Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.061
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928148

ABSTRACT

Investigate meniscal extracellular matrix degradation. Equine menisci (n = 34 from 17 horses) were studied. Site-matched sections were cut and scored from three regions (ROIs; n = 102) and stained for histology, proteoglycan (safranin O and fast green), aggrecan, and collagen cleavage (NITEGE, DIPEN, and C1,2C antibodies, respectively). Picrosirius red and second harmonic generation microscopy were performed to investigate collagen ultrastructure. A total of 42 ROIs met the inclusion criteria and were included in the final analysis. The median (range) ROI histological score was 3 (0-9), providing a large spectrum of pathology. The median (range) proteoglycan score was 1 (0-3), representing superficial and central meniscal loss. The median (range) of DIPEN, NITEGE, and C1,2C scores was 1 (0-3), revealing immunostaining of the femoral and tibial surfaces. The proteoglycan scores exhibited significant positive associations with both histologic evaluation (p = 0.03) and DIPEN scores (p = 0.02). Additionally, a robust positive association (p = 0.007) was observed between the two aggrecanolysis indicators, NITEGE and DIPEN scores. A negative association (p = 0.008) was identified between NITEGE and histological scores. The C1,2C scores were not associated with any other scores. Picrosirius red and second harmonic generation microscopy (SHGM) illustrated the loss of the collagen matrix and structure centrally. Proteoglycan and collagen degradation commonly occur superficially in menisci and less frequently centrally. The identification of central meniscal proteoglycan and collagen degradation provides novel insight into central meniscal degeneration. However, further research is needed to elucidate the etiology and sequence of degradative events.


Subject(s)
Collagen , Meniscus , Proteoglycans , Animals , Horses , Proteoglycans/metabolism , Collagen/metabolism , Meniscus/metabolism , Aggrecans/metabolism , Extracellular Matrix/metabolism , Proteolysis , Menisci, Tibial/metabolism
2.
Cell Commun Signal ; 22(1): 342, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907358

ABSTRACT

BACKGROUND: Mechanical unloading of the knee articular cartilage results in cartilage matrix atrophy, signifying the osteoarthritic-inductive potential of mechanical unloading. In contrast, mechanical loading stimulates cartilage matrix production. However, little is known about the response of meniscal fibrocartilage, a major mechanical load-bearing tissue of the knee joint, and its functional matrix-forming fibrochondrocytes to mechanical unloading events. METHODS: In this study, primary meniscus fibrochondrocytes isolated from the inner avascular region of human menisci from both male and female donors were seeded into porous collagen scaffolds to generate 3D meniscus models. These models were subjected to both normal gravity and mechanical unloading via simulated microgravity (SMG) for 7 days, with samples collected at various time points during the culture. RESULTS: RNA sequencing unveiled significant transcriptome changes during the 7-day SMG culture, including the notable upregulation of key osteoarthritis markers such as COL10A1, MMP13, and SPP1, along with pathways related to inflammation and calcification. Crucially, sex-specific variations in transcriptional responses were observed. Meniscus models derived from female donors exhibited heightened cell proliferation activities, with the JUN protein involved in several potentially osteoarthritis-related signaling pathways. In contrast, meniscus models from male donors primarily regulated extracellular matrix components and matrix remodeling enzymes. CONCLUSION: These findings advance our understanding of sex disparities in knee osteoarthritis by developing a novel in vitro model using cell-seeded meniscus constructs and simulated microgravity, revealing significant sex-specific molecular mechanisms and therapeutic targets.


Subject(s)
Meniscus , Weightlessness Simulation , Humans , Meniscus/cytology , Male , Female , Cells, Cultured , Middle Aged , Cell Proliferation , Chondrocytes/metabolism , Chondrocytes/cytology , Adult , Transcriptome/genetics
3.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(6): 748-754, 2024 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-38918198

ABSTRACT

Objective: To investigate the construction of a novel tissue engineered meniscus scaffold based on low temperature deposition three-dimenisonal (3D) printing technology and evaluate its biocompatibility. Methods: The fresh pig meniscus was decellularized by improved physicochemical method to obtain decellularized meniscus matrix homogenate. Gross observation, HE staining, and DAPI staining were used to observe the decellularization effect. Toluidine blue staining, safranin O staining, and sirius red staining were used to evaluate the retention of mucopolysaccharide and collagen. Then, the decellularized meniscus matrix bioink was prepared, and the new tissue engineered meniscus scaffold was prepared by low temperature deposition 3D printing technology. Scanning electron microscopy was used to observe the microstructure. After co-culture with adipose-derived stem cells, the cell compatibility of the scaffolds was observed by cell counting kit 8 (CCK-8), and the cell activity and morphology were observed by dead/live cell staining and cytoskeleton staining. The inflammatory cell infiltration and degradation of the scaffolds were evaluated by subcutaneous experiment in rats. Results: The decellularized meniscus matrix homogenate appeared as a transparent gel. DAPI and histological staining showed that the immunogenic nucleic acids were effectively removed and the active components of mucopolysaccharide and collagen were remained. The new tissue engineered meniscus scaffolds was constructed by low temperature deposition 3D printing technology and it had macroporous-microporous microstructures under scanning electron microscopy. CCK-8 test showed that the scaffolds had good cell compatibility. Dead/live cell staining showed that the scaffold could effectively maintain cell viability (>90%). Cytoskeleton staining showed that the scaffolds were benefit for cell adhesion and spreading. After 1 week of subcutaneous implantation of the scaffolds in rats, there was a mild inflammatory response, but no significant inflammatory response was observed after 3 weeks, and the scaffolds gradually degraded. Conclusion: The novel tissue engineered meniscus scaffold constructed by low temperature deposition 3D printing technology has a graded macroporous-microporous microstructure and good cytocompatibility, which is conducive to cell adhesion and growth, laying the foundation for the in vivo research of tissue engineered meniscus scaffolds in the next step.


Subject(s)
Meniscus , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Animals , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Swine , Rats , Meniscus/cytology , Biocompatible Materials , Rats, Sprague-Dawley , Cells, Cultured , Menisci, Tibial/cytology , Microscopy, Electron, Scanning
4.
Sci Rep ; 14(1): 12335, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811752

ABSTRACT

Meniscus pathologies (damage, extrusion) and synovitis are associated with knee osteoarthritis (KOA); however, whether synovitis mediates the relationship between meniscus pathologies and KOA radiographic progression remains unclear. We conducted an observational study in the Osteoarthritis Initiative (OAI) cohort, with a 48-month follow-up. Meniscus pathology and synovitis were measured by MRI osteoarthritis knee score (MOAKS) at baseline and 24 months, and a comprehensive synovitis score was calculated using effusion and Hoffa synovitis scores. The knee osteoarthritis radiographic progression was considered that Kellgren-Lawrence (KL) grade and joint space narrowing (JSN) grade at 48 months were increased compared to those at baseline. This study included a total of 589 participants, with KL grades mainly being KL1 (26.5%), KL2 (34.1%), and KL3 (30.2%) at baseline, while JSN grades were mostly 0 at baseline. A logistic regression model was used to analyze the relationship between meniscus pathology, synovitis, and KOA progression. Mediation analysis was used to evaluate the mediation effect of synovitis. The average age of the participants was 61 years old, 62% of which were female. The medial meniscus extrusion was longitudinally correlated with the progression of KL (odds ratio [OR]: 2.271, 95% confidence interval [CI]: 1.412-3.694) and medial JSN (OR: 3.211, 95% CI: 2.040-5.054). Additionally, the longitudinal correlation between medial meniscus damage and progression of KOA (OR: 1.853, 95% CI: 1.177-2.941) and medial JSN (OR: 1.655, 95% CI: 1.053-2.602) was significant. Synovitis was found to mediate the relationship between medial meniscus extrusion and KL and medial JSN progression at baseline (ß: 0.029, 95% CI: 0.010-0.053; ß: 0.022, 95% CI: 0.005-0.046) and beyond 24 months (ß: 0.039, 95% CI: 0.016-0.068; ß: 0.047, 95% CI: 0.020-0.078). However, we did not find evidence of synovitis mediating the relationship between meniscal damage and KOA progression. Synovitis mediates the relationship between medial meniscus extrusion (rather than meniscus damage) and KOA progression.


Subject(s)
Disease Progression , Osteoarthritis, Knee , Synovitis , Humans , Synovitis/diagnostic imaging , Synovitis/pathology , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology , Female , Male , Middle Aged , Aged , Magnetic Resonance Imaging , Menisci, Tibial/diagnostic imaging , Menisci, Tibial/pathology , Meniscus/diagnostic imaging , Meniscus/pathology , Radiography , Knee Joint/diagnostic imaging , Knee Joint/pathology
5.
Int J Biol Macromol ; 270(Pt 2): 132409, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768918

ABSTRACT

Suture pull-through is a clinical problem in meniscus repair surgery due to the sharp leading edge of sutures. Several tissue adhesives have been developed as an alternative to traditional suturing; however, there is still no suitable tissue adhesive specific for meniscus repair treatment due to unsatisfactory biosafety, biodegradable, sterilizable, and tissue-bonding characteristics. In this study, we used a tissue adhesive composed of chitosan hydrochloride reacted with oxidative periodate-oxidized dextran (ChitHCl-DDA) combined with a chitosan-based hydrogel and oxidative dextran to attach to the meniscus. We conducted viscoelastic tests, viscosity tests, lap shear stress tests, Fourier transform infrared (FTIR) spectroscopy, swelling ratio tests, and degradation behavior tests to characterize these materials. An MTT assay, alcian blue staining, migration assay, cell behavior observations, and protein expression tests were used to understand cell viability and responses. Moreover, ex vivo and in vivo tests were used to analyze tissue regeneration and biocompatibility of the ChitHCl-DDA tissue adhesive. Our results revealed that the ChitHCl-DDA tissue adhesive provided excellent tissue adhesive strength, cell viability, and cell responses. This tissue adhesive has great potential for torn meniscus tissue repair and regeneration.


Subject(s)
Biocompatible Materials , Chitosan , Regeneration , Tissue Adhesives , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Animals , Regeneration/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Materials Testing , Meniscus/drug effects , Dextrans/chemistry , Cell Survival/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Rabbits , Tibial Meniscus Injuries/surgery , Humans , Injections
6.
Int J Biochem Cell Biol ; 172: 106589, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772475

ABSTRACT

OBJECTIVES: The decline in vascular capacity within the meniscus is a well-documented phenomenon during both development and degeneration. Maintaining vascular integrity has been proposed as a potential therapeutic strategy for osteoarthritis. Therefore, our study aims to investigate the characteristics of endothelial cells and blood vessels in embryonic and degenerated meniscus tissues. METHODS: Human embryonic and mature menisci were used for histological analyses. Single-cell RNA sequencing was used to identify cell clusters and their significant genes in embryo meniscus to uncover characteristic of endothelial cells. Computer analysis and various staining techniques were used to characterize vessels in development and osteoarthritis meniscus. RESULTS: Vessels structure first observed in E12w and increasing in E14w. Vessels were veins majorly and arteries growth in E35w. Endothelial cells located not only perivascular but also in the surface of meniscus. The expression of DLL1 was observed to be significantly altered in endothelial cells within the vascular network that failed to form. Meniscus tissues affected by osteoarthritis, characterized by diminished vascular capacity, displayed reduced levels of DLL1 expression. Experiment in vitro confirmed DLL1/NOTCH1 be vital to angiogenesis. CONCLUSION: Lack of DLL1/NOTCH1 signaling pathway was mechanism of vascular declination in development and degenerated meniscus.


Subject(s)
Calcium-Binding Proteins , Osteoarthritis , Receptor, Notch1 , Signal Transduction , Humans , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Meniscus/metabolism , Meniscus/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Neovascularization, Physiologic , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Male , Angiogenesis
7.
Sci Rep ; 14(1): 10875, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740845

ABSTRACT

Three-dimensional information is essential for a proper understanding of the healing potential of the menisci and their overall role in the knee joint. However, to date, the study of meniscal vascularity has relied primarily on two-dimensional imaging techniques. Here we present a method to elucidate the intricate 3D meniscal vascular network, revealing its spatial arrangement, connectivity and density. A polymerizing contrast agent was injected into the femoral artery of human cadaver legs, and the meniscal microvasculature was examined using micro-computed tomography at different levels of detail and resolution. The 3D vascular network was quantitatively assessed in a zone-base analysis using parameters such as diameter, length, tortuosity, and branching patterns. The results of this study revealed distinct vascular patterns within the meniscus, with the highest vascular volume found in the outer perimeniscal zone. Variations in vascular parameters were found between the different circumferential and radial meniscal zones. Moreover, through state-of-the-art 3D visualization using micro-CT, this study highlighted the importance of spatial resolution in accurately characterizing the vascular network. These findings, both from this study and from future research using this technique, improve our understanding of microvascular distribution, which may lead to improved therapeutic strategies.


Subject(s)
Imaging, Three-Dimensional , Microvessels , X-Ray Microtomography , Humans , Imaging, Three-Dimensional/methods , Microvessels/diagnostic imaging , X-Ray Microtomography/methods , Menisci, Tibial/diagnostic imaging , Menisci, Tibial/blood supply , Meniscus/diagnostic imaging , Male , Cadaver , Female
8.
PLoS One ; 19(4): e0301432, 2024.
Article in English | MEDLINE | ID: mdl-38626169

ABSTRACT

Diffusion within extracellular matrix is essential to deliver nutrients and larger metabolites to the avascular region of the meniscus. It is well known that both structure and composition of the meniscus vary across its regions; therefore, it is crucial to fully understand how the heterogenous meniscal architecture affects its diffusive properties. The objective of this study was to investigate the effect of meniscal region (core tissue, femoral, and tibial surface layers) and molecular weight on the diffusivity of several molecules in porcine meniscus. Tissue samples were harvested from the central area of porcine lateral menisci. Diffusivity of fluorescein (MW 332 Da) and three fluorescence-labeled dextrans (MW 3k, 40k, and 150k Da) was measured via fluorescence recovery after photobleaching. Diffusivity was affected by molecular size, decreasing as the Stokes' radius of the solute increased. There was no significant effect of meniscal region on diffusivity for fluorescein, 3k and 40k dextrans (p>0.05). However, region did significantly affect the diffusivity of 150k Dextran, with that in the tibial surface layer being larger than in the core region (p = 0.001). Our findings contribute novel knowledge concerning the transport properties of the meniscus fibrocartilage. This data can be used to advance the understanding of tissue pathophysiology and explore effective approaches for tissue restoration.


Subject(s)
Dextrans , Meniscus , Animals , Swine , Dextrans/metabolism , Meniscus/metabolism , Menisci, Tibial/physiology , Fibrocartilage/metabolism , Fluoresceins/metabolism
9.
BMC Musculoskelet Disord ; 25(1): 292, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622682

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) can diagnose meniscal lesions anatomically, while quantitative MRI can reflect the changes of meniscal histology and biochemical structure. Our study aims to explore the association between the measurement values obtained from synthetic magnetic resonance imaging (SyMRI) and Stoller grades. Additionally, we aim to assess the diagnostic accuracy of SyMRI in determining the extent of meniscus injury. This potential accuracy could contribute to minimizing unnecessary invasive examinations and providing guidance for clinical treatment. METHODS: Total of 60 (n=60) patients requiring knee arthroscopic surgery and 20 (n=20) healthy subjects were collected from July 2022 to November 2022. All subjects underwent conventional MRI and SyMRI. Manual measurements of the T1, T2 and proton density (PD) values were conducted for both normal menisci and the most severely affected position of injured menisci. These measurements corresponded to the Stoller grade of meniscus injuries observed in the conventional MRI. All patients and healthy subjects were divided into normal group, degeneration group and torn group according to the Stoller grade on conventional MRI. One-way analysis of variance (ANOVA) was employed to compare the T1, T2 and PD values of the meniscus among 3 groups. The accuracy of SyMRI in diagnosing meniscus injury was assessed by comparing the findings with arthroscopic observations. The diagnostic efficiency of meniscus degeneration and tear between conventional MRI and SyMRI were analyzed using McNemar test. Furthermore, a receiver operating characteristic curve (ROC curve) was constructed and the area under the curve (AUC) was utilized for evaluation. RESULTS: According to the measurements of SyMRI, there was no statistical difference of T1 value or PD value measured by SyMRI among the normal group, degeneration group and torn group, while the difference of T2 value was statistically significant among 3 groups (P=0.001). The arthroscopic findings showed that 11 patients were meniscal degeneration and 49 patients were meniscal tears. The arthroscopic findings were used as the gold standard, and the difference of T1 and PD values among the 3 groups was not statistically significant, while the difference of T2 values (32.81±2.51 of normal group, 44.85±3.98 of degeneration group and 54.42±3.82 of torn group) was statistically significant (P=0.001). When the threshold of T2 value was 51.67 (ms), the maximum Yoden index was 0.787 and the AUC value was 0.934. CONCLUSIONS: The measurement values derived from SyMRI could reflect the Stoller grade, illustrating that SyMRI has good consistency with conventional MRI. Moreover, the notable consistency observed between SyMRI and arthroscopy suggests a potential role for SyMRI in guiding clinical diagnoses.


Subject(s)
Knee Injuries , Meniscus , Tibial Meniscus Injuries , Humans , Tibial Meniscus Injuries/diagnostic imaging , Tibial Meniscus Injuries/surgery , Tibial Meniscus Injuries/pathology , Knee Injuries/diagnostic imaging , Knee Injuries/surgery , ROC Curve , Magnetic Resonance Imaging/methods , Arthroscopy/methods , Menisci, Tibial/surgery , Sensitivity and Specificity
10.
J Orthop Surg Res ; 19(1): 225, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576008

ABSTRACT

OBJECTIVE: This study was performed to investigate the effectiveness of two surgical procedures, autologous patellar tendon graft reconstruction and trans-tibial plateau pull-out repair, using a pig model. The primary focus was to assess the repair capability of medial meniscus posterior portion (MMPP) deficiency, the overall structural integrity of the meniscus, and protection of the femoral and tibial cartilage between the two surgical groups. The overall aim was to provide experimental guidelines for clinical research using these findings. METHODS: Twelve pigs were selected to establish a model of injury to the MMPP 10 mm from the insertion point of the tibial plateau. They were randomly divided into three groups of four animals each: reconstruction (autologous tendon graft reconstruction of the MMPP), pull-out repair (suture repair of the MMPP via a trans-tibial plateau bone tunnel), and control (use of a normal medial meniscus as the negative control). The animals were euthanized 12 weeks postoperatively for evaluation of the meniscus, assessment of tendon bone healing, and gross observation of knee joint cartilage. The tibial and femoral cartilage injuries were evaluated using the International Society for Cartilage Repair (ICRS) grade and Mankin score. Histological and immunohistochemical staining was conducted on the meniscus-tendon junction area, primary meniscus, and tendons. The Ishida score was used to evaluate the regenerated meniscus in the reconstruction group. Magnetic resonance imaging (MRI) was used to evaluate meniscal healing. RESULTS: All 12 pigs recovered well after surgery; all incisions healed without infection, and no obvious complications occurred. Gross observation revealed superior results in the reconstruction and pull-out repair groups compared with the control group. In the tibial cartilage, the reconstruction group had ICRS grade I injury whereas the pull-out repair and control groups had ICRS grade II and III injury, respectively. The Mankin score was significantly different between the reconstruction and control groups; histological staining showed that the structure of the regenerated meniscus in the reconstruction group was similar to that of the original meniscus. Immunohistochemical staining showed that the degree of type I and II collagen staining was similar between the regenerated meniscus and the original meniscus in the reconstruction group. The Ishida score was not significantly different between the regenerated meniscus and the normal primary meniscus in the reconstruction group. MRI showed that the MMPP in the reconstruction and pull-out repair groups had fully healed, whereas that in the control group had not healed. CONCLUSION: Autologous patellar tendon graft reconstruction of the MMPP can generate a fibrocartilage-like regenerative meniscus. Both reconstruction and pull-out repair can preserve the structural integrity of the meniscus, promote healing of the MMPP, delay meniscal degeneration, and protect the knee cartilage.


Subject(s)
Cartilage Diseases , Meniscus , Patellar Ligament , Animals , Cartilage Diseases/surgery , Menisci, Tibial/diagnostic imaging , Menisci, Tibial/surgery , Meniscus/surgery , Patellar Ligament/diagnostic imaging , Patellar Ligament/surgery , Patellar Ligament/pathology , Swine
11.
Biomater Sci ; 12(11): 2960-2977, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38682257

ABSTRACT

Focusing on the regeneration of damaged knee meniscus, we propose a hybrid scaffold made of poly(ester-urethane) (PEU) and collagen that combines suitable mechanical properties with enhanced biological integration. To ensure biocompatibility and degradability, the degradable PEU was prepared from a poly(ε-caprolactone), L-lysine diisocyanate prepolymer (PCL di-NCO) and poly(lactic-co-glycolic acid) diol (PLGA). The resulting PEU (Mn = 52 000 g mol-1) was used to prepare porous scaffolds using the solvent casting (SC)/particle leaching (PL) method at an optimized salt/PEU weight ratio of 5 : 1. The morphology, pore size and porosity of the scaffolds were evaluated by SEM showing interconnected pores with a uniform size of around 170 µm. Mechanical properties were found to be close to those of the human meniscus (Ey ∼ 0.6 MPa at 37 °C). To enhance the biological properties, incorporation of collagen type 1 (Col) was then performed via soaking, injection or forced infiltration. The latter yielded the best results as shown by SEM-EDX and X-ray tomography analyses that confirmed the morphology and highlighted the efficient pore Col-coating with an average of 0.3 wt% Col in the scaffolds. Finally, in vitro L929 cell assays confirmed higher cell proliferation and an improved cellular affinity towards the proposed scaffolds compared to culture plates and a gold standard commercial meniscal implant.


Subject(s)
Meniscus , Polyesters , Polyurethanes , Tissue Scaffolds , Tissue Scaffolds/chemistry , Porosity , Polyesters/chemistry , Polyurethanes/chemistry , Animals , Humans , Collagen/chemistry , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
12.
J Biomater Appl ; 39(1): 66-79, 2024 07.
Article in English | MEDLINE | ID: mdl-38646887

ABSTRACT

Three-dimensional (3D) structures are actually the state-of-the-art technique to create porous scaffolds for tissue engineering. Since regeneration in cartilage tissue is limited due to intrinsic cellular properties this study aims to develop and characterize three-dimensional porous scaffolds of poly (L-co-D, L lactide-co-trimethylene carbonate), PLDLA-TMC, obtained by 3D fiber deposition technique. The PLDLA-TMC terpolymer scaffolds (70:30), were obtained and characterized by scanning electron microscopy, gel permeation chromatography, differential scanning calorimetry, thermal gravimetric analysis, compression mechanical testing and study on in vitro degradation, which showed its amorphous characteristics, cylindrical geometry, and interconnected pores. The in vitro degradation study showed significant loss of mechanical properties compatible with a decrease in molar mass, accompanied by changes in morphology. The histocompatibility association of mesenchymal stem cells from rabbit's bone marrow, and PLDLA-TMC scaffolds, were evaluated in the meniscus regeneration, proving the potential of cell culture at in vivo tissue regeneration. Nine New Zealand rabbits underwent total medial meniscectomy, yielding three treatments: implantation of the seeded PLDLA-TMC scaffold, implantation of the unseeded PLDLA-TMC and negative control (defect without any implant). After 24 weeks, the results revealed the presence of fibrocartilage in the animals treated with polymer. However, the regeneration obtained with the seeded PLDLA-TMC scaffolds with mesenchymal stem cells had become intimal to mature fibrocartilaginous tissue of normal meniscus both macroscopically and histologically. This study demonstrated the effectiveness of the PLDLA-TMC scaffold in meniscus regeneration and the potential of mesenchymal stem cells in tissue engineering, without the use of growth factors. It is concluded that bioresorbable polymers represent a promising alternative for tissue regeneration.


Subject(s)
Dioxanes , Mesenchymal Stem Cells , Polyesters , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Animals , Rabbits , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Dioxanes/chemistry , Polyesters/chemistry , Tissue Engineering/methods , Biocompatible Materials/chemistry , Meniscus/cytology , Regeneration , Mesenchymal Stem Cell Transplantation/methods , Porosity , Materials Testing , Absorbable Implants , Cells, Cultured , Polymers/chemistry
13.
J Orthop Res ; 42(8): 1880-1889, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38440852

ABSTRACT

The aim of the present study was to investigate the association between chondrogenic differentiation and Wnt signal expression in the degenerative process of the human meniscus. Menisci were obtained from patients with and without knee osteoarthritis (OA), and degeneration was histologically assessed using a grading system. Immunohistochemistry, real-time polymerase chain reaction (PCR), and Western blot analysis were performed to examine the expressions of chondrogenic markers and of the components of Wnt signaling. Histological analyses showed that meniscal degeneration involved a transition from a fibroblastic to a chondrogenic phenotype with the upregulation of SOX9, collagen type II, collagen type XI, and aggrecan, which were associated with increased Wnt5a and ROR2 and decreased TCF7 expressions. OA menisci showed significantly higher expressions of Wnt5a and ROR2 and significantly lower expressions of AXIN2 and TCF7 than non-OA menisci on real-time PCR and Western blot analysis. These results potentially demonstrated that increased expression of Wnt5a/ROR2 signaling promoted chondrogenesis with decreased expression in downstream Wnt/ß-catenin signaling. This study provides insights into the role of Wnt signaling in the process of meniscal degeneration, shifting to a chondrogenic phenotype. The findings suggested that the increased expression of Wnt5a/ROR2 and decreased expression of the downstream target of Wnt/ß-catenin signaling are associated with chondrogenesis in meniscal degeneration.


Subject(s)
Chondrogenesis , Osteoarthritis, Knee , Receptor Tyrosine Kinase-like Orphan Receptors , Wnt-5a Protein , Humans , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Wnt-5a Protein/metabolism , Male , Middle Aged , Aged , Female , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Wnt Signaling Pathway , Menisci, Tibial/metabolism , Menisci, Tibial/pathology , Meniscus/metabolism , Signal Transduction
14.
ACS Biomater Sci Eng ; 10(4): 2426-2441, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38549452

ABSTRACT

The meniscus is divided into three zones according to its vascularity: an external vascularized red-red zone mainly comprising collagen I, a red-white interphase zone mainly comprising collagens I and II, and an internal white-white zone rich in collagen II. Known scaffolds used to treat meniscal injuries do not reflect the chemical composition of the vascular areas of the meniscus. Therefore, in this study, four composite zonal scaffolds (named A, B, C, and D) were developed and characterized; the developed scaffolds exhibited the main chemical components of the external (collagen I), interphase (collagens I/II), and internal (collagen II) zones of the meniscus. Noncomposite scaffolds were also produced (named E), which had the same shape as the composite scaffolds but were entirely made of collagen I. The composite zonal scaffolds were prepared using different concentrations of collagen I and the same concentration of collagen II and were either cross-linked with genipin or not cross-linked. Porous, biodegradable, and hydrophilic scaffolds with an expected chemical composition were obtained. Their pore size was smaller than the size reported for the meniscus substitutes; however, all scaffolds allowed the adhesion and proliferation of human adipose-derived stem cells (hADSCs) and were not cytotoxic. Data from enzymatic degradation and hADSC proliferation assays were considered for choosing the cross-linked composite scaffolds along with the collagen I scaffold and to test if composite zonal scaffolds seeded with hADSC and cultured with differentiation medium produced fibrocartilage-like tissue different from that formed in noncomposite scaffolds. After 21 days of culture, hADSCs seeded on composite scaffolds afforded an extracellular matrix with aggrecan, whereas hADSCs seeded on noncomposite collagen I scaffolds formed a matrix-like fibrocartilage without aggrecan.


Subject(s)
Meniscus , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Tissue Engineering , Aggrecans , Collagen Type I/pharmacology , Collagen/pharmacology , Regeneration
15.
Jpn J Ophthalmol ; 68(2): 139-145, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38499913

ABSTRACT

PURPOSE: To compare endonasal dacryocystorhinostomy (EN-DCR) with sheath-guided dacryoendoscopic probing and bicanalicular intubation (SG-BCI) by evaluating tear meniscus area (TMA) and total high-order aberrations (HOAs) for primary acquired nasolacrimal duct obstruction (PANDO). METHOD: We retrospectively reviewed 56 eyes of 42 patients (7 men, 35 women; age, 72.7±13.1 years) who underwent EN-DCR or SG-BCI for PANDO in Toyama University Hospital from February 2020 to June 2022. In the EN-DCR and SG-BCI groups, we measured the patency of the lacrimal passage, preoperative and postoperative TMA, and HOAs of the central 4 mm of the cornea using optical coherence tomography (AS-OCT), six months postoperatively. RESULTS: There was a positive correlation between preoperative TMA and preoperative HOAs in all cases. Postoperative patency of lacrimal passage was 100% in the EN-DCR and 80.8% in the SG-BCI group. There was a significant difference in the number of passages between the two groups (p = 0.01). Preoperative TMA and HOAs showed a significant postoperative decrease in both groups (EN-DCR group: p<0.01, p<0.01, SG-BCI group: p<0.01, p=0.03, respectively). We then calculated the rate of change of preoperative and postoperative TMA and HOAs and compared them between the two groups. The rate of change was significantly higher in the EN-DCR group than that in the SG-BCI group (TMA, p=0.03; HOAs, p=0.02). CONCLUSION: Although both EN-DCR and SG-BCI are effective for PANDO, our results suggest that EN-DCR is more effective in improving TMA and HOAs.


Subject(s)
Dacryocystorhinostomy , Lacrimal Duct Obstruction , Meniscus , Nasolacrimal Duct , Male , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Lacrimal Duct Obstruction/diagnosis , Lacrimal Duct Obstruction/therapy , Nasolacrimal Duct/surgery , Retrospective Studies , Dacryocystorhinostomy/methods , Treatment Outcome
16.
Nat Commun ; 15(1): 2651, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531881

ABSTRACT

Despite orientationally variant tears of the meniscus, suture repair is the current clinical gold treatment. However, inaccessible tears in company with re-tears susceptibility remain unresolved. To extend meniscal repair tools from the perspective of adhesion and regeneration, we design a dual functional biologic-released bioadhesive (S-PIL10) comprised of methacrylated silk fibroin crosslinked with phenylboronic acid-ionic liquid loading with growth factor TGF-ß1, which integrates chemo-mechanical restoration with inner meniscal regeneration. Supramolecular interactions of ß-sheets and hydrogen bonds richened by phenylboronic acid-ionic liquid (PIL) result in enhanced wet adhesion, swelling resistance, and anti-fatigue capabilities, compared to neat silk fibroin gel. Besides, elimination of reactive oxygen species (ROS) by S-PIL10 further fortifies localized meniscus tear repair by affecting inflammatory microenvironment with dynamic borate ester bonds, and S-PIL10 continuously releases TGF-ß1 for cell recruitment and bridging of defect edge. In vivo rabbit models functionally evidence the seamless and dense reconstruction of torn meniscus, verifying that the concept of meniscus adhesive is feasible and providing a promising revolutionary strategy for preclinical research to repair meniscus tears.


Subject(s)
Boronic Acids , Fibroins , Ionic Liquids , Meniscus , Animals , Rabbits , Hydrogels , Transforming Growth Factor beta1
17.
Adv Sci (Weinh) ; 11(21): e2308811, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520713

ABSTRACT

Articular cartilage and meniscus transfer and distribute mechanical loads in the knee joint. Degeneration of these connective tissues occurs during the progression of knee osteoarthritis, which affects their composition, microstructure, and mechanical properties. A deeper understanding of disease progression can be obtained by studying them simultaneously. Time-resolved synchrotron-based X-ray phase-contrast tomography (SR-PhC-µCT) allows to capture the tissue dynamics. This proof-of-concept study presents a rheometer setup for simultaneous in situ unconfined compression and SR-PhC-µCT of connective knee tissues. The microstructural response of bovine cartilage (n = 16) and meniscus (n = 4) samples under axial continuously increased strain, or two steps of 15% strain (stress-relaxation) is studied. The chondrocyte distribution in cartilage and the collagen fiber orientation in the meniscus are assessed. Variations in chondrocyte density reveal an increase in the top 40% of the sample during loading, compared to the lower half. Meniscus collagen fibers reorient perpendicular to the loading direction during compression and partially redisperse during relaxation. Radiation damage, image repeatability, and image quality assessments show little to no effects on the results. In conclusion, this approach is highly promising for future studies of human knee tissues to understand their microstructure, mechanical response, and progression in degenerative diseases.


Subject(s)
Cartilage, Articular , Synchrotrons , Animals , Cattle , Cartilage, Articular/diagnostic imaging , Proof of Concept Study , Knee Joint/diagnostic imaging , Meniscus/diagnostic imaging , Biomechanical Phenomena , Connective Tissue/diagnostic imaging , X-Ray Microtomography/methods , Osteoarthritis, Knee/diagnostic imaging , Stress, Mechanical
18.
Adv Sci (Weinh) ; 11(22): e2310035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38509852

ABSTRACT

Mimicking anisotropic features is crucial for developing artificial load-bearing soft tissues such as menisci). Here, a high-density hydrogen bond locking (HDHBL) strategy, involving preloading a poly(N-acryloylsemicarbazide) (PNASC) hydrogel with an aqueous solution containing a hydrogen bond breaking agent, followed by water exchange, to fabricate anisotropic high-strength hydrogels are proposed. During this process, multiple high-density hydrogen bonds of the PNASC network are re-established, firmly freezing oriented molecular chains, and creating a network with an anisotropic microstructure. The resulting anisotropic hydrogels exhibit superior mechanical properties: tensile strength over 9 MPa, Young's modulus exceeding 120 MPa along the orientation direction, and fatigue thresholds exceeding 1900 J m-2. These properties meet the mechanical demands for load-bearing tissue substitutes compared to other reported anti-fatigue hydrogels. This strategy enables the construction of an anisotropic meniscal scaffold composed of circumferentially oriented microfibers by preloading a digital light processing-3D printed PNASC hydrogel-based wedge-shaped construct with a resilient poly(N-acryloyl glycinamide) hydrogel. The 12-week implantation of a meniscus scaffold in rabbit knee joints after meniscectomy demonstrates a chondroprotective effect on the femoral condyle and tibial plateau, substantially ameliorating the progression of osteoarthritis. The HDHBL strategy enables the fabrication of various anisotropic polymer hydrogels, broadening their scope of application.


Subject(s)
Hydrogels , Hydrogen Bonding , Meniscus , Animals , Anisotropy , Hydrogels/chemistry , Rabbits , Tissue Scaffolds/chemistry , Materials Testing/methods , Tissue Engineering/methods , Tensile Strength
19.
Medicina (Kaunas) ; 60(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38399610

ABSTRACT

Background and Objectives: The negative effects of smoking on the musculoskeletal system were presented by many authors, although the relationship between smoking and osteoarthritis remains unclear. The aim of this paper was to investigate the negative effects of smoking on meniscal tissue in osteoarthritic knees by microscopic examination, by adapting the Bonar scoring system and its modifications. Materials and Methods: The study involved 34 patients with varus knees, from whom 65 samples of knee menisci were obtained. The mean age in the studied group was 65.385 years. The smoking status of the patients concluded that there were 13 smokers and 21 nonsmokers. Results: Among smokers, the mean classical Bonar score was 8.42 and the mean modified Bonar score was 6.65, while nonsmokers were characterized by scores of 8.51 and 7.35, respectively. There was a statistically significant negative correlation between the number of cigarettes and the collagen in the medial meniscus (p = 0.0197). Moreover, in the medial meniscus, the modified Bonar score correlated negatively with the number of cigarettes (p = 0.0180). Similarly, such a correlation was observed between the number of cigarettes and the modified Bonar score in the lateral meniscus (p = 0.04571). Furthermore, no correlation was identified between the number of cigarettes and the classical Bonar score in the lateral meniscus. There was a statistically significant difference in the collagen variable value between the smokers and nonsmokers groups (p = 0.04525). Conclusions: The microscopic investigation showed no differences in the menisci of smokers and nonsmokers, except for the collagen, which was more organized in smokers. Moreover, the modified Bonar score was correlated negatively with the number of cigarettes, which supports the role of neovascularization in meniscus pathology under the influence of tobacco smoking.


Subject(s)
Cigarette Smoking , Meniscus , Humans , Aged , Pilot Projects , Cigarette Smoking/adverse effects , Smoking/adverse effects , Collagen , Magnetic Resonance Imaging
20.
Adv Biol (Weinh) ; 8(5): e2300710, 2024 05.
Article in English | MEDLINE | ID: mdl-38402426

ABSTRACT

Meniscus tears in the avascular region undergoing partial or full meniscectomy lead to knee osteoarthritis and concurrent lifestyle hindrances in the young and aged alike. Here they reported ingenious photo-polymerizable autologous growth factor loaded 3D printed scaffolds to potentially treat meniscal defects . A shear-thinning photo-crosslinkable silk fibroin methacrylate-gelatin methacrylate-polyethylene glycol dimethacrylate biomaterial-ink is formulated and loaded with freeze-dried growth factor rich plasma (GFRP) . The biomaterial-ink exhibits optimal rheological properties and shape fidelity for 3D printing. Initial evaluation revealed that the 3D printed scaffolds mimic mechanical characteristics of meniscus, possess favourable porosity and swelling characteristics, and demonstrate sustained GFRP release. GFRP laden 3D scaffolds are screened with human neo-natal stem cells in vitro and biomaterial-ink comprising of 25 mg mL-1 of GFRP (GFRP25) is found to be amicable for meniscus tissue engineering. GFRP25 ink demonstrated rigorous rheological compliance, and printed constructs demonstrated long term degradability (>6 weeks), GFRP release (>5 weeks), and mechanical durability (3 weeks). GFRP25 scaffolds aided in proliferation of seeded human neo-natal stem cellsand their meniscus-specific fibrochondrogenic differentiation . GFRP25 constructs show amenable inflammatory response in vitro and in vivo. GFRP25 biomaterial-ink and printed GFRP25 scaffolds could be potential patient-specific treatment modalities for meniscal defects.


Subject(s)
Biocompatible Materials , Meniscus , Printing, Three-Dimensional , Regeneration , Tissue Engineering , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Engineering/methods , Animals , Regeneration/drug effects , Silk/chemistry , Intercellular Signaling Peptides and Proteins/administration & dosage , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Fibroins/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...