Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39.178
Filter
1.
J Environ Sci (China) ; 148: 579-590, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095191

ABSTRACT

This work established a quantitative method to access the shear stability of aerobic granular sludge (AGS) and validated its feasibility by using the mature AGS from a pilot-scale (50 tons/day) membrane bioreactor (MBR) for treating real municipal wastewater. The results showed that the changing rate (ΔS) of the peak area (S) of granule size distribution (GSD) exhibited an exponential relationship (R2≥0.76) with the shear time (y=a-b·cx), which was a suitable indicative index to reflect the shear stability of different AGS samples. The limiting granule size (LGS) was defined and proposed to characterize the equilibrium size for AGS after being sheared for a period of time, whose value in terms of Dv50 showed high correlation (R2=0.92) with the parameter a. The free Ca2+ (28.44-34.21 mg/L) in the influent specifically interacted with polysaccharides (PS) in the granule's extracellular polymeric substance (EPS) as a nucleation site, thereby inducing the formation of Ca precipitation to enhance its Young's modulus, while Ca2+ primarily interacted with PS in soluble metabolic product (SMP) during the initial granulation process. Furthermore, the Young's modulus significantly affected the parameter a related to shear stability (R2=0.99). Since the parameter a was more closely related (R2=1.00) to ΔS than that of the parameter b or c, the excellent correlation (R2=0.99) between the parameter a and the wet density further verified the feasibility of this method.


Subject(s)
Bioreactors , Sewage , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Pilot Projects , Wastewater/chemistry , Membranes, Artificial , Aerobiosis
2.
J Sep Sci ; 47(15): e2400292, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091169

ABSTRACT

This study investigated the capability of electromembrane extraction (EME) as a general technique for peptides, by extracting complex pools of peptides comprising in total of 5953 different substances, varying in size from seven to 16 amino acids. Electromembrane extraction was conducted from a sample adjusted to pH 3.0 and utilized a liquid membrane consisting of 2-nitrophenyl octyl ether and carvacrol (1:1 w/w), containing 2% (w/w) di(2-ethylhexyl) phosphate. The acceptor phase was 50 mM phosphoric acid (pH 1.8), the extraction time was 45 min, and 10 V was used. High extraction efficiency, defined as a higher peptide signal in the acceptor than the sample after extraction, was achieved for 3706 different peptides. Extraction efficiencies were predominantly influenced by the hydrophobicity of the peptides and their net charge in the sample. Hydrophobic peptides were extracted with a net charge of +1, while hydrophilic peptides were extracted when the net charge was +2 or higher. A computational model based on machine learning was developed to predict the extractability of peptides based on peptide descriptors, including the grand average of hydropathy index and net charge at pH 3.0 (sample pH). This research shows that EME has general applicability for peptides and represents the first steps toward in silico prediction of extraction efficiency.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Peptides , Peptides/chemistry , Peptides/isolation & purification , Membranes, Artificial , Electrochemical Techniques , Particle Size , Hydrogen-Ion Concentration , Ethers , Organophosphates
3.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(4): 415-425, 2024 Aug 01.
Article in English, Chinese | MEDLINE | ID: mdl-39049628

ABSTRACT

Biodegradable magnesium-based metal guided bone regeneration (GBR) membranes possess excellent mechanical properties, biodegradability, and osteopromotive capabilities, making them ideal implants for the treatment of maxillofacial bone defects. This review summarizes the current status and future research trends related to magnesium-based GBR membranes. First, the research history and application fields of magnesium-based metals are introduced, and the advantages of the use of magnesium-based materials for GBR membranes, including their mechanical properties, biocompatibility, osteopromotive performance, and underlying mechanisms are discussed. Finally, this review addresses the current limitations of magnesium-based GBR membranes and their applications and prospects in the field of dentistry. In conclusion, considerable advancements have been in fundamental and translational research on magnesium-based GBR membranes, which lays a crucial foundation for the treatment of maxillofacial bone defects.


Subject(s)
Biocompatible Materials , Bone Regeneration , Magnesium , Humans , Absorbable Implants , Guided Tissue Regeneration , Membranes, Artificial , Metals
4.
Environ Sci Technol ; 58(29): 13157-13167, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38996057

ABSTRACT

Dichloramine (NHCl2) naturally exists in reverse osmosis (RO) permeate due to its application as an antifouling chemical in membrane-based potable reuse treatment. This study investigated mechanisms of background NHCl2 hydrolysis associated with the generation of oxidative radical species in RO permeate, established a kinetic model to predict the oxidative capacity, and examined its removal efficiency on trace organic contaminants in potable reuse. Results showed that NHCl2 hydrolysis generated transient peroxynitrite (ONOO-) and subsequently dissociated into hydroxyl radical (HO•). The maximal HO• exposure was observed at an RO permeate pH of 8.4, higher than that from typical ultraviolet (UV)-based advanced oxidation processes. The HO• exposure during NHCl2 hydrolysis also peaked at a NH2Cl-to-NHCl2 molar ratio of 1:1. The oxidative capacity rapidly degraded 1,4-dioxane, carbamazepine, atenolol, and sulfamethoxazole in RO permeate. Furthermore, background elevated carbonate in fresh RO permeate can convert HO• to carbonate radical (CO3•-). Aeration of the RO permeate removed total carbonate, significantly increased HO• exposure, and enhanced the degradation kinetics of trace organic contaminants. The kinetic model of NHCl2 hydrolysis predicted well the degradation of contaminants in RO permeate. This study provides new mechanistic insights into NHCl2 hydrolysis that contributes to the oxidative degradation of trace organic contaminants in potable reuse systems.


Subject(s)
Oxidation-Reduction , Water Purification , Hydrolysis , Water Purification/methods , Membranes, Artificial , Water Pollutants, Chemical/chemistry , Kinetics
5.
Water Environ Res ; 96(7): e11081, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023047

ABSTRACT

Powdered activated carbon (PAC) has better adsorption performance than granular activated carbon (GAC) and is widely used in water purification. In most cases, PAC is dosed into water directly, then precipitated as sludge, and landfilled. In this study, PAC was mixed with a polymer and dissolved in dimethylformamide (DMF) solvent to form a PAC-loaded membrane, which was then tested for chloroform removal. The chloroform adsorption capacity of the PAC membrane increased with increasing membrane thickness because of higher carbon loading. However, regardless of membrane thickness, the flux of the PAC membranes was similar since flux resistance predominantly occurred at the top dense polymer surface. This dense surface can be removed by sandpaper polishing, where the adsorption capacity of the polished PAC membranes was 20% higher than the unpolished membranes because of more even distribution of feed water on the polished surface. Removal of the dense surface via polishing increased the flux by 97% to 130%, exceeding the flux of typical household carbon block filters. Using DMF to regenerate the membrane recovered 48% to 66% of the initial adsorption capacity. Thermal regeneration of the exhausted PAC membrane at 250°C was more effective than DMF regeneration (both in terms of cost and performance), with 83% to 94% PAC membrane regeneration efficiency over four regeneration recycles. After four thermal regeneration cycles, flux increased by 300% and the membrane became brittle because of thermal aging of the polymer, indicating that a total of 6 h of regeneration time (equivalent to three cycles in this study) was the limit for effective PAC membrane performance. PRACTITIONER POINTS: Powdered activated carbon was immobilized on a membrane to remove chloroform from water. Thicker membranes increased adsorption capacity but did not impact flux. Flux and capacity increased using polishing to remove the dense polymer surface and more evenly distribute flow across the membrane. Thermal regeneration of the membrane at 250°C was effective for up to three cycles and outperformed solvent-based regeneration. PAC-loaded filters are relevant for applications such as household carbon block filtration.


Subject(s)
Charcoal , Chloroform , Membranes, Artificial , Polymers , Solvents , Water Pollutants, Chemical , Water Purification , Chloroform/chemistry , Water Purification/methods , Charcoal/chemistry , Solvents/chemistry , Polymers/chemistry , Water Pollutants, Chemical/chemistry , Adsorption
6.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000318

ABSTRACT

This study is focused on fractionation of insulin-like growth factor I (IGF-I) and transforming growth factor-ß2 (TGF-ß2) using a new electro-based membrane process calledelectrodialysis with filtration membranes (EDFM). Before EDFM, different pretreatments were tested, and four pH conditions (4.25, 3.85, 3.45, and 3.05) were used during EDFM. It was demonstrated that a 1:1 dilution of defatted colostrum with deionized water to decrease mineral content followed by the preconcentration of GFs by UF is necessary and allow for these compounds to migrate to the recovery compartment during EDFM. MS analyses confirmed the migration, in low quantity, of only α-lactalbumin (α-la) and ß-lactoglobulin (ß-lg) from serocolostrum to the recovery compartment during EDFM. Consequently, the ratio of GFs to total protein in recovery compartment compared to that of feed serocolostrum solution was 60× higher at pH value 3.05, the optimal pH favoring the migration of IGF-I and TGF-ß2. Finally, these optimal conditions were tested on acid whey to also demonstrate the feasibility of the proposed process on one of the main by-products of the cheese industry; the ratio of GFs to total protein was 2.7× higher in recovery compartment than in feed acid whey solution, and only α-la migrated. The technology of GF enrichment for different dairy solutions by combining ultrafiltration and electrodialysis technologies was proposed for the first time.


Subject(s)
Dialysis , Filtration , Dialysis/methods , Filtration/methods , Insulin-Like Growth Factor I/analysis , Hydrogen-Ion Concentration , Membranes, Artificial , Dairy Products/analysis , Animals , Colostrum/chemistry , Cattle , Whey/chemistry , Lactoglobulins/chemistry , Lactoglobulins/analysis , Lactalbumin/chemistry , Lactalbumin/analysis
7.
Water Sci Technol ; 90(1): 256-269, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007318

ABSTRACT

Palladium is now frequently utilized in fuel cells, electroplating, electronics, and catalysis. Due to their rarity and high cost, precious metal recovery has taken on a significant role. The extraction method frequently utilized in polymer inclusion membranes (PIMs) is both efficient and simple since it has been demonstrated that precious metal adsorption on the membrane significantly controls the mechanism of chemical adsorption. In this study, polyvinyl chloride (PVC) as a polymer, A336 as a plasticizer, and trioctylamine (TOA) as a carrier were used to produce a PIM by evaporation. After the production of PIMs, palladium extract was studied. The stripping phase, palladium concentration in the feed phase, and components of the membrane were changed to determine the optimum condition with better extraction ability. When 0.5 M of HCl was used, higher kinetic parameter results and higher than 85% extraction efficiency were achieved compared to other concen- trations. When the EDX results were examined, 3.3% palladium was retained on the membrane surface. When the palladium concentration was selected at 2.5 ppm, higher kinetic parameters were observed, and the extraction efficiency was over 90%. The best membrane was the PIM containing 40% PVC-40% A336-20% TOA.


Subject(s)
Membranes, Artificial , Palladium , Palladium/chemistry , Polymers/chemistry , Polyvinyl Chloride/chemistry , Water Pollutants, Chemical/chemistry
8.
PLoS One ; 19(7): e0298280, 2024.
Article in English | MEDLINE | ID: mdl-39008482

ABSTRACT

Collagen-based membranes are class III-medical devices widely used in dental surgical procedures to favour bone regeneration. Here, we aimed to provide biophysical and biochemical data on this type of devices to support their optimal use and design/manufacturing. To the purpose, four commercial, non-crosslinked collagen-based-membranes, obtained from various sources (equine tendon, pericardium or cortical bone tissues, and porcine skin), were characterized in vitro. The main chemical, biophysical and biochemical properties, that have significant clinical implications, were evaluated. Membranes showed similar chemical features. They greatly differed in morphology as well as in porosity and density and showed a diverse ranking in relation to these latter two parameters. Samples highly hydrated in physiological medium (swelling-ratio values in the 2.5-6.0 range) and, for some membranes, an anisotropic expansion during hydration was, for the first time, highlighted. Rheological analyses revealed great differences in deformability (150-1500kPa G') also alerting about the marked variation in membrane mechanical behaviour upon hydration. Samples proved diverse sensitivity to collagenase, with the cortical-derived membrane showing the highest stability. Biological studies, using human-bone-derived cells, supported sample ability to allow cell proliferation and to prompt bone regeneration, while no relevant differences among membranes were recorded. Prediction of relative performance based on the findings was discussed. Overall, results represent a first wide panel of chemical/biophysical/biochemical data on collagen-based-membranes that 1) enhances our knowledge of these products, 2) aids their optimal use by providing clinicians with scientific basis for selecting products based on the specific clinical situation and 3) represents a valuable reference for optimizing their manufacturing.


Subject(s)
Bone Regeneration , Collagen , Membranes, Artificial , Bone Regeneration/drug effects , Collagen/chemistry , Collagen/metabolism , Animals , Humans , Swine , Porosity , Horses , Cell Proliferation , Rheology
9.
Molecules ; 29(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38998932

ABSTRACT

Microbial contamination has profoundly impacted human health, and the effective eradication of widespread microbial issues is essential for addressing serious hygiene concerns. Taking polystyrene (PS) membrane as an example, we herein developed report a robust strategy for the in situ preparation of chlorine-regenerable antimicrobial polymer molecular sieve membranes through combining post-crosslinking and nucleophilic substitution reaction. The cross-linking PS membranes underwent a reaction with 5,5-dimethylhydantoin (DMH), leading to the formation of polymeric N-halamine precursors (PS-DMH). These hydantoinyl groups within PS-DMH were then efficiently converted into biocidal N-halamine structures (PS-DMH-Cl) via a simple chlorination process. ATR-FTIR and XPS spectra were recorded to confirm the chemical composition of the as-prepared PS-DMH-Cl membranes. SEM analyses revealed that the chlorinated PS-DMH-Cl membranes displayed a rough surface with a multitude of humps. The effect of chlorination temperature and time on the oxidative chlorine content in the PS-DMH-Cl membranes was systematically studied. The antimicrobial assays demonstrated that the PS-DMH-Cl membranes could achieve a 6-log inactivation of E. coli and S. aureus within just 4 min of contact time. Additionally, the resulting PS-DMH-Cl membranes exhibited excellent stability and regenerability of the oxidative chlorine content.


Subject(s)
Chlorine , Escherichia coli , Membranes, Artificial , Staphylococcus aureus , Chlorine/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Halogenation , Polymers/chemistry , Polystyrenes/chemistry , Hydantoins/chemistry , Hydantoins/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Amines
10.
Water Environ Res ; 96(7): e11082, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039961

ABSTRACT

Anaerobic co-digestion using an anaerobic dynamic membrane bioreactor (AnDMBR) can separate the sludge retention time and hydraulic retention time, retaining the biomass for efficient degradation and the use of less expensive large pore-size membrane materials and more sustainable dynamic membranes (DMs). Therefore, anaerobic co-digestion of toilet blackwater (BW) and kitchen waste (KW) using an AnDMBR was hypothesized to increase the potential for co-digestion. Here, the efficiency and stability of AnDMBR in anaerobic co-digestion of toilet BW and KW were investigated. DM morphology and structural characteristics, filtration properties, and composition, as well as membrane contamination and membrane regeneration mechanisms, were investigated. Average daily biogas yields of the reactor in two membrane cycles before and after cleaning were 788.67 and 746.09 ml/g volatile solids, with average methane content of 66.64% and 67.27% and average COD removal efficiencies of 82.03% and 80.96%, respectively. The results showed that the bioreactor obtained good performance and stability. During the stabilization phase of the DM operation, the flux was maintained between 43.65 and 65.15 L/m2/h. DM was mainly composed of organic and inorganic elements. Off-line cleaning facilitated DM regulation and regeneration, restoring new Anaerobic morphology and structure. PRACTITIONER POINTS: High efficiency co-digestion of BW and KW was realized in the DMBR system. Average daily biogas yields before and after membrane cleaning were 788.67 and 746.09 ml/g volatile solids. Off-line cleaning facilitated DM regulation and regeneration as well as system stability. The flux was maintained between 43.65 and 65.15 L/m2/h during operation.


Subject(s)
Bioreactors , Membranes, Artificial , Waste Disposal, Fluid , Anaerobiosis , Waste Disposal, Fluid/methods , Wastewater/chemistry
11.
Lab Chip ; 24(15): 3579-3603, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38954466

ABSTRACT

Microfluidic devices with integrated membranes that enable control of mass transport in constrained environments have shown considerable growth over the last decade. Membranes are a key component in several industrial processes such as chemical, pharmaceutical, biotechnological, food, and metallurgy separation processes as well as waste management applications, allowing for modular and compact systems. Moreover, the miniaturization of a process through microfluidic devices leads to process intensification together with reagents, waste and cost reduction, and energy and space savings. The combination of membrane technology and microfluidic devices allows therefore magnification of their respective advantages, providing more valuable solutions not only for industrial processes but also for reproducing biological processes. This review focuses on membrane-based microfluidic devices for biomedical science with an emphasis on microfluidic artificial organs and organs-on-chip. We provide the basic concepts of membrane technology and the laws governing mass transport. The role of the membrane in biomedical microfluidic devices, along with the required properties, available materials, and current challenges are summarized. We believe that the present review may be a starting point and a resource for researchers who aim to replicate a biological phenomenon on-chip by applying membrane technology, for moving forward the biomedical applications.


Subject(s)
Membranes, Artificial , Microfluidic Analytical Techniques , Microfluidic Analytical Techniques/instrumentation , Humans , Animals , Lab-On-A-Chip Devices
12.
Clin Exp Dent Res ; 10(4): e902, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39014549

ABSTRACT

OBJECTIVES: Guided bone regeneration (GBR) is a core procedure used to regenerate bone defects. The aim of the study was to investigate the adherence of Candida albicans on six commercially available polytetrafluoroethylene (PTFE) membranes used in GBR procedures and the subsequent clinical consequences. MATERIALS AND METHODS: Six commercially available PTFE membranes were tested. Two of the membranes had a textured surface and the other four a plane, nontextured one. C. albicans (ATCC 24433) was cultured for 24 h, and its cell surface hydrophobicity was assessed using a modified method. C. albicans adhesion to membrane discs was studied by scanning electron microscopy (SEM) and real-time polymerase chain reaction (PCR). RESULTS: C. albicans was found to be hydrophobic (77.25%). SEM analysis showed that C. albicans adherence to all membranes examined was characterized by patchy, scattered, and small clustered patterns except for one nontextured membrane with a most rough surface in which a thick biofilm was observed. Real-time PCR quantification revealed significantly greater adhesion of C. albicans cells to PTFE membranes than the control membrane (p ≤ .001) with the membranes having a textured surface exhibiting the highest count of 2680 × 104 cells/ml compared to the count of 707 × 104 cells/mL on those with a nontextured one (p ≤ .001). One membrane with nontextured surface, but with most rough surface was found to exhibit the highest count of 3010 × 104 cells/ml (p ≤ .05). CONCLUSION: The results of this study indicate that C. albicans adhesion on membranes' surfaces depends on the degree of surface roughness and/or on the presence of a texture. Textured PTFE membranes and/or membranes high roughness showed significantly more adhered C. albicans cells. These findings can impact the surgeon's choice of GBR membrane and postoperative maintenance.


Subject(s)
Bone Regeneration , Candida albicans , Membranes, Artificial , Microscopy, Electron, Scanning , Polytetrafluoroethylene , Candida albicans/physiology , Polytetrafluoroethylene/chemistry , Biofilms/growth & development , Cell Adhesion , Humans , Real-Time Polymerase Chain Reaction , Hydrophobic and Hydrophilic Interactions , Surface Properties , Guided Tissue Regeneration/methods , Guided Tissue Regeneration/instrumentation
13.
PLoS One ; 19(7): e0299757, 2024.
Article in English | MEDLINE | ID: mdl-39028721

ABSTRACT

Acute and chronic inflammation are common in patients with end-stage kidney disease (ESKD). So, the adsorption of pro-inflammatory cytokines by the hollow fiber of the dialysis membrane has been expected to modify the inflammatory dysregulation in ESKD patients. However, it remains to be determined in detail what molecules of fiber materials can preferably adsorb proteins from the circulating circuit. We aimed this study to analyze directly the adsorbed proteins in the polymethyl methacrylate (PMMA) and polyethersulfone (PES) membranes in patients on predilution online hemodiafiltration (OL-HDF). To compare the adsorbed proteins in the PMMA and PES hemodiafilters membrane, we initially performed predilution OL-HDF using the PES (MFX-25Seco) membrane while then switched to the PMMA (PMF™-A) membrane under the same condition in three patients. We extracted proteins from the collected hemodiafilters by extraction, then SDS-PAGE of the extracted sample, protein isolation, in-gel tryptic digestion, and nano-LC MS/MS analyses. The concentrations of adsorbed proteins from the PMMA and PES membrane extracts were 35.6±7.9 µg/µL and 26.1±9.2 µg/µL. SDS-PAGE analysis revealed distinct variations of adsorbed proteins mainly in the molecular weight between 10 to 25 kDa. By tryptic gel digestion and mass spectrometric analysis, the PMMA membrane exhibited higher adsorptions of ß2 microglobulin, dermcidin, retinol-binding protein-4, and lambda-1 light chain than those from the PES membrane. In contrast, amyloid A-1 protein was adsorbed more potently in the PES membrane. Western blot analyses revealed that the PMMA membrane adsorbed interleukin-6 (IL-6) approximately 5 to 118 times compared to the PES membrane. These findings suggest that PMMA-based OL-HDF therapy may be useful in controlling inflammatory status in ESKD patients.


Subject(s)
Hemodiafiltration , Membranes, Artificial , Polymers , Polymethyl Methacrylate , Sulfones , Humans , Hemodiafiltration/methods , Hemodiafiltration/instrumentation , Polymethyl Methacrylate/chemistry , Adsorption , Sulfones/chemistry , Polymers/chemistry , Male , Blood Proteins/chemistry , Blood Proteins/analysis , Middle Aged , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/blood , Female , Aged , Tandem Mass Spectrometry/methods
14.
BMC Nephrol ; 25(1): 220, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987671

ABSTRACT

BACKGROUND: Hemodialyzers should efficiently eliminate small and middle molecular uremic toxins and possess exceptional hemocompatibility to improve well-being of patients with end-stage kidney disease. However, performance and hemocompatibility get compromised during treatment due to adsorption of plasma proteins to the dialyzer membrane. Increased membrane hydrophilicity reduces protein adsorption to the membrane and was implemented in the novel FX CorAL dialyzer. The present randomized controlled trial compares performance and hemocompatibility profiles of the FX CorAL dialyzer to other commonly used dialyzers applied in hemodiafiltration treatments. METHODS: This prospective, open, controlled, multicentric, interventional, crossover study randomized stable patients on post-dilution online hemodiafiltration (HDF) to FX CorAL 600, FX CorDiax 600 (both Fresenius Medical Care) and xevonta Hi 15 (B. Braun) each for 4 weeks. Primary outcome was ß2-microglobulin removal rate (ß2-m RR). Non-inferiority and superiority of FX CorAL versus comparators were tested. Secondary endpoints were RR and/or clearance of small and middle molecules, and intra- and interdialytic profiles of hemocompatibility markers, with regards to complement activation, cell activation/inflammation, platelet activation and oxidative stress. Further endpoints were patient reported outcomes (PROs) and clinical safety. RESULTS: 82 patients were included and 76 analyzed as intention-to-treat (ITT) population. FX CorAL showed the highest ß2-m RR (76.28%), followed by FX CorDiax (75.69%) and xevonta (74.48%). Non-inferiority to both comparators and superiority to xevonta were statistically significant. Secondary endpoints related to middle molecules corroborated these results; performance for small molecules was comparable between dialyzers. Regarding intradialytic hemocompatibility, FX CorAL showed lower complement, white blood cell, and platelet activation. There were no differences in interdialytic hemocompatibility, PROs, or clinical safety. CONCLUSIONS: The novel FX CorAL with increased membrane hydrophilicity showed strong performance and a favorable hemocompatibility profile as compared to other commonly used dialyzers in clinical practice. Further long-term investigations should examine whether the benefits of FX CorAL will translate into improved cardiovascular and mortality endpoints. TRIAL REGISTRATION: eMPORA III registration on 19/01/2021 at ClinicalTrials.gov (NCT04714281).


Subject(s)
Cross-Over Studies , Hemodiafiltration , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Humans , Male , Female , Middle Aged , Aged , Hemodiafiltration/instrumentation , Hemodiafiltration/methods , Prospective Studies , beta 2-Microglobulin/blood , Kidney Failure, Chronic/therapy
15.
J Environ Manage ; 365: 121611, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959769

ABSTRACT

Ultrafiltration technology, separating water from impurities by the core membrane, is an effective strategy for treating wastewater to meet the ever-growing requirement of clean and drinking water. However, the similar nature of hydrophobic organic pollutants and the membrane surface leads to severe adsorption and aggregation, resulting unavoidable membrane degradation of penetration and rejection. The present study presents a novel block amphiphilic polymer, polyethersulfone-g-carboxymethyl chitosan@MWCNT (PES-g-CMC@MWCNT), which is synthesized by grafting hydrophobic polyethersulfone to hydrophilic carboxymethyl chitosan in order to suspend CMC in organic solution. A mixture of hydrophilic carboxymethyl chitosan and hydrophobic polymers (polyethersulfone), in which hydrophilic segments are bonded to hydrophobic segments, could provide hydrophilic groups, as well as gather and remain stable on membrane surfaces by their hydrophobic interaction for improved compatibility and durability. The resultant ultrafiltration membranes exhibit high water flux (198.10 L m-2·h-1), suitable hydrophilicity (64.77°), enhanced antifouling property (82.96%), while still maintains excellent rejection of bovine serum albumin (91.75%). There has also been an improvement in membrane cross-sectional morphology, resulting in more regular pores size (47.64 nm) and higher porosity (84.60%). These results indicate that amphiphilic polymer may be able to significantly promote antifouling and permeability of ultrafiltration membranes.


Subject(s)
Chitosan , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Polymers , Sulfones , Ultrafiltration , Polymers/chemistry , Chitosan/chemistry , Chitosan/analogs & derivatives , Sulfones/chemistry , Adsorption , Water Purification/methods , Biofouling/prevention & control
16.
J Environ Manage ; 365: 121683, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963968

ABSTRACT

Ammonia recovery from wastewater has positive environmental benefits, avoiding eutrophication and reducing production energy consumption, which is one of the most effective ways to manage nutrients in wastewater. Specifically, ammonia recovery by membrane distillation has been gradually adopted due to its excellent separation properties for volatile substances. However, the global optimization of direct contact membrane distillation (DCMD) operating parameters to maximize ammonia recovery efficiency (ARE) has not been attempted. In this work, three key operating factors affecting ammonia recovery, i.e., feed ammonia concentration, feed pH, and DCMD running time, were identified from eight factors, by a two-level Plackett-Burman Design (PBD). Subsequently, Box-Behnken design (BBD) under the response surface methodology (RSM) was used to model and optimize the significant operating parameters affecting the recovery of ammonia though DCMD identified by PBD and statistically verified by analysis of variance (ANOVA). Results showed that the model had a high coefficient of determination value (R2 = 0.99), and the interaction between NH4Cl concentration and feed pH had a significant effect on ARE. The optimal operating parameters of DCMD as follows: NH4Cl concentration of 0.46 g/L, feed pH of 10.6, DCMD running time of 11.3 h, and the maximum value of ARE was 98.46%. Under the optimized conditions, ARE reached up to 98.72%, which matched the predicted value and verified the validity and reliability of the model for the optimization of ammonia recovery by DCMD process.


Subject(s)
Ammonia , Distillation , Wastewater , Ammonia/chemistry , Distillation/methods , Wastewater/chemistry , Waste Disposal, Fluid/methods , Models, Theoretical , Hydrogen-Ion Concentration , Membranes, Artificial
17.
J Environ Manage ; 365: 121603, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963967

ABSTRACT

Water treatment has turned out to be more important in most societies due to the expansion of most economies and to advancement of industrialization. Developing efficient materials and technologies for water treatment is of high interest. Thin film nanocomposite membranes are regarded as the most effective membranes available for salts, hydrocarbon, and environmental pollutants removal. These membranes improve productivity while using less energy than conventional asymmetric membranes. Here, the polyvinylidene fluoride (PVDF) membranes have been successfully modified via dip single-step coating by silica-aminopropyl triethoxysilane/trimesic acid/melamine nanocomposite (Si-APTES-TA-MM). The developed membranes were evaluated for separating the emulsified oil/water mixture, the surface wettability of the membrane materials is therefore essential. During the conditioning step, that is when the freshwater was introduced, the prepared membrane reached a flux of about 27.77 L m-2 h-1. However, when the contaminated water was introduced, the flux reached 18 L m-2 h-1, alongside an applied pressure of 400 kPa. Interestingly, during the first 8 h of the filtration test, the membrane showed 90 % rejection for ions including Mg2+, and SO42- and ≈100 % for organic pollutants including pentane, isooctane, toluene, and hexadecane. Also, the membrane showed 98 % rejection for heavy metals including strontium, lead, and cobalt ions. As per the results, the membrane could be recommended as a promising candidate to be used for a mixture of salt ions, hydrocarbons, and mixtures of heavy metals from wastewater.


Subject(s)
Membranes, Artificial , Silanes , Water Pollutants, Chemical , Water Purification , Water Purification/methods , Silanes/chemistry , Water Pollutants, Chemical/chemistry , Metals/chemistry , Oils/chemistry , Propylamines/chemistry , Salts/chemistry , Hydrophobic and Hydrophilic Interactions , Ions , Polyvinyls/chemistry
18.
Biomed Mater Eng ; 35(4): 387-399, 2024.
Article in English | MEDLINE | ID: mdl-38968040

ABSTRACT

BACKGROUND: Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability. OBJECTIVE: The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering. METHODS: Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture. RESULTS: Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications. CONCLUSION: Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.


Subject(s)
Aloe , Cell Survival , Gelatin , Plant Mucilage , Polyesters , Tissue Engineering , Tissue Scaffolds , Polyesters/chemistry , Tissue Engineering/methods , Gelatin/chemistry , Tissue Scaffolds/chemistry , Cell Survival/drug effects , Aloe/chemistry , Plant Mucilage/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing , Humans , Membranes, Artificial , Animals
19.
J Environ Manage ; 365: 121701, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968882

ABSTRACT

This work investigated the treatment of azo dye-containing wastewater in an upflow anaerobic sludge blanket (UASB) reactor combined with an electro-membrane bioreactor (EMBR). Current densities of 20 A m-2 and electric current exposure mode of 6'ON/30'OFF were applied to compare the performance of the EMBR to a conventional membrane bioreactor (MBR). The results showed that dye (Drimaren Red CL-7B) removal occurred predominantly in the UASB reactor, which accounted for 57% of the total dye removal achieved by the combined system. When the MBR was assisted by electrocoagulation, the overall azo dye removal efficiency increased from 60.5 to 67.1%. Electrocoagulation batch tests revealed that higher decolorization rates could be obtained with a current density of 50 A m-2. Over the entire experimental period, the combined UASB-EMBR system exhibited excellent performance in terms of chemical oxygen demand (COD) and NH4+-N removal, with average efficiencies above 97%, while PO43--P was only consistently removed when the electrocoagulation was used. Likewise, a consistent reduction in the absorption spectrum of aromatic amines was observed when the MBR was electrochemically assisted. In addition to improving the pollutants removal, the use of electrocoagulation reduced the membrane fouling rate by 68% (0.25-0.08 kPa d-1), while requiring additional energy consumption and operational costs of 1.12 kWh m-3 and 0.32 USD m-3, respectively. Based on the results, it can be concluded that the combined UASB-EMBR system emerges as a promising technological approach for textile wastewater treatment.


Subject(s)
Azo Compounds , Bioreactors , Membranes, Artificial , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Coloring Agents/chemistry , Sewage , Biological Oxygen Demand Analysis , Water Pollutants, Chemical
20.
Environ Sci Pollut Res Int ; 31(33): 45808-45817, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976193

ABSTRACT

A laboratory-scale mesophilic submerged anaerobic hybrid membrane bioreactor (An-HMBR) was operated for 270 days for the treatment of high-strength synthetic wastewater at different hydraulic retention times (HRTs) (3 days, 2 days, 1 day, and 0.5 days). Chemical oxygen demand (COD) removal efficiency of 92% was obtained with methane yield rate of 0.18 LCH4/g CODremoval at 1-day HRT. The results of lab scale reactor at 1-day HRT were utilized for upscaling and cost analysis. Cost analysis revealed that the total capital cost comprised tank system (48%), membrane cost (32%), screen and PUF sponge (5% each), PLCs (4%), liquid pumps (3%), and others (2%). The operational cost comprised chemical cost (46%), pumping energy (42%), and sludge disposal (12%). The results revealed that the tank and heating costs accounted for the largest fraction of the total life cycle cost for full-scale An-HMBR. The heating cost can be compensated by gas recovery. Sensitivity analysis revealed that the interest rates, influent flow, and membrane flux were the most crucial parameters which affected the total cost of An-HMBR.


Subject(s)
Bioreactors , Waste Disposal, Fluid , Anaerobiosis , Waste Disposal, Fluid/methods , Temperature , Wastewater , Biological Oxygen Demand Analysis , Membranes, Artificial , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL