Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22.491
1.
Mol Biol Rep ; 51(1): 719, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824271

BACKGROUND: Promoting the balance between bone formation and bone resorption is the main therapeutic goal for postmenopausal osteoporosis (PMOP), and bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation plays an important regulatory role in this process. Recently, several long non-coding RNAs (lncRNAs) have been reported to play an important regulatory role in the occurrence and development of OP and participates in a variety of physiological and pathological processes. However, the role of lncRNA tissue inhibitor of metalloproteinases 3 (lncTIMP3) remains to be investigated. METHODS: The characteristics of BMSCs isolated from the PMOP rat model were verified by flow cytometry assay, alkaline phosphatase (ALP), alizarin red and Oil Red O staining assays. Micro-CT and HE staining assays were performed to examine histological changes of the vertebral trabeculae of the rats. RT-qPCR and western blotting assays were carried out to measure the RNA and protein expression levels. The subcellular location of lncTIMP3 was analyzed by FISH assay. The targeting relationships were verified by luciferase reporter assay and RNA pull-down assay. RESULTS: The trabecular spacing was increased in the PMOP rats, while ALP activity and the expression levels of Runx2, Col1a1 and Ocn were all markedly decreased. Among the RNA sequencing results of the clinical samples, lncTIMP3 was the most downregulated differentially expressed lncRNA, also its level was significantly reduced in the OVX rats. Knockdown of lncTIMP3 inhibited osteogenesis of BMSCs, whereas overexpression of lncTIMP3 exhibited the reverse results. Subsequently, lncTIMP3 was confirmed to be located in the cytoplasm of BMSCs, implying its potential as a competing endogenous RNA for miRNAs. Finally, the negative targeting correlations of miR-214 between lncTIMP3 and Smad4 were elucidated in vitro. CONCLUSION: lncTIMP3 may delay the progress of PMOP by promoting the activity of BMSC, the level of osteogenic differentiation marker gene and the formation of calcium nodules by acting on the miR-214/Smad4 axis. This finding may offer valuable insights into the possible management of PMOP.


Cell Differentiation , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Osteoporosis, Postmenopausal , RNA, Long Noncoding , Smad4 Protein , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Osteogenesis/genetics , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/metabolism , Osteoporosis, Postmenopausal/pathology , Female , Cell Differentiation/genetics , Rats , Smad4 Protein/metabolism , Smad4 Protein/genetics , Humans , Disease Models, Animal , Rats, Sprague-Dawley , Bone Marrow Cells/metabolism
2.
Cell Commun Signal ; 22(1): 301, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822356

BACKGROUND: Intrauterine adhesion (IUA) is one of the most severe causes of infertility in women of childbearing age with injured endometrium secondary to uterine performance. Stem cell therapy is effective in treating damaged endometrium. The current reports mainly focus on the therapeutic effects of stem cells through paracrine or transdifferentiation, respectively. This study investigates whether paracrine or transdifferentiation occurs preferentially in treating IUA. METHODS: Human amniotic mesenchymal stem cells (hAMSCs) and transformed human endometrial stromal cells (THESCs) induced by transforming growth factor beta (TGF-ß1) were co-cultured in vitro. The mRNA and protein expression levels of Fibronectin (FN), Collagen I, Cytokeratin19 (CK19), E-cadherin (E-cad) and Vimentin were detected by Quantitative real-time polymerase chain reaction (qPCR), Western blotting (WB) and Immunohistochemical staining (IHC). The Sprague-Dawley (SD) rats were used to establish the IUA model. hAMSCs, hAMSCs-conditional medium (hAMSCs-CM), and GFP-labeled hAMSCs were injected into intrauterine, respectively. The fibrotic area of the endometrium was evaluated by Masson staining. The number of endometrium glands was detected by hematoxylin and eosin (H&E). GFP-labeled hAMSCs were traced by immunofluorescence (IF). hAMSCs, combined with PPCNg (hAMSCs/PPCNg), were injected into the vagina, which was compared with intrauterine injection. RESULTS: qPCR and WB revealed that FN and Collagen I levels in IUA-THESCs decreased significantly after co-culturing with hAMSCs. Moreover, CK19, E-cad, and Vimentin expressions in hAMSCs showed no significant difference after co-culture for 2 days. 6 days after co-culture, CK19, E-cad and Vimentin expressions in hAMSCs were significantly changed. Histological assays showed increased endometrial glands and a remarkable decrease in the fibrotic area in the hAMSCs and hAMSCs-CM groups. However, these changes were not statistically different between the two groups. In vivo, fluorescence imaging revealed that GFP-hAMSCs were localized in the endometrial stroma and gradually underwent apoptosis. The effect of hAMSCs by vaginal injection was comparable to that by intrauterine injection assessed by H&E staining, MASSON staining and IHC. CONCLUSIONS: Our data demonstrated that hAMSCs promoted endometrial repair via paracrine, preferentially than transdifferentiation.


IUA is the crucial cause of infertility in women of childbearing age, and no satisfactory treatment measures have been found in the clinic. hAMSCs can effectively treat intrauterine adhesions through paracrine and transdifferentiation mechanisms. This study confirmed in vitro and in vivo that amniotic mesenchymal stem cells preferentially inhibited endometrial fibrosis and promoted epithelial repair through paracrine, thus effectively treating intrauterine adhesions. The level of fibrosis marker proteins in IUA-THESCs decreased significantly after co-culturing with hAMSCs for 2 days in vitro. However, the level of epithelial marker proteins in hAMSCs increased significantly, requiring at least 6 days of co-culture. hAMSCs-CM had the same efficacy as hAMSCs in inhibiting fibrosis and promoting endometrial repair in IUA rats, supporting the idea that hAMSCs promoted endometrial remodeling through paracrine in vivo. In addition, GFP-labeled hAMSCs continuously colonized the endometrial stroma instead of the epithelium and gradually underwent apoptosis. These findings prove that hAMSCs ameliorate endometrial fibrosis of IUA via paracrine, preferentially than transdifferentiation, providing the latest insights into the precision treatment of IUA with hAMSCs and a theoretical basis for promoting the "cell-free therapy" of MSCs.


Amnion , Cell Transdifferentiation , Endometrium , Mesenchymal Stem Cells , Paracrine Communication , Rats, Sprague-Dawley , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Endometrium/cytology , Endometrium/metabolism , Animals , Amnion/cytology , Amnion/metabolism , Rats , Mesenchymal Stem Cell Transplantation/methods , Coculture Techniques , Tissue Adhesions/pathology , Tissue Adhesions/metabolism
3.
BMC Genomics ; 25(1): 564, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840037

Mesenchymal Stem Cells are ideal seed cells for tissue repair and cell therapy and have promising applications in regenerative medicine and tissue engineering. Using Platelet-Rich Plasma as an adjuvant to create and improve the microenvironment for Mesenchymal Stem Cells growth can enhance the biological properties of Mesenchymal Stem Cells and improve the efficacy of cell therapy. However, the mechanism by which Platelet-Rich Plasma improves the biological performance of Mesenchymal Stem Cells is still unknown. In this study, by examining the effects of Platelet-Rich Plasma on the biological performance of Mesenchymal Stem Cells, combined with multiomics analysis (Transcriptomics, Proteomics and Metabolomics) and related tests, we analyzed the specific pathways, related mechanisms and metabolic pathways of Platelet-Rich Plasma to improve the biological performance of Mesenchymal Stem Cells. In an in vitro cell culture system, the biological performance of Mesenchymal Stem Cells was significantly improved after replacing Foetal Bovine Serum with Platelet-Rich Plasma, and the genes (ESM1, PDGFB, CLEC7A, CCR1 and ITGA6 et al.) related to cell proliferation, adhesion, growth, migration and signal transduction were significantly upregulated. Platelet-Rich Plasma can enhance the secretion function of MSC exosomes, significantly upregulate many proteins related to tissue repair, immune regulation and anti-infection, and enhance the repair effect of exosomes on skin injury. After replacing Foetal Bovine Serum with Platelet-Rich Plasma, Mesenchymal Stem Cells underwent metabolic reprogramming, the metabolism of amino acids and fatty acids and various signaling pathways were changed, the anabolic pathways of various proteins were enhanced. These results provide a theoretical and technical reference for optimizing the Mesenchymal Stem Cells culture system, improving the biological characteristics and clinical application effects of Mesenchymal Stem Cells.


Cell Proliferation , Mesenchymal Stem Cells , Platelet-Rich Plasma , Proteomics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Platelet-Rich Plasma/metabolism , Humans , Metabolomics , Animals , Cells, Cultured , Gene Expression Profiling , Exosomes/metabolism , Multiomics
4.
Sci Rep ; 14(1): 12654, 2024 06 02.
Article En | MEDLINE | ID: mdl-38825595

Mesenchymal stromal cells (MSC) from adult bone marrow are the most commonly used cells in clinical trials. MSCs from single donors are the preferred starting material but suffer from a major setback of being heterogeneous that results in unpredictable and inconsistent clinical outcomes. To overcome this, we developed a method of pooling MSCs from different donors and created cell banks to cater clinical needs. Initially, the master cell banks (MCBs) were created at passage 1 (P1) from the bone marrow MSCs isolated from of nine different donors. At this stage, MCBs from three different donors were mixed in equal proportion and expanded till P3 to create working cell banks. Further, the pooled cells and individual donor MSCs were expanded till P5 and cryopreserved and extensively characterised. There was a large heterogeneity among the individual donor MSCs in terms of growth kinetics (90% Coefficient of variation (CV) for cell yield and 44% CV for population doubling time at P5), immunosuppressive ability (30% CV at 1:1 and 300% CV at 1:10 ratio), and the angiogenic factor secretion potential (20% CV for VEGF and71% CV for SDF-1). Comparatively, the pooled cells have more stable profiles (60% CV for cell yield and 7% CV for population doubling time at P5) and exhibit better immunosuppressive ability (15% CV at 1:1 and 32% CV at 1:10 ratio ) and consistent secretion of angiogenic factors (16% CV for VEGF and 51% CV for SDF-1). Further pooling does not compromise the trilineage differentiation capacity or phenotypic marker expression of the MSCs. The senescence and in vitro tumourigenicity characteristics of the pooled cells are also similar to those of individual donor MSCs. We conclude that pooling of MSCs from three different donors reduces heterogeneity among individual donors and produces MSCs with a consistent secretion and higher immunosuppressive profile.


Bone Marrow Cells , Mesenchymal Stem Cells , Tissue Donors , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Humans , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation , Cryopreservation/methods , Cell Proliferation , Cells, Cultured , Adult , Cell Culture Techniques/methods
5.
J Ovarian Res ; 17(1): 121, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840218

BACKGROUND: Polycystic Ovary Syndrome (PCOS) is a widespread endocrine disorder among women, characterized by symptoms like ovarian cysts, hormonal imbalance, and metabolic issues. This research evaluates the therapeutic potential of Bone Marrow Mesenchymal Stem Cell-derived exosomes (BMSC-Exo) in treating PCOS symptoms within a mouse model. METHODS: BMSC-Exo were isolated from NMRI mice, characterized using Transmission Electron Microscopy (TEM) and Nanoparticle Tracking Analysis (NTA), and administered to a PCOS mouse model induced by dehydroepiandrosterone (DHEA). The efficacy of BMSC-Exo was assessed in three groups of mice: a control group, a PCOS group, and a PCOS group treated with intravenous BMSC-Exo. Morphological changes in ovarian tissue were examined by Hematoxylin and Eosin (H&E) staining, apoptosis was determined using the TUNEL assay, and CD31 expression was analyzed through immunofluorescent staining to assess angiogenic activity. RESULTS: The existence of BMSCs-Exo was confirmed via TEM and NTA, revealing their distinct cup-shaped morphology and a size range of 30 to 150 nanometers. H&E staining revealed that BMSCs-Exo treatment improved ovarian morphology in PCOS models, increasing corpora lutea and revitalizing granulosa cell layers, suggesting a reversal of PCOS-induced damage. TUNEL assays showed that BMSCs-Exo treatment significantly reduced apoptosis in PCOS-affected ovarian cells to levels comparable with the control group, highlighting its role in mitigating PCOS-induced cellular apoptosis. Immunofluorescence for CD31 indicated that BMSCs-Exo treatment normalized endothelial marker expression and angiogenic activity in PCOS models, suggesting its effectiveness in modulating the vascular irregularities of PCOS. Collectively, these findings demonstrate the therapeutic potential of BMSCs-Exo in addressing ovarian dysfunction, cellular apoptosis, and aberrant angiogenesis associated with PCOS. CONCLUSION: The study substantiates the role of BMSC-Exo in mitigating the deleterious effects of PCOS on ovarian tissue, with implications for enhanced follicular development and reduced cellular stress. The modulation of CD31 by BMSC-Exo further highlights their potential in normalizing PCOS-induced vascular anomalies. These findings propel the need for clinical investigations to explore BMSC-Exo as a promising therapeutic avenue for PCOS management.


Apoptosis , Dehydroepiandrosterone , Disease Models, Animal , Exosomes , Mesenchymal Stem Cells , Polycystic Ovary Syndrome , Animals , Female , Polycystic Ovary Syndrome/therapy , Polycystic Ovary Syndrome/metabolism , Exosomes/metabolism , Dehydroepiandrosterone/pharmacology , Mice , Mesenchymal Stem Cells/metabolism , Neovascularization, Physiologic , Ovary/metabolism , Ovary/pathology , Angiogenesis
6.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 217-223, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836657

Mesenchymal stem cells from bone marrow, such as bone marrow aspirate concentrate (BMAC) and cultured and isolated bone marrow mesenchymal stem cells (BM-MSCs), have been used as therapeutic alternatives to enhance remodeling in the bone. OBJECTIVE: This study aimed to evaluate the effects of BMAC and BM-MSCs on orthodontic tooth movements in rabbits. METHODS: A100- gram nickel-titanium closed-coil springs were used to initiate orthodontic tooth movement of the lower first premolars in 35 male New Zealand rabbits for 21 days. Using a split-mouth design, autologous BMAC or BM-MSCs were submucosally injected into the right sides of the lower jaw, while the left sides served as the control. On days 7, 14, and 21, a three-dimensional digital model scan was used to measure the amount of tooth movement. The microfocus computed tomography (Micro-CT) and histological findings were examined on day 0 as the baseline measurement and on days 7, 14, and 21. RESULTS: Compared to the control group, the quadrant receiving BMAC and BM-MSCs had a considerably greater amount of tooth movement. Histomorphometric analysis revealed that both BMAC and BM-MSCs had significantly higher numbers of osteoclasts and active bone-resorptive lacunae. The resorptive changes were greater in the BMAC and BM-MSCs groups than in the control group. CONCLUSION: The submucosal injection of BMAC and BM-MSCs accelerates orthodontic tooth movement (OTM) by decreasing bone density and supplying more osteoclast progenitor cells.


Bone Marrow Cells , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Osteoclasts , Tooth Movement Techniques , X-Ray Microtomography , Animals , Rabbits , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Male , Tooth Movement Techniques/methods , Mesenchymal Stem Cell Transplantation/methods , Bone Marrow Cells/cytology , Osteoclasts/cytology , Osteoclasts/metabolism
7.
Platelets ; 35(1): 2359028, 2024 Dec.
Article En | MEDLINE | ID: mdl-38832545

The purpose of this study is to investigate the molecular interactions and potential therapeutic uses of Eltrombopag (EPAG), a small molecule that activates the cMPL receptor. EPAG has been found to be effective in increasing platelet levels and alleviating thrombocytopenia. We utilized computational techniques to predict and confirm the complex formed by the ligand (EPAG) and the Thrombopoietin receptor (TPO-R) cMPL, elucidating the role of RAS, JAK-2, STAT-3, and other essential elements for downstream signaling. Molecular dynamics (MD) simulations were employed to evaluate the stability of the ligand across specific proteins, showing favorable characteristics. For the first time, we examined the presence of TPO-R in human umbilical cord mesenchymal stem cells (hUCMSC) and human gingival mesenchymal stem cells (hGMSC) proliferation. Furthermore, treatment with EPAG demonstrated angiogenesis and vasculature formation of endothelial lineage derived from both MSCs. It also indicated the activation of critical factors such as RUNX-1, GFI-1b, VEGF-A, MYB, GOF-1, and FLI-1. Additional experiments confirmed that EPAG could be an ideal molecule for protecting against UVB radiation damage, as gene expression (JAK-2, ERK-2, MCL-1, NFkB, and STAT-3) and protein CD90/cMPL analysis showed TPO-R activation in both hUCMSC and hGMSC. Overall, EPAG exhibits significant potential in treating radiation damage and mitigating the side effects of radiotherapy, warranting further clinical exploration.


What is the context?● Chemotherapy, radiation treatment, or immunological disorders can cause a decrease in platelet count (thrombocytopenia) or decrease all blood cell types (pancytopenia) in the bone marrow. This can make it challenging to choose the appropriate cancer treatment plan.● Eltrombopag (EPAG) is an oral non-peptide thrombopoietin (TPO) mimetic that activates the cMPL receptor in the body. This activation leads to cell differentiation and proliferation, stimulating platelet production and reducing thrombocytopenia. The cMPL receptor is present in liver cells, megakaryocytes, and hematopoietic cells. However, its effects on stem cell proliferation and differentiation are not entirely understood.What is the new?● This study delves into the molecular interactions and therapeutic applications of EPAG, a small molecule that activates cMPL (TPO-R).● The study offers a comprehensive analysis of the ligand-receptor complex formation, including an examination of downstream signaling elements. Furthermore, molecular dynamics simulations demonstrate the stability of the ligand when interacting with targeted proteins.● The research investigates the presence of TPO-R on stem cell-derived endothelial cells, shedding insight into the ability of EPAG TPO-mimetic to promote angiogenesis and vasculature formation.● The study revealed that EPAG has the potential to protect against UVB-induced radiation damage and stimulate stem cell growth.What is the implications?The study emphasizes the potential of EPAG as a promising option for addressing radiation injury and minimizing the adverse effects of radiotherapy. It could revolutionize treatments not only for thrombocytopenia but also for enhancing the growth of stem cells. Furthermore, the research deepens our understanding of EPAG's molecular mechanisms, providing valuable insights for developing future drugs and therapeutic approaches for cell therapy to treat radiation damage.


Benzoates , Pyrazoles , Receptors, Thrombopoietin , Humans , Pyrazoles/pharmacology , Benzoates/pharmacology , Receptors, Thrombopoietin/metabolism , Hydrazones/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Hydrazines/pharmacology , Hydrazines/therapeutic use , Molecular Dynamics Simulation , Angiogenesis
8.
Cell Death Dis ; 15(6): 387, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824145

Obesity exacerbates tissue degeneration and compromises the integrity and reparative potential of mesenchymal stem/stromal cells (MSCs), but the underlying mechanisms have not been sufficiently elucidated. Mitochondria modulate the viability, plasticity, proliferative capacity, and differentiation potential of MSCs. We hypothesized that alterations in the 5-hydroxymethylcytosine (5hmC) profile of mitochondria-related genes may mediate obesity-driven dysfunction of human adipose-derived MSCs. MSCs were harvested from abdominal subcutaneous fat of obese and age/sex-matched non-obese subjects (n = 5 each). The 5hmC profile and expression of nuclear-encoded mitochondrial genes were examined by hydroxymethylated DNA immunoprecipitation sequencing (h MeDIP-seq) and mRNA-seq, respectively. MSC mitochondrial structure (electron microscopy) and function, metabolomics, proliferation, and neurogenic differentiation were evaluated in vitro, before and after epigenetic modulation. hMeDIP-seq identified 99 peaks of hyper-hydroxymethylation and 150 peaks of hypo-hydroxymethylation in nuclear-encoded mitochondrial genes from Obese- versus Non-obese-MSCs. Integrated hMeDIP-seq/mRNA-seq analysis identified a select group of overlapping (altered levels of both 5hmC and mRNA) nuclear-encoded mitochondrial genes involved in ATP production, redox activity, cell proliferation, migration, fatty acid metabolism, and neuronal development. Furthermore, Obese-MSCs exhibited decreased mitochondrial matrix density, membrane potential, and levels of fatty acid metabolites, increased superoxide production, and impaired neuronal differentiation, which improved with epigenetic modulation. Obesity elicits epigenetic changes in mitochondria-related genes in human adipose-derived MSCs, accompanied by structural and functional changes in their mitochondria and impaired fatty acid metabolism and neurogenic differentiation capacity. These observations may assist in developing novel therapies to preserve the potential of MSCs for tissue repair and regeneration in obese individuals.


Adipose Tissue , Cell Differentiation , Epigenesis, Genetic , Mesenchymal Stem Cells , Mitochondria , Obesity , Humans , Mesenchymal Stem Cells/metabolism , Obesity/metabolism , Obesity/genetics , Obesity/pathology , Mitochondria/metabolism , Adipose Tissue/metabolism , Cell Differentiation/genetics , Female , Male , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Adult , Middle Aged , Cell Proliferation
9.
J Nanobiotechnology ; 22(1): 316, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844939

Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) isolated from adipose tissue. They possess remarkable properties, including multipotency, self-renewal, and easy clinical availability. ADSCs are also capable of promoting tissue regeneration through the secretion of various cytokines, factors, and extracellular vesicles (EVs). ADSC-derived EVs (ADSC-EVs) act as intercellular signaling mediators that encapsulate a range of biomolecules. These EVs have been found to mediate the therapeutic activities of donor cells by promoting the proliferation and migration of effector cells, facilitating angiogenesis, modulating immunity, and performing other specific functions in different tissues. Compared to the donor cells themselves, ADSC-EVs offer advantages such as fewer safety concerns and more convenient transportation and storage for clinical application. As a result, these EVs have received significant attention as cell-free therapeutic agents with potential future application in regenerative medicine. In this review, we focus on recent research progress regarding regenerative medical use of ADSC-EVs across various medical conditions, including wound healing, chronic limb ischemia, angiogenesis, myocardial infarction, diabetic nephropathy, fat graft survival, bone regeneration, cartilage regeneration, tendinopathy and tendon healing, peripheral nerve regeneration, and acute lung injury, among others. We also discuss the underlying mechanisms responsible for inducing these therapeutic effects. We believe that deciphering the biological properties, therapeutic effects, and underlying mechanisms associated with ADSC-EVs will provide a foundation for developing a novel therapeutic approach in regenerative medicine.


Adipose Tissue , Extracellular Vesicles , Mesenchymal Stem Cells , Regenerative Medicine , Humans , Extracellular Vesicles/metabolism , Regenerative Medicine/methods , Adipose Tissue/cytology , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Wound Healing , Regeneration
10.
Stem Cell Res Ther ; 15(1): 160, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38835014

BACKGROUND: Metabolic syndrome (MetS) is a significant epidemiological problem worldwide. It is a pre-morbid, chronic and low-grade inflammatory disorder that precedes many chronic diseases. Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) could be used to treat MetS because they express high regenerative capacity, strong immunomodulatory properties and allogeneic biocompatibility. This study aims to investigate WJ-MSCs as a therapy against MetS in a rat model. METHODS: Twenty-four animals were fed with high-fat high-fructose (HFHF) diet ad libitum. After 16 weeks, the animals were randomised into treatment groups (n = 8/group) and received a single intravenous administration of vehicle, that is, 3 × 106 cells/kg or 10 × 106 cells/kg of WJ-MSCs. A healthy animal group (n = 6) fed with a normal diet received the same vehicle as the control (CTRL). All animals were periodically assessed (every 4 weeks) for physical measurements, serum biochemistry, glucose tolerance test, cardiovascular function test and whole-body composition. Post-euthanasia, organs were weighed and processed for histopathology. Serum was collected for C-reactive protein and inflammatory cytokine assay. RESULTS: The results between HFHF-treated groups and healthy or HFHF-CTRL did not achieve statistical significance (α = 0.05). The effects of WJ-MSCs were masked by the manifestation of different disease subclusters and continuous supplementation of HFHF diet. Based on secondary analysis, WJ-MSCs had major implications in improving cardiopulmonary morbidities. The lungs, liver and heart show significantly better histopathology in the WJ-MSC-treated groups than in the untreated CTRL group. The cells produced a dose-dependent effect (high dose lasted until week 8) in preventing further metabolic decay in MetS animals. CONCLUSIONS: The establishment of safety and therapeutic proof-of-concept encourages further studies by improving the current therapeutic model.


Disease Models, Animal , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Metabolic Syndrome , Wharton Jelly , Animals , Metabolic Syndrome/therapy , Metabolic Syndrome/pathology , Metabolic Syndrome/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Rats , Wharton Jelly/cytology , Mesenchymal Stem Cell Transplantation/methods , Male , Injections, Intravenous , Humans , Diet, High-Fat/adverse effects
11.
Stem Cell Res Ther ; 15(1): 158, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824568

BACKGROUND: Nerve guide conduits are a promising strategy for reconstructing peripheral nerve defects. Improving the survival rate of seed cells in nerve conduits is still a challenge and microcarriers are an excellent three-dimensional (3D) culture scaffold. Here, we investigate the effect of the 3D culture of microcarriers on the biological characteristics of adipose mesenchymal stem cells (ADSCs) and to evaluate the efficacy of chitosan nerve conduits filled with microcarriers loaded with ADSCs in repairing nerve defects. METHODS: In vitro, we prepared porous chitosan microspheres by a modified emulsion cross-linking method for loading ADSCs and evaluated the growth status and function of ADSCs. In vivo, ADSCs-loaded microcarriers were injected into chitosan nerve conduits to repair a 12 mm sciatic nerve defect in rats. RESULTS: Compared to the conventional two-dimensional (2D) culture, the prepared microcarriers were more conducive to the proliferation, migration, and secretion of trophic factors of ADSCs. In addition, gait analysis, neuro-electrophysiology, and histological evaluation of nerves and muscles showed that the ADSC microcarrier-loaded nerve conduits were more effective in improving nerve regeneration. CONCLUSIONS: The ADSCs-loaded chitosan porous microcarrier prepared in this study has a high cell engraftment rate and good potential for peripheral nerve repair.


Adipose Tissue , Chitosan , Mesenchymal Stem Cells , Microspheres , Nerve Regeneration , Rats, Sprague-Dawley , Chitosan/chemistry , Nerve Regeneration/physiology , Animals , Rats , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Sciatic Nerve/physiology , Porosity , Tissue Scaffolds/chemistry , Male , Mesenchymal Stem Cell Transplantation/methods , Cell Proliferation , Cells, Cultured
12.
Front Endocrinol (Lausanne) ; 15: 1296886, 2024.
Article En | MEDLINE | ID: mdl-38828417

Introduction: The dysregulation of cell fate toward osteoprecursor cells associated with most GNAS-based disorders may lead to episodic de novo extraskeletal or ectopic bone formation in subcutaneous tissues. The bony lesion distribution suggests the involvement of abnormal differentiation of mesenchymal stem cells (MSCs) and/or more committed precursor cells. Data from transgenic mice support the concept that GNAS is a crucial factor in regulating lineage switching between osteoblasts (OBs) and adipocyte fates. The mosaic nature of heterotopic bone lesions suggests that GNAS genetic defects provide a sensitized background for ectopic osteodifferentiation, but the underlying molecular mechanism remains largely unknown. Methods: The effect of GNAS silencing in the presence and/or absence of osteoblastic stimuli was evaluated in the human L88/5 MSC line during osteodifferentiation. A comparison of the data obtained with data coming from a bony lesion from a GNAS-mutated patient was also provided. Results: Our study adds some dowels to the current fragmented notions about the role of GNAS during osteoblastic differentiation, such as the premature transition of immature OBs into osteocytes and the characterization of the differences in the deposed bone matrix. Conclusion: We demonstrated that our cell model partially replicates the in vivo behavior results, resulting in an applicable human model to elucidate the pathophysiology of ectopic bone formation in GNAS-based disorders.


Cell Differentiation , Chromogranins , GTP-Binding Protein alpha Subunits, Gs , Mesenchymal Stem Cells , Osteoblasts , Osteogenesis , Humans , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/metabolism , Chromogranins/genetics , Cell Differentiation/genetics , Osteogenesis/genetics , Osteoblasts/metabolism , Osteoblasts/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Gene Silencing , Cell Line
13.
Sci Rep ; 14(1): 12728, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830934

To clarify the impact of SETD2 on macrophage function in pediatric patients with acute suppurative osteomyelitis and to elucidate the precise underlying mechanism. To gain insights into the potential functions of SETD2, a comprehensive study was conducted utilizing a co-culture model of human bone mesenchymal stem cells (hBMSCs) and bone marrow-derived macrophages (THP-1). A range of techniques were employed, including quantitative polymerase chain reaction, western blotting, ELISA, alkaline phosphatase activity assays, alizarin red S staining, luciferase reporter gene assays, and chromatin immunoprecipitation, to unravel the intricate interactions and molecular mechanisms involving SETD2 in this system. It was observed that SETD2 expression was reduced in THP-1 cells stimulated by staphylococcal protein A (SPA). Furthermore, the downregulation of SETD2 resulted in elevated M1 macrophage polarization and glycolysis, effects that were mitigated by SPA stimulation. Notably, SPA-stimulated THP-1 cells exhibited an increase in HIF-1α expression, which exhibited an inverse correlation with SETD2 levels. Moreover, it was discovered that SETD2 functioned as a catalyst for H3K36me3 and bound to the HIF-1α gene, which, in turn, regulated HIF-1α expression. Furthermore, the suppression of HIF-1α abrogated the consequences of SETD2 downregulation on glycolysis and M1 macrophage polarization. Lastly, the study demonstrated that M1 macrophage polarization serves as a mediator for BMP4's inhibitory effect on osteogenic differentiation of hBMSCs. This research has uncovered a previously unknown role of SETD2 in macrophages during osteomyelitis, revealing its significance in the pathogenesis of this condition. These findings suggest SETD2 as a novel target for the treatment of osteomyelitis.


Cell Differentiation , Histone-Lysine N-Methyltransferase , Macrophages , Mesenchymal Stem Cells , Osteogenesis , Osteomyelitis , Humans , Osteomyelitis/metabolism , Osteomyelitis/pathology , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Macrophages/metabolism , Macrophages/immunology , Mesenchymal Stem Cells/metabolism , THP-1 Cells , Coculture Techniques , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit
14.
Sci Rep ; 14(1): 12704, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830996

To explore the role of YAP, a key effector of the Hippo pathway, in temporomandibular joint (TMJ) ankylosis. The temporal and spatial expression of YAP was detected via immunohistochemistry and multiplex immunohistochemistry on postoperative Days 1, 4, 7, 9, 11, 14 and 28 in a sheep model. Isolated mesenchymal stem cells (MSCs) from samples of the Day 14. The relative mRNA expression of YAP was examined before and after the osteogenic induction of MSCs. A YAP-silenced MSC model was constructed, and the effect of YAP knockdown on MSC function was examined. YAP is expressed in the nucleus of the key sites that determine the ankylosis formation, indicating that YAP is activated in a physiological state. The expression of YAP increased gradually over time. Moreover, the number of cells coexpressing of RUNX2 and YAP-with the osteogenic active zone labelled by RUNX2-tended to increase after Day 9. After the osteogenic induction of MSCs, the expression of YAP increased. After silencing YAP, the osteogenic, proliferative and migratory abilities of the MSCs were inhibited. YAP is involved in the early development of TMJ bony ankylosis. Inhibition of YAP using shRNA might be a promising way to prevent or treat TMJ ankylosis.


Ankylosis , Mesenchymal Stem Cells , Osteogenesis , Temporomandibular Joint Disorders , Animals , Mesenchymal Stem Cells/metabolism , Temporomandibular Joint Disorders/metabolism , Temporomandibular Joint Disorders/pathology , Temporomandibular Joint Disorders/genetics , Ankylosis/metabolism , Ankylosis/pathology , Ankylosis/genetics , YAP-Signaling Proteins/metabolism , Temporomandibular Joint/metabolism , Temporomandibular Joint/pathology , Sheep , Cell Proliferation , Disease Models, Animal , Cell Differentiation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Cell Movement , Transcription Factors/metabolism , Transcription Factors/genetics
15.
Stem Cell Res Ther ; 15(1): 159, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831361

INTRODUCTION: Intra-articular injection of adipose-derived mesenchymal stromal cells (ASCs) and/or platelet-rich plasma (PRP) have been reported to independently and synergistically improve healing of osteochondral lesions in animal models. However, their independent and combined effects when localized to an osteochondral lesion by encapsulation within a photocrosslinkable methacrylated gelatin hydrogel (GelMA) have not been explored. Herein we investigated a unique combination of allogeneic ASCs and PRP embedded in GelMA as a single-stage treatment for osteochondral regeneration in a rabbit model. METHODS: Thirty mature rabbits were divided into six experimental groups: (1) Sham; (2) Defect; (3) GelMA; (4) GelMA + ASCs; (5) GelMA + PRP; and (6) GelMA + ASCs + PRP.At 12 weeks following surgical repair, osteochondral regeneration was assessed on the basis of gross appearance, biomechanical properties, histological and immunohistochemical characteristics, and subchondral bone volume. RESULTS: In terms of mechanical property reflecting the ability of neotissue to bear stress, PRP only group were significantly lower than the Sham group (p = 0.0098). On the other hand, ASCs only and ASCs combined with PRP groups did not exhibit significantly difference, which suggesting that incorporation of ASCs assists in restoring the ability of the neotissue to bear stresses similarly to native tissue (p = 0.346, p = 0.40, respectively). Safranin O in ASCs combined with PRP group was significantly higher than the Defect and GelMA only groups (p = 0.0009, p = 0.0017, respectively). Additionally, ASCs only and ASCs combined with PRP groups presented especially strong staining for collagen type II. Surprisingly, PRP only and PRP + ASCs groups tended to exhibit higher collagen type I and collagen type X staining compared to ASCs only group, suggesting a potential PRP-mediated hypertrophic effect. CONCLUSION: Regeneration of a focal osteochondral defect in a rabbit model was improved by a single-stage treatment of a photocrosslinked hydrogel containing allogenic ASCs and autologous PRP, with the combination of ASCs and PRP producing superior benefit than either alone. No experimental construct fully restored all properties of the native, healthy osteochondral unit, which may require longer follow-up or further modification of PRP and/or ASCs characteristics.


Adipose Tissue , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Platelet-Rich Plasma , Animals , Rabbits , Platelet-Rich Plasma/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Hydrogels/chemistry , Hydrogels/pharmacology
16.
Nat Commun ; 15(1): 4575, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834586

Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.


Bone Regeneration , Mesenchymal Stem Cells , Neovascularization, Physiologic , Osteogenesis , Skull , Animals , Bone Regeneration/physiology , Mice , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Male , Receptors, Notch/metabolism , Receptors, Notch/genetics , Mice, Inbred C57BL , Signal Transduction , Female , Angiogenesis
17.
Article En | MEDLINE | ID: mdl-38847145

BACKGROUND: Macrovascular lesions are the main cause of death and disability in diabetes mellitus, and excessive accumulation of cholesterol and lipids can lead to long-term and repeated damage of vascular endothelial cells. Umbilical cord mesenchymal stem cells (UCMSCs) can attenuate vascular endothelial damage in type 1 diabetic mice, while Fufang Xueshuantong capsule (FXC) has a protective effect on endothelial function; however, whether FXC in combination with UCMSCs can improve T2DM macrovascular lesions as well as its mechanism of action are not clear. Therefore, the aim of this study was to reveal the role of FXC + UCMSCs in T2DM vasculopathy and their potential mechanism in the treatment of T2DM. METHODS: The control and T2DM groups were intragastrically administered with equal amounts of saline, the UCMSCs group was injected with UCMSCs (1×106, resuspended cells with 0.5 mL PBS) in the tail vein, the FXC group was intragastrically administered with 0.58 g/kg FXC, and the UCMSCs + FXC group was injected with UCMSCs (1×106) in the tail vein, followed by FXC (0.58 g/kg), for 8 weeks. RESULTS: We found that FXC+UCMSCs effectively reduced lipid levels (TG, TC, and LDL-C) and ameliorated aortic lesions in T2DM rats. Meanwhile, Nrf2 and HO-1 expression were upregulated. We demonstrated that inhibition of Nrf-2 expression blocked the inhibitory effect of FXC+UCMSCs-CM on apoptosis and oxidative stress injury. CONCLUSION: Our data suggest that FXC+UCMSCs may attenuate oxidative stress injury and macroangiopathy in T2DM by activating the Nrf-2/HO-1 pathway.


Diabetes Mellitus, Experimental , Drugs, Chinese Herbal , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , NF-E2-Related Factor 2 , Oxidative Stress , Rats, Sprague-Dawley , Signal Transduction , Animals , Oxidative Stress/drug effects , Oxidative Stress/physiology , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mesenchymal Stem Cell Transplantation/methods , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Umbilical Cord/cytology , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/prevention & control , Diabetic Angiopathies/drug therapy , Diabetic Angiopathies/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Heme Oxygenase (Decyclizing)/metabolism , Combined Modality Therapy/methods , Cells, Cultured
18.
Cell Transplant ; 33: 9636897241259552, 2024.
Article En | MEDLINE | ID: mdl-38847385

Thin endometrium (TE) is a significant factor contributing to fertility challenges, and addressing this condition remains a central challenge in reproductive medicine. Menstrual blood-derived mesenchymal stem cells (MenSCs) play a crucial role in tissue repair and regeneration, including that of TE. The Wnt signaling pathway, which is highly conserved and prevalent in eukaryotes, is essential for cell proliferation, tissue development, and reproductive functions. MALAT1 is implicated in various transcriptional and molecular functions, including cell proliferation and metastasis. However, the combined effects of the Wnt signaling pathway and the long non-coding RNA (lncRNA) MALAT1 on the regulation of MenSCs' regenerative capabilities in tissue engineering have not yet been explored. To elucidate the regulatory mechanism of MALAT1 in TE, we analyzed its expression levels in normal endometrium and TE tissues, finding that low expression of MALAT1 was associated with poor clinical prognosis. In addition, we conducted both in vitro and in vivo functional assays to examine the role of the MALAT1/miR-7-5p/TCF4 axis in cell proliferation and migration. Techniques such as dual-luciferase reporter assay, fluorescent in situ hybridization, and immunoblot experiments were utilized to clarify the molecular mechanism. To corroborate these findings, we established a TE model and conducted pregnancy experiments, demonstrating a strong association between MALAT1 expression and endometrial fertility. In conclusion, our comprehensive study provides strong evidence supporting that lncRNA MALAT1 modulates TCF4 expression in the Wnt signaling pathway through interaction with miR-7-5p, thus enhancing MenSCs-mediated improvement of TE and improving fertility.


Endometrium , Mesenchymal Stem Cells , MicroRNAs , RNA, Long Noncoding , Wnt Signaling Pathway , Female , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Endometrium/metabolism , Endometrium/cytology , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Transcription Factor 4/metabolism , Transcription Factor 4/genetics , Cell Proliferation/genetics , Adult , Mice , Fertility/genetics
19.
FASEB J ; 38(11): e23729, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38847786

Diabetic nephropathy (DN) is one of the common microvascular complications in diabetic patients. Marrow mesenchymal stem cells (MSCs) have attracted attention in DN therapy but the underlying mechanism remains unclear. Here, we show that MSC administration alleviates high glucose (HG)-induced human kidney tubular epithelial cell (HK-2 cell) injury and ameliorates renal injury in DN mice. We identify that Smad2/3 is responsible for MSCs-regulated DN progression. The activity of Smad2/3 was predominantly upregulated in HG-induced HK-2 cell and DN mice and suppressed with MSC administration. Activation of Smad2/3 via transforming growth factor-ß1 (TGF-ß1) administration abrogates the protective effect of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Smad2/3 has been reported to interact with methyltransferase of N6-methyladenosine (m6A) complex and we found a methyltransferase, Wilms' tumor 1-associating protein (WTAP), is involved in MSCs-Smad2/3-regulated DN development. Moreover, WTAP overexpression abrogates the improvement of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Subsequently, α-enolase (ENO1) is the downstream target of WTAP-mediated m6A modification and contributes to the MSCs-mediated regulation. Collectively, these findings reveal a molecular mechanism in DN progression and indicate that Smad2/3/WTAP/ENO1 may present a target for MSCs-mediated DN therapy.


Diabetic Nephropathies , Mesenchymal Stem Cells , Smad2 Protein , Smad3 Protein , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Mesenchymal Stem Cells/metabolism , Smad2 Protein/metabolism , Mice , Humans , Smad3 Protein/metabolism , Male , Mice, Inbred C57BL , Adenosine/metabolism , Adenosine/analogs & derivatives , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Signal Transduction , Methyltransferases/metabolism , Methyltransferases/genetics , Mesenchymal Stem Cell Transplantation/methods , Transforming Growth Factor beta1/metabolism , Cell Line
20.
Mol Biol Rep ; 51(1): 632, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724827

BACKGROUND: MicroRNAs (miRNAs) play critical roles in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs), but the mechanism by which miRNAs indirectly modulate osteogenesis remains unclear. Here, we explored the mechanism by which miRNAs indirectly modulate gene expression through histone demethylases to promote bone regeneration. METHODS AND RESULTS: Bioinformatics analysis was performed on hBMSCs after 7 days of osteogenic induction. The differentially expressed miRNAs were screened, and potential target mRNAs were identified. To determine the bioactivity and stemness of hBMSCs and their potential for bone repair, we performed wound healing, Cell Counting Kit-8 (CCK-8), real-time reverse transcription quantitative polymerase chain reaction (RT‒qPCR), alkaline phosphatase activity, alizarin red S (ARS) staining and radiological and histological analyses on SD rats with calvarial bone defects. Additionally, a dual-luciferase reporter assay was utilized to investigate the interaction between miR-26b-5p and ten-eleven translocation 3 (TET3) in human embryonic kidney 293T cells. The in vitro and in vivo results suggested that miR-26b-5p effectively promoted the migration, proliferation and osteogenic differentiation of hBMSCs, as well as the bone reconstruction of calvarial defects in SD rats. Mechanistically, miR-26b-5p bound to the 3' untranslated region of TET3 mRNA to mediate gene silencing. CONCLUSIONS: MiR-26b-5p downregulated the expression of TET3 to increase the osteogenic differentiation of hBMSCs and bone repair in rat calvarial defects. MiR-26b-5p/TET3 crosstalk might be useful in large-scale critical bone defects.


Bone Regeneration , Cell Differentiation , Dioxygenases , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Rats, Sprague-Dawley , Skull , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mesenchymal Stem Cells/metabolism , Humans , Osteogenesis/genetics , Cell Differentiation/genetics , Rats , Skull/pathology , Skull/metabolism , Female , Bone Regeneration/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , Cell Proliferation/genetics , HEK293 Cells
...