0.2 mL of normal saline to Group 1 (G1-NS); 4 µg/kg of Melittin to Group 2 (G2-4 µg/kg Melittin); 20 µg/kg of Melittin to Group 3 (G3-20 µg/kg Melittin); and 100 µg/kg of Melittin to Group 4 (G4-100 µg/kg Melittin). Ultrasound was used to guide the injections into the rabbits' atrophied calf muscles following two weeks of immobilization via casting. Clinical measurements, including the length of the calf, the compound muscle action potential (CMAP) of the tibial nerve, and the gastrocnemius muscle thickness, were assessed. Additionally, cross-sectional slices of gastrocnemius muscle fibers were examined, and immunohistochemistry and Western blot analyses were performed following two weeks of therapy. The mean regenerative changes, as indicated by clinical parameters, in Group 4 were significantly more pronounced than in the other groups (p < 0.05). Furthermore, the cross-sectional area of the gastrocnemius muscle fibers and immunohistochemical indicators in Group 4 exceeded those in the remaining groups (p < 0.05). Western blot analysis also showed a more significant presence of anti-inflammatory and angiogenic cytokines in Group 4 compared to the others (p < 0.05). Melittin therapy at a higher dosage can more efficiently activate regeneration in atrophied gastrocnemius muscle compared to lower doses of Melittin or normal saline.


Subject(s)
Melitten , Muscle, Skeletal , Muscular Atrophy , Regeneration , Animals , Rabbits , Melitten/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Regeneration/drug effects , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Male
6.
J Mater Chem B ; 12(22): 5431-5438, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38726737

ABSTRACT

Despite exhibiting potent anticancer activity, the strong hemolytic properties of melittin (MEL) significantly restrict its delivery efficiency and clinical applications. To address this issue, we have devised a strategy wherein homologous dopamine (DA), an essential component of bee venom, is harnessed as a vehicle for the synthesis of MEL-polydopamine (PDA) nanoparticles (MP NPs). The ingenious approach lies in the fact that MEL is a basic polypeptide, and the polymerization of DA is also conducted under alkaline conditions, indicating the distinctive advantages of PDA in MEL encapsulation. Furthermore, MP NPs are modified with folic acid to fabricate tumor-targeted nanomedicine (MPF NPs). MPF NPs can ameliorate the hemolysis of MEL in drug delivery and undergo degradation triggered by high levels of reactive oxygen species (ROS) within solid tumors, thereby facilitating MEL release and subsequent restoration of anticancer activity. After cellular uptake, MPF NPs induce cell apoptosis through the PI3K/Akt-mediated p53 signaling pathway. The tumor growth inhibitory rate of MPF NPs in FA receptor-positive 4T1 and CT26 xenograft mice reached 78.04% and 81.66%, which was significantly higher compared to that in FA receptor-negative HepG2 xenograft mice (45.79%). Homologous vehicles provide a new perspective for nanomedicine design.


Subject(s)
Antineoplastic Agents , Hemolysis , Indoles , Melitten , Polymers , Melitten/chemistry , Melitten/pharmacology , Animals , Humans , Indoles/chemistry , Indoles/pharmacology , Polymers/chemistry , Polymers/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice , Hemolysis/drug effects , Nanoparticles/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Mice, Inbred BALB C , Drug Screening Assays, Antitumor , Mice, Nude , Particle Size
7.
J Mater Chem B ; 12(22): 5465-5478, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38742364

ABSTRACT

Melittin (Mel) is considered a promising candidate drug for the treatment of triple negative breast cancer (TNBC) due to its various antitumor effects. However, its clinical application is hampered by notable limitations, including hemolytic activity, rapid clearance, and a lack of tumor selectivity. Here, we designed novel biomimetic nanoparticles based on homologous tumor cell membranes and poly(lactic-co-glycolic acid) (PLGA)/poly(beta-aminoester) (PBAE), denoted MDM@TPP, which efficiently coloaded the cytolytic peptide Mel and the photosensitizer mTHPC. Both in vitro and in vivo, the MDM@TPP nanoparticles effectively mitigated the acute toxicity of melittin and exhibited strong TNBC targeting ability due to the homologous targeting effect of the tumor cell membrane. Under laser irradiation, the MDM@TPP nanoparticles showed excellent photodynamic performance and thus accelerated the release of Mel by disrupting cell membrane integrity. Moreover, Mel combined with photodynamic therapy (PDT) can synergistically kill tumor cells and induce significant immunogenic cell death, thereby stimulating the maturation of dendritic cells (DCs). In 4T1 tumor-bearing mice, MDM@TPP nanoparticles effectively inhibited the growth and metastasis of primary tumors and finally prevented tumor recurrence by improving the immune response.


Subject(s)
Melitten , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Triple Negative Breast Neoplasms , Melitten/chemistry , Melitten/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Nanoparticles/chemistry , Animals , Mice , Female , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Proliferation/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor
8.
Int J Biol Macromol ; 270(Pt 1): 132293, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735618

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease lacking a definitive cure. Although conventional treatments such as dexamethasone and methotrexate are prevalent, their usage is constrained by potential adverse effects. Melittin (MLT) has emerged as a promising natural anti-rheumatic drug; however, studies focusing on the role of MLT in modulating the expression and metabolism of RA-related genes are scarce. METHOD: Arthritis was induced in rats using Complete Freund's Adjuvant (CFA), followed by MLT injections for treatment. Post-treatment, the inflammatory status of each group was assessed, and the mechanistic underpinnings of MLT's ameliorative effects on RA were elucidated through transcriptomic and metabolomic analyses. Additionally, this study conducted qRT-PCR validation of key therapeutic genes and characterized the molecular docking interactions of MLT with key receptor proteins (TNF-α and IL-1ß) using the AutoDock Vina software. RESULT: MLT significantly diminished redness and swelling in affected joints, ameliorated inflammatory cell infiltration, and mitigated joint damage. Integration of transcriptomic and metabolomic data revealed that MLT predominantly regulated the transcription levels of pathways and genes related to cytokines and immune responses, and the metabolic biomarkers of Sphingomyelin, fatty acid, and flavonoid. qRT-PCR confirmed MLT's downregulation of inflammation-related genes such as Il6, Jak2, Stat3, and Ptx3. Molecular docking simulations demonstrated the stable binding of MLT to TNF-α and IL-1ß. CONCLUSION: MLT demonstrated significant efficacy in alleviating RA. This study provides a comprehensive summary of MLT's impact on gene expression and metabolic processes associated with RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Melitten , Metabolome , Molecular Docking Simulation , Transcriptome , Animals , Rats , Transcriptome/drug effects , Melitten/pharmacology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/chemically induced , Metabolome/drug effects , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/chemically induced , Arthritis, Experimental/genetics , Freund's Adjuvant , Male , Gene Expression Regulation/drug effects , Gene Expression Profiling
10.
Article in English | MEDLINE | ID: mdl-38649084

ABSTRACT

Melittin is a powerful toxin present in honeybee venom that is active in a wide range of animals, from insects to humans. Melittin exerts numerous biological, toxicological, and pharmacological effects, the most important of which is destruction of the cell membrane. The phospholipase activity of melittin and its ability to activate phospholipases in the venom contribute to these actions. Using analytical methods, we discovered that the honeybee Apis mellifera produces melittin not only in the venom gland but also in its fat body cells, which remain resistant to this toxin's effects. We suggest that melittin acts as an anti-bacterial agent, since its gene expression is significantly upregulated when honeybees are infected with Escherichia coli and Listeria monocytogenes bacteria; additionally, melittin effectively kills these bacteria in the disc diffusion test. We hypothesize that the chemical and physicochemical properties of the melittin molecule (hydrophilicity, lipophilicity, and capacity to form tetramers) in combination with reactive conditions (melittin concentration, salt concentration, pH, and temperature) are responsible for the targeted destruction of bacterial cells and apparent tolerance towards own tissue cells. Considering that melittin is an important current and, importantly, potential broad-spectrum medication, a thorough understanding of the observed phenomena may significantly increase its use in clinical practice.


Subject(s)
Anti-Bacterial Agents , Bee Venoms , Escherichia coli , Fat Body , Melitten , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Bee Venoms/pharmacology , Bee Venoms/toxicity , Bees , Escherichia coli/drug effects , Fat Body/metabolism , Insect Proteins/metabolism , Listeria monocytogenes/drug effects , Melitten/pharmacology , Melitten/toxicity
11.
Toxicon ; 241: 107673, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432612

ABSTRACT

BACKGROUND: Development of promising medicines from natural sources, specially venom, is of highly necessitated to combat against life-threatening cancers. Non-small cell lung cancer (NSCLC) has a significant percentage of mortalities. Melittin, from bee venom, is a potent anticancer peptide but its toxicity has limited its therapeutic applications. Accordingly, this study aims to synthesize niosomes with suitable stability and capacity for carrying melittin as a drug. Additionally, it seeks to evaluate the anti-cancer activity of melittin-loaded niosomes on non-small cell lung cancer. METHODS: The niosome was prepared by thin film hydration method. Cytotoxicity and apoptosis were assessed on A549, Calu-3, and MRC5 cells. Real-time PCR was used to determine expression of apoptotic and pro-apoptotic Bax, Bcl2, and Casp3 genes. Immunocytochemistry (ICC) was also used to confirm expression of the abovementioned genes. Furthermore, wound healing assay was performed to compare inhibition effects of melittin-loaded niosomes with free melittin on migration of cancer cells. RESULTS: IC50 values of melittin-loaded niosomes for A549, Calu-3, and MRC5 cells were respectively 0.69 µg/mL, 1.02 µg/mL, and 2.56 µg/mL after 72 h. Expression level of Bax and Casp3 increased '10 and 8' and '9 and 10.5' fold in A549 and Calu-3, whereas Bcl2 gene expression decreased 0.19 and 0.18 fold in the mentioned cell lines. The cell migration inhibited by melittin-loaded niosomes. CONCLUSIONS: Melittin-loaded niosomes had more anti-cancer effects and less toxicity on normal cells than free melittin. Furthermore, it induced apoptosis and inhibited cancer cells migration. Our results showed that melittin-loaded niosomes may be a drug lead and it has the potential to be future developed for lung cancer treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Melitten/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Liposomes , Caspase 3 , bcl-2-Associated X Protein/genetics , Lung Neoplasms/drug therapy
12.
Iran Biomed J ; 28(1): 46-52, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38445441

ABSTRACT

Background: The potential anticancer effect of melittin has motivated scientists to find its exact molecular mechanism of action. There are few data on the effect of melittin on the UPR and autophagy as two critical pathways involved in tumorigenesis of colorectal and drug resistance. This study aimed to investigate the effect of melittin on these pathways in the colorectal cancer (CRC) HCT116 cells. Methods: MTT method was carried out to assess the cytotoxicity of melittin on the HCT116 cell line for 24, 48, and 72 h. After selecting the optimal concentrations and treatment times, the gene expression of autophagy flux markers (LC3-ßII and P62) and UPR markers (CHOP and XBP-1s) were determined using qRT-PCR. The protein level of autophagy initiation marker (Beclin1) was also determined by Western blotting. Results: MTT assay showed a cytotoxic effect of melittin on the HCT116 cells. The increase in LC3-ßII and decrease in P62 mRNA expression levels, along with the elevation in the Beclin1 protein level, indicated the stimulatory role of melittin on the autophagy. Melittin also significantly enhanced the CHOP and XBP-1s expressions at mRNA level, suggesting the positive role of the melittin on the UPR activation. Conclusion: This study shows that UPR and autophagy can potentially be considered as two key signaling pathways in tumorigenesis, which can be targeted by the BV melittin in the HCT116 cells. Further in vivo evaluations are recommended to verify the obtained results.


Subject(s)
Colorectal Neoplasms , Melitten , Humans , HCT116 Cells , Melitten/pharmacology , Melitten/genetics , Melitten/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Unfolded Protein Response , Autophagy , RNA, Messenger/metabolism , Carcinogenesis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics
13.
Sci Rep ; 14(1): 5797, 2024 03 09.
Article in English | MEDLINE | ID: mdl-38461178

ABSTRACT

Enterotoxins are a type of toxins that primarily affect the intestines. Understanding their harmful effects is essential for food safety and medical research. Current methods lack high-throughput, robust, and translatable models capable of characterizing toxin-specific epithelial damage. Pressing concerns regarding enterotoxin contamination of foods and emerging interest in clinical applications of enterotoxins emphasize the need for new platforms. Here, we demonstrate how Caco-2 tubules can be used to study the effect of enterotoxins on the human intestinal epithelium, reflecting toxins' distinct pathogenic mechanisms. After exposure of the model to toxins nigericin, ochratoxin A, patulin and melittin, we observed dose-dependent reductions in barrier permeability as measured by TEER, which were detected with higher sensitivity than previous studies using conventional models. Combination of LDH release assays and DRAQ7 staining allowed comprehensive evaluation of toxin cytotoxicity, which was only observed after exposure to melittin and ochratoxin A. Furthermore, the study of actin cytoskeleton allowed to assess toxin-induced changes in cell morphology, which were only caused by nigericin. Altogether, our study highlights the potential of our Caco-2 tubular model in becoming a multi-parametric and high-throughput tool to bridge the gap between current enterotoxin research and translatable in vivo models of the human intestinal epithelium.


Subject(s)
Bacterial Toxins , Enterotoxins , Humans , Enterotoxins/toxicity , Bacterial Toxins/toxicity , Caco-2 Cells , Melitten/pharmacology , Nigericin/pharmacology , Intestinal Mucosa/pathology
14.
Langmuir ; 40(14): 7456-7462, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38546877

ABSTRACT

The primary constituents of honeybee venom, melittin and phospholipase A2 (PLA2), display toxin synergism in which the PLA2 activity is significantly enhanced by the presence of melittin. It has been shown previously that this is accomplished by the disruption in lipid packing, which allows PLA2 to become processive on the membrane surface. In this work, we show that melittin is capable of driving miscibility phase transition in giant unilamellar vesicles (GUVs) and that it raises the miscibility transition temperature (Tmisc) in a concentration-dependent manner. The induced phase separation enhances the processivity of PLA2, particularly at its boundaries, where a substantial difference in domain thickness creates a membrane discontinuity. The catalytic action of PLA2, in response, induces changes in the membrane, rendering it more conducive to melittin binding. This, in turn, facilitates further lipid phase separation and eventual vesicle lysis. Overall, our results show that melittin has powerful membrane-altering capabilities that activate PLA2 in various membrane contexts. More broadly, they exemplify how this biochemical system actively modulates and capitalizes on the spatial distribution of membrane lipids to efficiently achieve its objectives.


Subject(s)
Bee Venoms , Melitten , Melitten/pharmacology , Unilamellar Liposomes , Phospholipases A2 , Membrane Lipids
15.
Molecules ; 29(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338303

ABSTRACT

The development of antibiotic-resistant microorganisms is a major global health concern. Recently, there has been an increasing interest in antimicrobial peptides as a therapeutic option. This study aimed to evaluate the triple-action (broad-spectrum antibacterial, anti-biofilm, and anti-quorum sensing activities) of melittin, a membrane-active peptide present in bee venom. The minimum inhibitory concentration and minimum bactericidal concentration of the melittin were determined using the microdilution method and agar plate counting. Growth curve analysis revealed that melittin showed a concentration-dependent antibacterial activity. Scanning electron microscope analysis revealed that melittin treatment altered the morphology. Confocal laser scanning microscope revealed that melittin increased the membrane permeability and intracellular ROS generation in bacteria, all of which contribute to bacterial cell death. In addition, the crystal violet (CV) assay was used to test the anti-biofilm activity. The CV assay demonstrated that melittin inhibited biofilm formation and eradicated mature biofilms. Biofilm formation mediated by quorum sensing (QS) plays a major role in this regard, so molecular docking and molecular dynamics analysis confirmed that melittin interacts with LasR receptors through hydrogen bonds, and further evaluates the anti-QS activity of melittin through the production of virulence factors (pyocyanin, elastase, and rhamnolipid), exopolysaccharides secretion, and bacterial motility, that may be the key to inhibiting the biofilm formation mechanism. The present findings highlight the promising role of melittin as a broad-spectrum antibacterial, anti-biofilm agent, and potential QS inhibitor, providing a new perspective and theoretical basis for the development of alternative antibiotics.


Subject(s)
Melitten , Quorum Sensing , Melitten/pharmacology , Molecular Docking Simulation , Biofilms , Anti-Bacterial Agents/chemistry , Virulence Factors/metabolism , Pseudomonas aeruginosa/physiology
16.
Front Immunol ; 15: 1326033, 2024.
Article in English | MEDLINE | ID: mdl-38318188

ABSTRACT

Melittin, a main component of bee venom, is a cationic amphiphilic peptide with a linear α-helix structure. It has been reported that melittin can exert pharmacological effects, such as antitumor, antiviral and anti-inflammatory effects in vitro and in vivo. In particular, melittin may be beneficial for the treatment of diseases for which no specific clinical therapeutic agents exist. Melittin can effectively enhance the therapeutic properties of some first-line drugs. Elucidating the mechanism underlying melittin-mediated biological function can provide valuable insights for the application of melittin in disease intervention. However, in melittin, the positively charged amino acids enables it to directly punching holes in cell membranes. The hemolysis in red cells and the cytotoxicity triggered by melittin limit its applications. Melittin-based nanomodification, immuno-conjugation, structural regulation and gene technology strategies have been demonstrated to enhance the specificity, reduce the cytotoxicity and limit the off-target cytolysis of melittin, which suggests the potential of melittin to be used clinically. This article summarizes research progress on antiviral, antitumor and anti-inflammatory properties of melittin, and discusses the strategies of melittin-modification for its future potential clinical applications in preventing drug resistance, enhancing the selectivity to target cells and alleviating cytotoxic effects to normal cells.


Subject(s)
Bee Venoms , Melitten , Melitten/pharmacology , Melitten/chemistry , Melitten/metabolism , Antimicrobial Peptides , Bee Venoms/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents
17.
J Integr Med ; 22(1): 72-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38307819

ABSTRACT

OBJECTIVE: Melittin and its derivative have been developed to support effective gene delivery systems. Their ability to facilitate endosomal release enhances the delivery of nanoparticle-based gene therapy. Nevertheless, its potential application in the context of viral vectors has not received much attention. Therefore, we would like to optimize the rAAV vector by Melittin analog to improve the transduction efficiency of rAAV in liver cancer cells and explore the mechanism of Melittin analog on rAAV. METHODS: Various melittin-derived peptides were inserted into loop VIII of the capsid protein in recombinant adeno-associated virus vectors. These vectors carrying either gfp or fluc genes were subjected to quantitative polymerase chain reaction assays and transduction assays in human embryonic kidney 293 (HEK293T) cells to investigate the efficiency of vector production and gene delivery. In addition, the ability of a specific p5RHH-rAAV vector to deliver genes was examined through in vitro transduction of different cultured cells and in vivo tail vein administration to C57BL/6 mice. Finally, the intricate details of the vector-mediated transduction mechanisms were explored by using pharmacological inhibitors of every stage of the rAAV2 intracellular life cycle. RESULTS: A total of 76 melittin-related peptides were identified from existing literature. Among them, CMA-3, p5RHH and aAR3 were found to significantly inhibit transduction of rAAV2 vector crude lysate. The p5RHH-rAAV2 vectors efficiently transduced not only rAAV-potent cell lines but also cell lines previously considered resistant to rAAV. Mechanistically, bafilomycin A1, a vacuolar endosome acidification inhibitor, completely inhibited the transgene expression mediated by the p5RHH-rAAV2 vectors. Most importantly, p5RHH-rAAV8 vectors also increased hepatic transduction in vivo in C57BL/6 mice. CONCLUSION: The incorporation of melittin analogs into the rAAV capsids results in a significant improvement in rAAV-mediated transgene expression. While further modifications remain an area of interest, our studies have substantially broadened the pharmacological prospects of melittin in the context of viral vector-mediated gene delivery. Please cite this article as: Meng J, He Y, Yang H, Zhou L, Wang S, Feng X, Al-shargi OY, Yu X, Zhu L, Ling, C. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. J Integr Med. 2024; 22(1): 72-82.


Subject(s)
Dependovirus , Melitten , Mice , Male , Animals , Humans , Dependovirus/genetics , Melitten/pharmacology , Melitten/genetics , Transduction, Genetic , HEK293 Cells , Mice, Inbred C57BL , Genetic Vectors
18.
Arch Microbiol ; 206(3): 93, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329629

ABSTRACT

The present work aimed to examine the intracellular antibacterial efficacy of Recombinant Lactobacillus acidophilus/antimicrobial peptides (AMPs) Melittin and Alyteserin-1a, specifically targeting Gram-negative bacteria. The first assessment was to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Recombinant L. acidophilus/AMPs versus Gram-negative and Gram-positive bacteria. In addition, the researchers examined the in vitro viability and safety of AMPs generated by L. acidophilus. The experiments included exposing the AMPs to elevated temperatures, proteases, cationic salts at physiological levels, and specific pH settings. The safety aspect was evaluated using hemolytic analysis utilizing sheep erythrocytes; cytotoxicity assays employing cell lines, and experiments on beneficial gut lactobacilli. An experiment was done using a time-kill method to assess the intracellular antibacterial efficacy of Recombinant L. acidophilus/AMPs compared to pathogenic varieties in HEp-2 cells. Previous investigations have shown that the MBC levels of recombinant L. acidophilus/AMPs were consistently two to four times higher than the equivalent MIC values when evaluated versus Gram-negative bacteria. Furthermore, the stability of the Recombinant L. acidophilus/AMPs showed variability when exposed to elevated temperatures (70 and 90 â„ƒ), treated with protease enzymes (proteinase K, lysozyme), exposed to higher concentrations of physiological salts (150 mM NaCl and 2 mM MgCl2), and varying pH levels (ranging from 4.0 to 9.0). The recombinant L. acidophilus/AMPs are non-hemolytic towards sheep erythrocytes, exhibit little cytotoxicity in RAW 264.7 and HEp-2 cells, and are considered safe when compared to beneficial gut lactobacilli. The research examined the intracellular bacteriostatic effects of recombinant L. acidophilus/AMPs on Gram-negative bacteria inside HEp-2 cells. Nevertheless, no notable bactericidal impact was seen on Gram-positive bacteria (P > 0.05). The research shows that recombinant L. acidophilus/AMPs, namely (L. acidophilus/melittin/Alyteserin-1a) as the focus of the investigation, effectively eliminate Gram-negative bacteria. Therefore, more investigation is necessary to elaborate on these discoveries.


Subject(s)
Anti-Infective Agents , Melitten , Animals , Sheep , Melitten/pharmacology , Salts , Bacteria , Anti-Bacterial Agents/pharmacology , Lactobacillus , Peptide Hydrolases , Antimicrobial Peptides
19.
J Arthroplasty ; 39(7): 1845-1855, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38336308

ABSTRACT

BACKGROUND: Aseptic loosening around the prosthesis is a common cause of failure in total joint arthroplasty. Polyethylene wear particles trigger the release of inflammatory factors by macrophages. Key mediators involved in osteoclastogenesis include interleukin-6, tumor necrosis factor-α, receptor activator of nuclear factor kappa B (RANK), RANK ligand (RANKL), and bone protection hormone (Osteoprotegerin [OPG]). The purpose of our experiment was to see whether melittin can slow down the release of inflammatory mediators through the NF-kB pathway, regulate the RANKL/OPG ratio, reduce osteoclast formation, and delay the onset of arthritis in rats. METHODS: A total of 20 male Sprague-Dawley rats (10 months, Specific Pathogen Free, 350 g ± 20 g) were randomly divided into 5 groups: sham group, model group, melittin concentration 1 group (0.2 mg/kg), concentration 2 group (0.4 mg/kg), and concentration 3 group (0.6 mg/kg). All rats were implanted with TA2 high-purity titanium rods. A drill was used to create a bone canal along the long axis of the femur in the intercondylar notch. The model group and experimental groups were exposed to polyethylene particles, while the sham group did not receive any particles. RESULTS: The melittin group exhibited significantly increased serum levels of serum P, calcium-phosphorus product, OPG, PINP, PINP/CTX-I, and OPG/RANKKL (P < .05). In the experimental group, micro computed tomography scanning results revealed a decrease in the amount of bone defect around the prosthesis. Immunofluorescence analysis demonstrated a decrease in the expression of IKKα and P65, while the expression of OPG showed an upward trend. Both Hematoxylin-Eosin and Tartrate-Resistant Acid Phosphatase staining revealed less osteoclast and inflammatory cell infiltration in bone resorption pits. CONCLUSIONS: Our study demonstrates that melittin has the ability to inhibit the NF-kB pathway in a rat model, and reduce the impact of RANKL/OPG, thereby delaying osteoclast activity and alleviating periprosthetic osteolysis.


Subject(s)
Disease Models, Animal , Melitten , NF-kappa B , Osteolysis , Osteoprotegerin , RANK Ligand , Rats, Sprague-Dawley , Animals , Male , Osteolysis/etiology , Osteolysis/prevention & control , RANK Ligand/metabolism , Osteoprotegerin/metabolism , Rats , Melitten/pharmacology , NF-kappa B/metabolism , Titanium , Osteoclasts/drug effects , Signal Transduction/drug effects , Polyethylene , Prosthesis Failure
20.
Toxicon ; 239: 107611, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38211805

ABSTRACT

Melittin is honey bee venom's primary and most toxic pharmacologically active component. Melittin causes haemolysis, lymphocyte lysis, long-term pain, localised inflammation followed by rhabdomyolysis, and severe renal failure. Renal failure or cardiovascular complications could lead to the victim's death. Severe honey bee bites are treated with general medication involving antihistaminic, anti-inflammatory, and analgesic drugs, as a specific treatment option is unavailable. An earlier study showed the anti-hemolysis and anti-lymphocyte lysis activity of mini- αA-crystallin (MAC), a peptide derived from human eye lens alpha-crystallin. MAC's use has often been restricted despite its high therapeutic potential due to its poor skin permeability. This study compared the skin permeation, anti-inflammatory and analgesic activities of natural peptide MAC and its modified version (MAC-GRD) formed by attaching cell-penetrating peptide (CPP) and GRD amino residues into MAC. Gel formulations were prepared for MAC and MAC-GRD peptides using carbopol (1% w/w), Tween 80 (1%), and ethanol (10%). An ex-vivo skin permeation study was performed using a vertical-type Franz diffusion apparatus. Preclinical in-vivo experiments were conducted to compare the native and modified peptide formulations against melittin-induced toxicity in Wistar rats. MAC gel, MAC-GRD gel and 1% hydrocortisone cream significantly reduced the melittin-induced writhing (20.16 ± 0.792) response in rats with 15.16 ± 0.47, 11.16 ± 0.477 and 12.66 ± 0.66 wriths, respectively. There was a significant reduction in melittin-induced inflammation when MAC-GRD gel was applied immediately after melittin administration. At 0.5, 1, 3, and 5 h, the MAC-GRD-treated rat paws were 0.9 ± 0.043 mm, 0.750 ± 0.037 mm, 0.167 ± 0.0070 mm, and 0.133 ± 0.031 mm thick. Administration of melittin resulted in reduced GSH (antioxidant) levels (47.33 ± 0.760 µg/mg). However, treatment with MAC-GRD gel (71.167 ± 0.601 µg/mg), MAC gel (65.167 ± 1.138 µg/mg), and 1% hydrocortisone (68.33 ± 0.667 µg/mg) significantly increased the antioxidant enzyme levels. MAC-GRD gel significantly reduced the elevated MDA levels (6.933 ± 0.049 nmol/mg) compared to the melittin group (12.533 ± 0.126 nmol/mg), followed by the 1% hydrocortisone (7.367 ± 0.049 nmol/mg) and MAC gel (7.917 ± 0.048 nmol/mg). MAC-GRD demonstrated more skin permeability and superior anti-inflammatory, analgesic, and antioxidant activities when compared to MAC gel. When compared to standard 1% hydrocortisone cream, MAC-GRD had better anti-inflammatory, analgesic, antioxidant, and comparable action in anti-oxidant restoration against melittin. These findings suggest that the developed MAC-GRD gel formulation could help to treat severe cases of honey bee stings.


Subject(s)
Crystallins , Insect Bites and Stings , Renal Insufficiency , Rats , Bees , Humans , Animals , Melitten/pharmacology , Hydrocortisone , Antioxidants , Rats, Wistar , Peptides , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Analgesics , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL