Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.442
Filter
1.
MMWR Morb Mortal Wkly Rep ; 73(33): 708-714, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39173168

ABSTRACT

Based on safety and efficacy data, vaccinations are the best defense to protect persons and communities from serious vaccine-preventable diseases. The Advisory Committee on Immunization Practices recommends routine vaccination of adolescents aged 11-12 years with three vaccines including tetanus, diphtheria, and acellular pertussis vaccine; quadrivalent meningococcal conjugate vaccine; and human papillomavirus vaccine. CDC analyzed data from the 2023 National Immunization Survey-Teen for 16,658 adolescents aged 13-17 years (born during January 2005-December 2010) to assess vaccination coverage in 2023, recent trends in coverage by birth year, and trends in coverage by eligibility for the Vaccines for Children (VFC) program and birth year. In 2023, coverage with all routine vaccines recommended for adolescents was similar to coverage in 2022. Vaccination coverage among VFC-eligible adolescents was generally stable during the COVID-19 pandemic, except for a decrease in the percentage of VFC-eligible adolescents who were up to date with HPV vaccination by age 13 years among those born in 2010 compared with those born in 2007. Whereas coverage differences were found between VFC-eligible and non-VFC-eligible adolescents before the COVID-19 pandemic, coverage was similar among the most recent birth years in the survey. Providers should make strong recommendations for all routine vaccines and review adolescent vaccination records to verify if adolescents are up to date with all recommended vaccines.


Subject(s)
Health Care Surveys , Vaccination Coverage , Humans , Adolescent , United States , Vaccination Coverage/statistics & numerical data , Female , Male , COVID-19/prevention & control , COVID-19/epidemiology , Papillomavirus Vaccines/administration & dosage , Meningococcal Vaccines/administration & dosage
2.
Nat Commun ; 15(1): 6712, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112489

ABSTRACT

Development of a vaccine against gonorrhoea is a global priority, driven by the rise in antibiotic resistance. Although Neisseria gonorrhoeae (Ng) infection does not induce substantial protective immunity, highly exposed individuals may develop immunity against re-infection with the same strain. Retrospective epidemiological studies have shown that vaccines containing Neisseria meningitidis (Nm) outer membrane vesicles (OMVs) provide a degree of cross-protection against Ng infection. We conducted a clinical trial (NCT04297436) of 4CMenB (Bexsero, GSK), a licensed Nm vaccine containing OMVs and recombinant antigens, comprising a single arm, open label study of two doses with 50 adults in coastal Kenya who have high exposure to Ng. Data from a Ng antigen microarray established that serum IgG and IgA reactivities against the gonococcal homologs of the recombinant antigens in the vaccine peaked at 10 but had declined by 24 weeks. For most reactive OMV-derived antigens, the reverse was the case. A cohort of similar individuals with laboratory-confirmed gonococcal infection were compared before, during, and after infection: their reactivities were weaker and differed from the vaccinated cohort. We conclude that the cross-protection of the 4CMenB vaccine against gonorrhoea could be explained by cross-reaction against a diverse selection of antigens derived from the OMV component.


Subject(s)
Antibodies, Bacterial , Gonorrhea , Immunoglobulin A , Immunoglobulin G , Neisseria gonorrhoeae , Vaccination , Humans , Gonorrhea/immunology , Gonorrhea/prevention & control , Neisseria gonorrhoeae/immunology , Adult , Immunoglobulin A/immunology , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Female , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Kenya/epidemiology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Young Adult , Antigens, Bacterial/immunology , Neisseria meningitidis/immunology , Antibody Formation/immunology , Cross Protection/immunology , Middle Aged
3.
Hum Vaccin Immunother ; 20(1): 2357924, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38976659

ABSTRACT

The 4-component meningococcal serogroup B (MenB) vaccine, 4CMenB, the first broadly protective, protein-based MenB vaccine to be licensed, is now registered in more than 50 countries worldwide. Real-world evidence (RWE) from the last decade confirms its effectiveness and impact, with infant immunization programs showing vaccine effectiveness of 71-95% against invasive MenB disease and cross-protection against non-B serogroups, including a 69% decrease in serogroup W cases in 4CMenB-eligible cohorts in England. RWE from different countries also demonstrates the potential for additional moderate protection against gonorrhea in adolescents. The real-world safety profile of 4CMenB is consistent with prelicensure reports. Use of the endogenous complement human serum bactericidal antibody (enc-hSBA) assay against 110 MenB strains may enable assessment of the immunological effectiveness of multicomponent MenB vaccines in clinical trial settings. Equitable access to 4CMenB vaccination is required to better protect all age groups, including older adults, and vulnerable groups through comprehensive immunization policies.


Invasive meningococcal disease, caused by the bacterium Neisseria meningitidis(meningococcus), is rare but often devastating and can be deadly. Effective vaccines are available, including vaccines against meningococcal serogroup B disease. In 2013, the 4-component meningococcal serogroup B vaccine, 4CMenB, became the first broadly protective, protein-based vaccine against serogroup B to be licensed, with the second (bivalent vaccine, MenB-FHbp) licensed the following year. 4CMenB is now registered in more than 50 countries, in the majority, for infants and all age groups. In the US, it is approved for individuals aged 10­25 years. Evidence from immunization programs in the last decade, comparing vaccinated and unvaccinated individuals and the same population before and after vaccination, confirms the effectiveness and positive impact of 4CMenB against serogroup B disease. This also demonstrates that 4CMenB can provide protection against invasive diseases caused by other meningococcal serogroups. Furthermore, N. meningitidis is closely related to the bacterium that causes gonorrhea, N. gonorrhoeae, and emerging real-world evidence suggests that 4CMenB provides additional moderate protection against gonococcal disease. The safety of 4CMenB when given to large numbers of infants, children, adolescents, and adults is consistent with the 4CMenB safety profile reported before licensure.For the future, it would be beneficial to address differences among national guidelines for the recommended administration of 4CMenB, particularly where there is supportive epidemiological evidence but no equitable access to vaccination. New assays for assessing the potential effectiveness of meningococcal serogroup B vaccines in clinical trials are also required because serogroup B strains circulating in the population are extremely diverse across different countries.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Humans , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Meningococcal Infections/prevention & control , Meningococcal Infections/immunology , Meningococcal Infections/epidemiology , Neisseria meningitidis, Serogroup B/immunology , Immunization Programs , Gonorrhea/prevention & control , Gonorrhea/immunology , Vaccination , Infant , Adolescent , Cross Protection/immunology
4.
Hum Vaccin Immunother ; 20(1): 2378537, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39037011

ABSTRACT

Meningococcal (Neisseria meningitidis) serogroup B (MenB) strain antigens are diverse and a limited number of strains can be evaluated using the human serum bactericidal antibody (hSBA) assay. The genetic Meningococcal Antigen Typing System (gMATS) was developed to predict the likelihood of coverage for large numbers of isolates by the 4CMenB vaccine, which includes antigens Neisseria adhesin A (NadA), Neisserial Heparin-Binding Antigen (NHBA), factor H-binding protein (fHbp), and Porin A (PorA). In this study, we characterized by whole-genome analyses 284 invasive MenB isolates collected from 2010 to 2014 by the Argentinian National Laboratories Network (52-61 isolates per year). Strain coverage was estimated by gMATS on all isolates and by hSBA assay on 74 randomly selected isolates, representative of the whole panel. The four most common clonal complexes (CCs), accounting for 81.3% of isolates, were CC-865 (75 isolates, 26.4%), CC-32 (59, 20.8%), CC-35 (59, 20.8%), and CC-41/44 (38, 13.4%). Vaccine antigen genotyping showed diversity. The most prevalent variants/peptides were fHbp variant 2, NHBA peptides 24, 21, and 2, and PorA variable region 2 profiles 16-36 and 14. The nadA gene was present in 66 (23.2%) isolates. Estimated strain coverage by hSBA assay showed 78.4% of isolates were killed by pooled adolescent sera, and 51.4% and 64.9% (based on two different thresholds) were killed by pooled infant sera. Estimated coverage by gMATS (61.3%; prediction interval: 55.5%, 66.7%) was consistent with the infant hSBA assay results. Continued genomic surveillance is needed to evaluate the persistence of major MenB CCs in Argentina.


The most common clinical manifestations of invasive meningococcal disease include meningitis and septicemia, which can be deadly, and many survivors suffer long-term serious after-effects. Most cases of invasive meningococcal disease are caused by six meningococcal serogroups (types), including serogroup B. Although vaccines are available against meningococcal serogroup B infection, these vaccines target antigens that are highly diverse. Consequently, the effectiveness of vaccination may vary from country to country because the meningococcal serogroup B strains circulating in particular regions carry different forms of the target vaccine antigens. This means it is important to test serogroup B strains isolated from specific populations to estimate the percentage of strains that a vaccine is likely to be effective against (known as 'vaccine strain coverage'). The genetic Meningococcal Antigen Typing System (gMATS) was developed to predict strain coverage by the four-component meningococcal serogroup B vaccine, 4CMenB, against large numbers of serogroup B strains. In this study, we analyzed 284 invasive meningococcal serogroup B isolates collected between 2010 and 2014 in Argentina. Genetic analyses showed that the vaccine antigens of the isolates were diverse and some genetic characteristics had not been found in isolates from other countries. However, vaccine strain coverage estimated by gMATS was consistent with that reported in other parts of the world and with strain coverage results obtained for a subset via another method, the human serum bactericidal antibody (hSBA) assay. These results highlight the need for continued monitoring of circulating bacterial strains to assess the estimated strain coverage of meningococcal serogroup B vaccines.


Subject(s)
Antigens, Bacterial , Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Humans , Argentina/epidemiology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Meningococcal Infections/microbiology , Meningococcal Infections/prevention & control , Meningococcal Infections/epidemiology , Infant , Adolescent , Child , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Child, Preschool , Young Adult , Neisseria meningitidis, Serogroup B/genetics , Neisseria meningitidis, Serogroup B/isolation & purification , Neisseria meningitidis, Serogroup B/immunology , Adult , Female , Male , Whole Genome Sequencing , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Genotype , Adhesins, Bacterial/genetics , Adhesins, Bacterial/immunology , Middle Aged , Porins/genetics , Porins/immunology , Serum Bactericidal Antibody Assay , Aged , Neisseria meningitidis/genetics , Neisseria meningitidis/immunology , Neisseria meningitidis/isolation & purification , Neisseria meningitidis/classification
5.
BMC Public Health ; 24(1): 1771, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961431

ABSTRACT

BACKGROUND: In the United States (US), three types of vaccines are available to prevent invasive meningococcal disease (IMD), a severe and potentially fatal infection: quadrivalent conjugate vaccines against serogroups A, C, W, Y (MenACWY), and monovalent vaccines against serogroup B (MenB) as well as a newly licensed pentavalent vaccine (MenABCWY) protecting against serogroup A, B, C, W, and Y. The CDC's Advisory Committee on Immunization Practices (ACIP) routinely recommends MenACWY vaccine for all 11- to 12-year-olds with a booster dose at 16 years. MenB vaccination is recommended based on shared clinical decision-making (SCDM) for 16- to 23-year-olds. Recently, the pentavalent meningococcal vaccine (MenABCWY) was recommended by the ACIP. Meningococcal vaccine uptake is suboptimal across the country, particularly among individuals with lower socioeconomic status (SES), despite these recommendations. The objective of the spatial analyses was to assess the relationship between stocking of MenACWY and MenB vaccines, area-level SES, and state-level policies. METHODS: The number of MenACWY and MenB doses stocked by vaccinators was obtained from IQVIA and the CDC's Vaccine for Children (VFC) program and compiled into a county-level dataset from 2016 to 2019. SES, as measured using the CDC's Social Vulnerability Index (SVI), state-level school recommendations, and universal purchasing programs were among the main county-level covariates included to control for factors likely influencing stocking. Data were stratified by public and private market. Bayesian spatial regression models were developed to quantify the variations in rates of stocking and the relative rates of stocking of both vaccines. RESULTS: After accounting for county-level characteristics, lower SES counties tended to have fewer doses of MenB relative to MenACWY on both public and private markets. Lower SES counties tended to have more supply of public vs. private doses. Universal purchasing programs had a strong effect on the markets for both vaccines shifting nearly all doses to the public market. School vaccination strategy was key for improving stocking rates. CONCLUSIONS: Overall, the results show that MenACWY has greater stock relative to MenB across the US. This difference is exacerbated in vulnerable areas without school entry requirements for vaccination and results in inequity of vaccine availability. Beyond state-level policy and SES differences, SCDM recommendations may be a contributing factor, although this was not directly assessed by our model.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Humans , Meningococcal Vaccines/administration & dosage , United States , Meningococcal Infections/prevention & control , Child , Adolescent , Healthcare Disparities/statistics & numerical data , Young Adult , Health Services Accessibility
6.
J Infect ; 89(3): 106225, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986746

ABSTRACT

OBJECTIVES: To systematically review and synthesis the evidence of vaccine effectiveness (VE) and impact (VI) of meningococcal vaccines in preventing gonorrhoea. METHODS: We systematically evaluated studies. Literature searches were conducted in PubMed, Embase, Cochrane Library, CINAHL, Google Scholar, clinical trial registries, and major health and immunisation conferences. Meta-analysis was performed with the DerSimonian-Laird random-effects model to estimate the pooled VE. RESULTS: Twelve studies met the criteria for inclusion. VE of meningococcal B (MenB) outer membrane vesicle (OMV) vaccines was evaluated in nine studies, with one study evaluating a non-OMV vaccine, MenB-FHbp. The majority of studies targeted individuals aged 15-30 years. Adjusted VE for OMV vaccines against gonorrhoea ranged from 22% to 46%. MenB-FHbp did not show protection against gonorrhoea. The pooled VE estimates of OMV vaccines against any gonorrhoea infection following the full vaccine series were 33-34%. VI was assessed for 4CMenB in Canada and Australia, for VA-MENGOC-BC in Cuba; and for MenBvac in Norway. VI ranged from a 30% to 59% reduction in gonorrhoea incidence. CONCLUSIONS: 4CMenB and other MenB-OMV vaccines show moderate effectiveness against gonorrhoea. Further research is required to explore the factors associated with vaccine protection, informing more effective vaccination strategies for the management of gonococcal infections.


Subject(s)
Gonorrhea , Meningococcal Vaccines , Vaccine Efficacy , Humans , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Gonorrhea/prevention & control , Adolescent , Young Adult , Adult , Meningococcal Infections/prevention & control , Meningococcal Infections/epidemiology , Female , Male , Neisseria gonorrhoeae/immunology , Vaccination
7.
J Infect ; 89(3): 106228, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996818

ABSTRACT

OBJECTIVES: To estimate vaccine effectiveness (VE) and duration of protection of single primary and booster immunisation with meningococcal C (MenC) and ACWY (MenACWY) conjugate vaccines in preventing MenC invasive meningococcal disease (IMD). METHODS: We performed a systematic review on studies of VE and immunogenicity (rSBA/hSBA titers) of participants aged 12-23 months for primary and 6-18 years for booster immunisation (last search: 18 August 2023). Risk of bias and certainty of evidence were evaluated (PROSPERO: CRD42020178773). RESULTS: We identified 10 studies. Two studies reported VE of primary immunisation with MenC vaccines ranging between 90% (74.9 - 96.1) and 84.1% (41.5 - 95.7) for periods of 2 and 7 years, respectively. Eight studies reported immunogenicity of primary immunisation with MenC and/or MenACWY vaccines, of which two reported -in addition- on booster immunisation. The percentage of participants with protective rSBA titers was high after primary immunisation but waned over the following 6 years. A single booster at the age of 7 years or older seems to prolong protection for several years. CONCLUSIONS: A single dose of MenC or MenACWY vaccine at 12-23 months of age provides robust protection against MenC IMD. Data on booster immunisation are sparse, but indicate prolonged protection for three years at least.


Subject(s)
Immunization, Secondary , Meningococcal Infections , Meningococcal Vaccines , Humans , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Meningococcal Infections/prevention & control , Meningococcal Infections/immunology , Adolescent , Child , Neisseria meningitidis, Serogroup C/immunology , Vaccine Efficacy , Infant , Vaccines, Conjugate/immunology , Vaccines, Conjugate/administration & dosage , Immunization Schedule , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Male , Female
9.
J Microbiol Biotechnol ; 34(7): 1419-1424, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38955797

ABSTRACT

Secretin PilQ is an antigenically conserved outer membrane protein that is present in most meningococci and PorA is a major protein that elicits bactericidal immune response in humans following natural disease and immunization. In the present study, BALB/c mice were immunized subcutaneously with rPilQ406-770 or rPorA together with Freund's adjuvant (FA). Serum antibody responses to serogroup A and B Neisseria meningitides whole cells or purified proteins and functional activity of antibodies were determined by ELISA and serum bactericidal assay (SBA), respectively. Serum IgG responses were significantly increased in the immunized group with rPilQ406-770 or rPorA together with FA compared to control groups. IgG antibody response of mice immunized with rPilQ406-770 was significantly more than mice immunized with rPorA (OD at 450 nm was 1.6 versus 0.83). The booster injections were effective in increasing the responses of anti-rPilQ406-770 or anti-rPorA IgG significantly. Antisera produced against rPilQ406-770 or rPorA demonstrated strong surface reactivity to serogroup B N. meningitides in comparison with control groups. Antisera raised against rPorA or rPilQ406-770 and FA demonstrated SBA titers from 1/1024 to 1/2048 against serogroup B. The strongest bactericidal activity was detected in sera from mice immunized with rPilQ406-770 mixed with FA. These results suggest that rPilQ406-770 is a potential vaccine candidate for serogroup B N. meningitidis.


Subject(s)
Antibodies, Bacterial , Bacterial Outer Membrane Proteins , Immunoglobulin G , Meningococcal Vaccines , Mice, Inbred BALB C , Recombinant Proteins , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Recombinant Proteins/immunology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Neisseria meningitidis/immunology , Female , Freund's Adjuvant/administration & dosage , Freund's Adjuvant/immunology , Antibody Formation/immunology , Immunization , Enzyme-Linked Immunosorbent Assay , Serum Bactericidal Antibody Assay , Antigens, Bacterial/immunology
11.
Curr Med Res Opin ; 40(7): 1253-1263, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38860982

ABSTRACT

OBJECTIVE: In 2019, the United States Advisory Committee on Immunization Practices (ACIP) updated their meningococcal serogroup B (MenB) vaccination recommendation for 16-|23-year-olds from individual to shared clinical decision-making (SCDM). SCDM recommendations are individually based and informed by a decision process between patients and healthcare providers (HCPs). MenB vaccination among 16-23-year-olds remains low. We examined recorded conversations in which MenB vaccine-related discussions between HCPs and patients/caregivers took place, and how these interactions changed following the updated SCDM recommendation. METHODS: An analysis of recordings where MenB vaccination was discussed between HCPs and patients (16-|23 years old)/caregivers was conducted using retrospective anonymized dialogue data (January 2015-October 2022). Shared decision-making strength was measured using a modified OPTION5 framework. RESULTS: Of 97 included recorded conversations, the average duration was 11.3 min. Within these conversations, MenB disease was discussed for 0.25 min (38.9% of words in total vaccine-preventable diseases discussion) and MenB vaccination was discussed for 1.36 min (60.9% of words in total vaccine discussion), on average. HCPs spoke 78.8% of MenB vaccine-related words and most (99.0%) initiated the MenB vaccination discussion. In 40.2% of recordings, HCPs acknowledged the MenB vaccine without providing a clear recommendation. HCP recommendations often favored MenB vaccination (87.0%) and recommendations were 21.4% stronger post-recommendation change to SCDM. As measured by the modified OPTION5 framework, most recordings did not reflect a high degree of shared decision-making between HCPs and patients/caregivers. CONCLUSIONS: MenB vaccination discussions were brief, and the degree of shared decision-making was low. Targeted education of HCPs and patients/caregivers may improve MenB vaccination awareness, SCDM implementation, and vaccine uptake.


Meningitis is a serious and sometimes deadly disease. In the United States (US), the Centers for Disease Control and Prevention (CDC) recommends that 16­23-year-olds get vaccinated against meningococcal serogroup B (MenB), which causes a specific type of meningitis called invasive meningococcal disease. As of 2019, the CDC recommends that healthcare providers and patients or their caregivers have a shared decision-making discussion about deciding to get vaccinated against MenB. Despite these recommendations, vaccination against MenB among 16­23-year-olds is very low. Only about 3 in 10 17-year-olds had received the MenB vaccine in 2022. We studied conversations between healthcare providers and patients or their caregivers that included discussions of MenB vaccination. These discussions were largely brief and led by the healthcare providers. We found that healthcare providers most often made recommendations that were in favor of their patients getting vaccinated against MenB. However, we also found that healthcare providers missed many opportunities to have these shared decision-making discussions about MenB vaccination with patients or their caregivers. Providing education and resources for patients, caregivers, and healthcare providers focused on increasing awareness about MenB vaccination and the role they can play in having shared decision-making discussions may lead to more adolescents and young adults getting vaccinated against MenB. More research is needed to find out how we can improve MenB vaccination coverage in the US.


Subject(s)
Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Vaccination , Humans , Neisseria meningitidis, Serogroup B/immunology , Meningococcal Vaccines/administration & dosage , Adolescent , Female , Male , Young Adult , United States , Vaccination/psychology , Retrospective Studies , Meningococcal Infections/prevention & control , Clinical Decision-Making , Adult , Decision Making, Shared , Health Personnel/psychology
13.
Int J Infect Dis ; 146: 107150, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38914368

ABSTRACT

OBJECTIVE: We evaluated the changes and molecular epidemiology of meningococcal carriage in military recruits after quadrivalent meningococcal conjugate vaccines (MenACWY) vaccination. METHODS: Oropharyngeal swabs were obtained at the beginning and end of the 5-week training. Carriage rates before and after vaccination were compared to estimate vaccine effectiveness (VE). Cultured isolates were characterized by multi-locus sequence typing (MLST). RESULTS: Of 866 vaccinated participants, the overall carriage rate was 10.6% prior to MenACWY vaccination and it tended to decrease to 9.5% after 5 weeks of vaccination (P = 0.424). Carriage rate of serogroup ACWY decreased significantly after vaccination (VEACWY = 72.6%, 95% CI: 36.3-88.2), and serogroup C was particularly reduced (VEC = 83.0%, 95% CI: 50.6-94.1), whereas non-groupable isolates increased significantly after vaccination (VENG = -76.1%, 95% CI: -176.2 to -13.1). Among 99 carriage isolates with complete MLST profiles, 45 different sequence types with nine clonal complexes (CCs) were identified, and 35.3% of the carriage isolates belonged to hypervirulent strains such as CC-32, CC-41/44, and CC-269. CONCLUSIONS: MenACWY vaccination in military recruits led to reduced carriage rates of serogroups C, W, and Y within a short 5-week period. However, serogroup B isolates belonging to the hypervirulent lineage remained after the implementation of MenACWY vaccination.


Subject(s)
Carrier State , Genotype , Meningococcal Infections , Meningococcal Vaccines , Military Personnel , Multilocus Sequence Typing , Neisseria meningitidis , Vaccines, Conjugate , Humans , Meningococcal Vaccines/administration & dosage , Meningococcal Vaccines/immunology , Neisseria meningitidis/genetics , Neisseria meningitidis/immunology , Neisseria meningitidis/classification , Meningococcal Infections/prevention & control , Meningococcal Infections/epidemiology , Meningococcal Infections/microbiology , Carrier State/microbiology , Carrier State/epidemiology , Prospective Studies , Male , Young Adult , Republic of Korea/epidemiology , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/immunology , Female , Serogroup , Adult , Vaccination
14.
Vaccine ; 42(19): 3961-3967, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38719693

ABSTRACT

The rates of nasopharyngeal meningococcal carriage in healthcare workers are unknown. Meningococcal vaccine is recommended for risk groups but healthcare workers are not included in risk groups for many countries. Herein, we aimed to investigate the nasopharyngeal meningococcal carriage rates, basal and after one dose of Men-ACWY-DT vaccine response on the 30th day by evaluating meningococcus IgG antibody levels and decolonization at month six after vaccination among the detected carriers. Nasopharyngeal swab samples were taken before vaccination to evaluate meningococcal carriage in healthcare workers. All participants received a single dose of Men-ACWY-DT vaccine. Serum samples were collected immediately before vaccination and again on day 30 post-vaccination. Antibodies in the stored sera were analyzed using the ELISA method. Participants who were determined to carry meningococci at the initial visit underwent another round of nasopharyngeal swab tests six months post-vaccination to check for decolonization. Between November 2020 and May 2021, we evaluated samples from 100 physicians [52 % females, 28.28 ± 4.45 (min: 24, max: 49)]. The majority of the physicians worked in the emergency department (45 %), followed by the infectious diseases clinic (14 %). Fifty-eight physicians had a history of at least one contact with a meningococcus-infected patient, and 53 (91.4 %) had used prophylactic antibiotics at least once due to this exposure. None of the study group nasopharyngeal swab cultures were positive for Neisseria meningitidis. Before the Men-ACWY-DT vaccine, anti-meningococcus IgG positivity was detected in the serum samples of only 3 (3 %) participants. By day 30 after vaccination, 48 % of participants showed positive for antibodies. As we didn't detect nasopharyngeal carriage in any participants, we didn't evaluate decolonization among carriers six months post-vaccination. Notably, detection of antibodies was evident in about half of the participants on day 30 after receiving a single dose of the Men-ACWY-DT vaccine.


Subject(s)
Antibodies, Bacterial , Carrier State , Health Personnel , Meningococcal Infections , Meningococcal Vaccines , Nasopharynx , Neisseria meningitidis , Humans , Male , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Female , Carrier State/immunology , Carrier State/microbiology , Adult , Antibodies, Bacterial/blood , Meningococcal Infections/prevention & control , Meningococcal Infections/immunology , Health Personnel/statistics & numerical data , Neisseria meningitidis/immunology , Nasopharynx/microbiology , Immunoglobulin G/blood , Vaccination/methods , Young Adult , Antibody Formation/immunology , Middle Aged
15.
mSphere ; 9(6): e0022024, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38752729

ABSTRACT

Neisseria meningitidis serogroup B (NmB) strains have diverse antigens, necessitating methods for predicting meningococcal serogroup B (MenB) vaccine strain coverage. The genetic Meningococcal Antigen Typing System (gMATS), a correlate of MATS estimates, predicts strain coverage by the 4-component MenB (4CMenB) vaccine in cultivable and non-cultivable NmB isolates. In Taiwan, 134 invasive, disease-causing NmB isolates were collected in 2003-2020 (23.1%, 4.5%, 5.2%, 29.8%, and 37.3% from individuals aged ≤11 months, 12-23 months, 2-4 years, 5-29 years, and ≥30 years, respectively). NmB isolates were characterized by whole-genome sequencing and vaccine antigen genotyping, and 4CMenB strain coverage was predicted using gMATS. Analysis of phylogenetic relationships with 502 global NmB genomes showed that most isolates belonged to three global hyperinvasive clonal complexes: ST-4821 (27.6%), ST-32 (23.9%), and ST-41/44 (14.9%). Predicted strain coverage by gMATS was 62.7%, with 27.6% isolates covered, 2.2% not covered, and 66.4% unpredictable by gMATS. Age group coverage point estimates ranged from 42.9% (2-4 years) to 66.1% (≤11 months). Antigen coverage estimates and percentages predicted as covered/not covered were highly variable, with higher estimates for isolates with one or more gMATS-positive antigens than for isolates positive for one 4CMenB antigen. In conclusion, this first study on NmB strain coverage by 4CMenB in Taiwan shows 62.7% coverage by gMATS, with predictable coverage for 29.8% of isolates. These could be underestimated since the gMATS calculation does not consider synergistic mechanisms associated with simultaneous antibody binding to multiple targets elicited by multicomponent vaccines or the contributions of minor outer membrane vesicle vaccine components.IMPORTANCEMeningococcal diseases, caused by the bacterium Neisseria meningitidis (meningococcus), include meningitis and septicemia. Although rare, invasive meningococcal disease is often severe and can be fatal. Nearly all cases are caused by six meningococcal serogroups (types), including meningococcal serogroup B. Vaccines are available against meningococcal serogroup B, but the antigens targeted by these vaccines have highly variable genetic features and expression levels, so the effectiveness of vaccination may vary depending on the strains circulating in particular countries. It is therefore important to test meningococcal serogroup B strains isolated from specific populations to estimate the percentage of bacterial strains that a vaccine can protect against (vaccine strain coverage). Meningococcal isolates were collected in Taiwan between 2003 and 2020, of which 134 were identified as serogroup B. We did further investigations on these isolates, including using a method (called gMATS) to predict vaccine strain coverage by the 4-component meningococcal serogroup B vaccine (4CMenB).


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Whole Genome Sequencing , Humans , Taiwan/epidemiology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Neisseria meningitidis, Serogroup B/genetics , Neisseria meningitidis, Serogroup B/classification , Neisseria meningitidis, Serogroup B/isolation & purification , Neisseria meningitidis, Serogroup B/immunology , Infant , Child, Preschool , Child , Adult , Adolescent , Young Adult , Meningococcal Infections/microbiology , Meningococcal Infections/prevention & control , Meningococcal Infections/epidemiology , Phylogeny , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Male , Female , Genotype , Vaccination Coverage/statistics & numerical data
16.
Pediatr Infect Dis J ; 43(8): 809-812, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38717982

ABSTRACT

The effect of the Bacille Calmette-Guérin (BCG) vaccine on the immunogenicity of separately administered serogroup C meningococcal vaccine and other vaccinations was examined in 28 infants randomized to receive BCG at age ≤7 days, at 3 months or after study completion. Immunogenicity of the serogroup C meningococcal vaccine and other routine vaccines might be improved when BCG is administered in early infancy.


Subject(s)
BCG Vaccine , Meningococcal Vaccines , Humans , BCG Vaccine/immunology , BCG Vaccine/administration & dosage , Infant , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Male , Infant, Newborn , Female , Immunogenicity, Vaccine , Vaccination , Antibodies, Bacterial/blood
17.
Hum Vaccin Immunother ; 20(1): 2346963, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38745461

ABSTRACT

COVID-19, caused by SARS-CoV-2, and meningococcal disease, caused by Neisseria meningitidis, are relevant infectious diseases, preventable through vaccination. Outer membrane vesicles (OMVs), released from Gram-negative bacteria, such as N. meningitidis, present adjuvant characteristics and may confer protection against meningococcal disease. Here, we evaluated in mice the humoral and cellular immune response to different doses of receptor binding domain (RBD) of SARS-CoV-2 adjuvanted by N. meningitidis C:2a:P1.5 OMVs and aluminum hydroxide, as a combined preparation for these pathogens. The immunization induced IgG antibodies of high avidity for RBD and OMVs, besides IgG that recognized the Omicron BA.2 variant of SARS-CoV-2 with intermediary avidity. Cellular immunity showed IFN-γ and IL-4 secretion in response to RBD and OMV stimuli, demonstrating immunologic memory and a mixed Th1/Th2 response. Offspring presented transferred IgG of similar levels and avidity as their mothers. Humoral immunity did not point to the superiority of any RBD dose, but the group immunized with a lower antigenic dose (0.5 µg) had the better cellular response. Overall, OMVs enhanced RBD immunogenicity and conferred an immune response directed to N. meningitidis too.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , Neisseria meningitidis , SARS-CoV-2 , Animals , Mice , Immunoglobulin G/blood , Neisseria meningitidis/immunology , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Meningococcal Infections/prevention & control , Meningococcal Infections/immunology , Spike Glycoprotein, Coronavirus/immunology , Adjuvants, Vaccine/administration & dosage , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/immunology , Immunization/methods , Antibody Affinity , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Immunologic Memory , Th1 Cells/immunology
18.
BMJ Open ; 14(5): e079144, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719318

ABSTRACT

INTRODUCTION: The effectiveness of antibiotics for treating gonococcal infections is compromised due to escalating antibiotic resistance; and the development of an effective gonococcal vaccine has been challenging. Emerging evidence suggests that the licensed meningococcal B (MenB) vaccine, 4CMenB is effective against gonococcal infections due to cross-reacting antibodies and 95% genetic homology between the two bacteria, Neisseria meningitidis and Neisseria gonorrhoeae, that cause the diseases. This project aims to undertake epidemiological and genomic surveillance to evaluate the long-term protection of the 4CMenB vaccine against gonococcal infections in the Northern Territory (NT) and South Australia (SA), and to determine the potential benefit of a booster vaccine doses to provide longer-term protection against gonococcal infections. METHODS AND ANALYSES: This observational study will provide long-term evaluation results of the effectiveness of the 4CMenB vaccine against gonococcal infections at 4-7 years post 4CMenB programme implementation. Routine notifiable disease notifications will be the basis for assessing the impact of the vaccine on gonococcal infections. Pathology laboratories will provide data on the number and percentage of N. gonorrhoeae positive tests relative to all tests administered and will coordinate molecular sequencing for isolates. Genome sequencing results will be provided by SA Pathology and Territory Pathology/New South Wales Health Pathology, and linked with notification data by SA Health and NT Health. There are limitations in observational studies including the potential for confounding. Confounders will be analysed separately for each outcome/comparison. ETHICS AND DISSEMINATION: The protocol and all study documents have been reviewed and approved by the SA Department for Health and Well-being Human Research Ethics Committee (HREC/2022/HRE00308), and the evaluation will commence in the NT on receipt of approval from the NT Health and Menzies School of Health Research Human Research Ethics Committee. Results will be published in peer-reviewed journals and presented at scientific meetings and public forums.


Subject(s)
Gonorrhea , Meningococcal Vaccines , Neisseria gonorrhoeae , Humans , Gonorrhea/prevention & control , Gonorrhea/epidemiology , Northern Territory/epidemiology , Meningococcal Vaccines/administration & dosage , Meningococcal Vaccines/therapeutic use , Neisseria gonorrhoeae/immunology , South Australia/epidemiology , Observational Studies as Topic , Female
20.
JCI Insight ; 9(10)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38775152

ABSTRACT

Children with perinatally acquired HIV (PHIV) have special vaccination needs, as they make suboptimal immune responses. Here, we evaluated safety and immunogenicity of 2 doses of 4-component group B meningococcal vaccine in antiretroviral therapy-treated children with PHIV and healthy controls (HCs). Assessments included the standard human serum bactericidal antibody (hSBA) assay and measurement of IgG titers against capsular group B Neisseria meningitidis antigens (fHbp, NHBA, NadA). The B cell compartment and vaccine-induced antigen-specific (fHbp+) B cells were investigated by flow cytometry, and gene expression was investigated by multiplexed real-time PCR. A good safety and immunogenicity profile was shown in both groups; however, PHIV demonstrated a reduced immunogenicity compared with HCs. Additionally, PHIV showed a reduced frequency of fHbp+ and an altered B cell subset distribution, with higher fHbp+ frequency in activated memory and tissue-like memory B cells. Gene expression analyses on these cells revealed distinct mechanisms between PHIV and HC seroconverters. Overall, these data suggest that PHIV presents a diverse immune signature following vaccination. The impact of such perturbation on long-term maintenance of vaccine-induced immunity should be further evaluated in vulnerable populations, such as people with PHIV.


Subject(s)
HIV Infections , Meningococcal Vaccines , Humans , HIV Infections/immunology , Male , Female , Child , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Child, Preschool , Meningococcal Infections/immunology , Meningococcal Infections/prevention & control , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , B-Lymphocytes/immunology , Infectious Disease Transmission, Vertical/prevention & control , Immunogenicity, Vaccine , Immunoglobulin G/immunology , Immunoglobulin G/blood
SELECTION OF CITATIONS
SEARCH DETAIL