Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 573
Filter
1.
J Nanobiotechnology ; 22(1): 387, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951841

ABSTRACT

Metal-organic frameworks (MOFs) are metal-organic skeleton compounds composed of self-assembled metal ions or clusters and organic ligands. MOF materials often have porous structures, high specific surface areas, uniform and adjustable pores, high surface activity and easy modification and have a wide range of prospects for application. MOFs have been widely used. In recent years, with the continuous expansion of MOF materials, they have also achieved remarkable results in the field of antimicrobial agents. In this review, the structural composition and synthetic modification of MOF materials are introduced in detail, and the antimicrobial mechanisms and applications of these materials in the healing of infected wounds are described. Moreover, the opportunities and challenges encountered in the development of MOF materials are presented, and we expect that additional MOF materials with high biosafety and efficient antimicrobial capacity will be developed in the future.


Subject(s)
Metal-Organic Frameworks , Wound Healing , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Wound Healing/drug effects , Humans , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Porosity , Wound Infection/drug therapy
2.
ACS Appl Mater Interfaces ; 16(25): 32118-32127, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38862123

ABSTRACT

The SARS-CoV-2 (COVID-19) pandemic outbreak led to enormous social and economic repercussions worldwide, felt even to this date, making the design of new therapies to combat fast-spreading viruses an imperative task. In the face of this, diverse cutting-edge nanotechnologies have risen as promising tools to treat infectious diseases such as COVID-19, as well as challenging illnesses such as cancer and diabetes. Aside from these applications, nanoscale metal-organic frameworks (nanoMOFs) have attracted much attention as novel efficient drug delivery systems for diverse pathologies. However, their potential as anti-COVID-19 therapeutic agents has not been investigated. Herein, we propose a pioneering anti-COVID MOF approach by studying their potential as safe and intrinsically antiviral agents through screening various nanoMOF. The iron(III)-trimesate MIL-100 showed a noteworthy antiviral effect against SARS-CoV-2 at the micromolar range, ensuring a high biocompatibility profile (90% of viability) in a real infected human cellular scenario. This research effectively paves the way toward novel antiviral therapies based on nanoMOFs, not only against SARS-CoV-2 but also against other challenging infectious and/or pulmonary diseases.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Metal-Organic Frameworks , SARS-CoV-2 , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Humans , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/virology , Chlorocebus aethiops , Vero Cells , Cell Survival/drug effects
3.
Carbohydr Polym ; 340: 122200, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38857994

ABSTRACT

Cyclodextrin metal-organic framework (CD-MOF) is an edible and porous material that can serve as a template for synthesizing small-sized metal nanoparticles. However, its highly hydrophilic nature has limited its wider application. Herein, ultra-small gold nanoparticles (U-AuNPs) were loaded into CD-MOF to produce a composite material Au@CD-MOF. The CD-MOF was utilized as a template to control the size of the AuNPs. The synthesized Au@CD-MOF was easily dispersible in aqueous medium and its released U-AuNPs exhibited effective water dispersion stability within 120 days. Additionally, compared to gold nanoparticles prepared using traditional methods (T-AuNPs), the U-AuNPs exhibited superior antibacterial properties. Furthermore, hydrophilic Au@CD-MOF was incorporated into a hydrophobic polydimethylsiloxane (PDMS) matrix (Au@CD-MOF/PDMS) to achieve a humidity-responsive antibacterial function. The composite membrane exhibited remarkable responsiveness to humidity, showing almost no release of U-AuNPs at 0 % humidity. However, it exhibited approximately 89 % release within 1 h, and complete release of U-AuNPs was observed within 4 h under 100 % humidity. These findings highlight the successful preparation of a humidity-responsive antibacterial composite membrane, which has great potential applications in various scenarios, particularly in the field of antibacterial food packaging.


Subject(s)
Anti-Bacterial Agents , Cyclodextrins , Gold , Humidity , Metal Nanoparticles , Metal-Organic Frameworks , Gold/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Cyclodextrins/chemistry , Particle Size , Microbial Sensitivity Tests , Hydrophobic and Hydrophilic Interactions , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
4.
Front Cell Infect Microbiol ; 14: 1376312, 2024.
Article in English | MEDLINE | ID: mdl-38912207

ABSTRACT

Introduction: Widespread opportunistic pathogens pose a serious threat to global health, particularly in susceptible hospital populations. The escalating crisis of antibiotic resistance highlights the urgent need for novel antibacterial agents and alternative treatment approaches. Traditional Chinese Medicine (TCM) and its compounds have deep roots in the treatment of infectious diseases. It has a variety of active ingredients and multi-target properties, opening up new avenues for the discovery and development of antimicrobial drugs. Methods: This study focuses on assessing the efficacy of the Shensheng-Piwen changed medicinal powder (SPC) extracts against opportunistic pathogen infections by broth microdilution and agar disc diffusion methods. Additionally, biofilm inhibition and eradication assays were performed to evaluate the antibiofilm effects of SPC extracts. Results: Metabolite profiles were analyzed by LC-MS. Furthermore, the potential synergistic effect between SPC and Metal-Organic Framework (MOF) was investigated by bacterial growth curve analysis. The results indicated that the SPC extracts exhibited antibacterial activity against S. aureus, with a minimum inhibitory concentration (MIC) of 7.8 mg/mL (crude drug concentration). Notably, at 1/2 MIC, the SPC extracts significantly inhibited biofilm formation, with over 80% inhibition, which was critical in tackling chronic and hospital-acquired infections. Metabolomic analysis of S. aureus revealed that SPC extracts induced a notable reduction in the levels of various metabolites, including L-proline, L-asparagine. This suggested that the SPC extracts could interfere with the metabolism of S. aureus. Meanwhile, the growth curve experiment proved that SPC extracts and MOFs had a synergistic antibacterial effect. Discussion: In conclusion, the present study highlights the potential of SPC extracts as a novel antibacterial agent against S. aureus infections, with promising biofilm inhibition properties. The observed synergistic effect between SPC extracts and MOFs further supports the exploration of this combination as an alternative treatment approach.


Subject(s)
Anti-Bacterial Agents , Biofilms , Drugs, Chinese Herbal , Metal-Organic Frameworks , Microbial Sensitivity Tests , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Staphylococcus aureus/drug effects , Drug Synergism , Powders , Humans , Chromatography, Liquid
5.
J Mater Chem B ; 12(25): 6242-6256, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38842217

ABSTRACT

Designing artificial nano-enzymes for scavenging reactive oxygen species (ROS) in chondrocytes (CHOs) is considered the most feasible pathway for the treatment of osteoarthritis (OA). However, the accumulation of ROS due to the amount of nano-enzymatic catalytic site exposure and insufficient oxygen supply seriously threatens the clinical application of this therapy. Although metal-organic framework (MOF) immobilization of artificial nano-enzymes to enhance active site exposure has been extensively studied, artificial nano-enzymes/MOFs for ROS scavenging in OA treatment are still lacking. In this study, a biocompatible lubricating hydrogel-loaded iron-doped zeolitic imidazolate framework-8 (Fe/ZIF-8/Gel) centrase was engineered to scavenge endogenous overexpressed ROS synergistically generating dissolved oxygen and enhancing sustained lubrication for CHOs as a ternary artificial nano-enzyme. This property enabled the nano-enzymatic hydrogels to mitigate OA hypoxia and inhibit oxidative stress damage successfully. Ternary strategy-based therapies show excellent cartilage repair in vivo. The experimental results suggest that nano-enzyme-enhanced lubricating hydrogels are a potentially effective OA treatment and a novel strategy.


Subject(s)
Chondrocytes , Hydrogels , Reactive Oxygen Species , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/cytology , Reactive Oxygen Species/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Osteoarthritis/drug therapy , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cartilage/drug effects , Cartilage/metabolism , Particle Size , Humans , Zeolites/chemistry
6.
Chem Commun (Camb) ; 60(51): 6476-6487, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38853690

ABSTRACT

Pyroptosis is regarded as a promising strategy to modulate tumor immune microenvironments for anticancer therapy. Although pyroptosis inducers have been extensively explored in the biomedical field, their drug resistance, off-targeting capacity, and adverse effects do not fulfill the growing demands of therapy. Nowadays, metal-organic frameworks (MOFs) with unique structures and facile synthesis/functionalization characteristics have shown great potential in anticancer therapy. The flexible choices of metal ions and ligands endow MOFs with inherent anti-cancer efficiency, whereas the porous structures in MOFs make them ideal vehicles for delivering various chemodrug-based pyroptosis inducers. In this review, we provide the latest advances in MOF-based materials to evoke pyroptosis and give a brief but comprehensive review of the different types of MOFs for pyroptosis-mediated cancer therapy. Finally, we also discuss the current challenges of MOF-based pyroptosis inducers and their future prospects in this field.


Subject(s)
Antineoplastic Agents , Metal-Organic Frameworks , Neoplasms , Pyroptosis , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Pyroptosis/drug effects , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Animals
7.
ACS Appl Mater Interfaces ; 16(25): 32058-32077, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38872401

ABSTRACT

The development of growth factor-free biomaterials for bone tissue regeneration with anti-infection and anti-inflammatory activities remains challenging. Black phosphorus nanosheets (BPNs), with distinctive attributes, including photothermal conversion and calcium ion chelation, offer potential for use in bone tissue engineering and infection prevention. However, BPNs are prone to oxidation and degradation in aqueous environments, and methods to stabilize BPNs for long-term bone repair remain insufficient. Herein, zeolitic imidazolate framework-8 (ZIF-8) was used to stabilize BPNs via in situ crystallization onto the surface of BPNs (BP@ZIF-8 nanocomposite). A novel injectable dual-component hydrogel comprising gelatin methacryloyl (GelMA) and methacrylate-modified hyaluronic acid (HAMA) was used as a BP@ZIF-8 nanocomposite carrier (GelMA/HAMA/BP@ZIF-8). The BP@ZIF-8 nanocomposite could effectively protect internal BPNs from oxidation and enhance the long-term photothermal performance of the hydrogel in both in vitro and in vivo settings. The GelMA/HAMA/BP@ZIF-8 hydrogel was injectable and exhibited outstanding performance for photothermal conversion, mechanical strength, and biodegradability, as well as excellent photothermal antibacterial activity against Staphylococcus aureus and Escherichia coli in vitro and in an in vivo rat model. The GelMA/HAMA/BP@ZIF-8 hydrogel also provided a microenvironment conducive to osteogenic differentiation, promoting the transformation of M2 macrophages and inhibiting inflammatory responses. Furthermore, the hydrogel promoted bone regeneration and had a synergistic effect with near-infrared irradiation in a rat skull-defect model. Transcriptome sequencing analysis revealed that the PI3K-AKT- and calcium-signaling pathways may be involved in promoting osteogenic differentiation induced by the GH-BZ hydrogel. This study presents an innovative, multifaceted solution to the challenges of bone tissue regeneration with antibacterial and anti-inflammatory effects, providing insights into the design of smart biomaterials with dual therapeutic capabilities.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Hydrogels , Osteogenesis , Phosphorus , Staphylococcus aureus , Zeolites , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Osteogenesis/drug effects , Phosphorus/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Rats , Zeolites/chemistry , Zeolites/pharmacology , Gelatin/chemistry , Gelatin/pharmacology , Mice , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Rats, Sprague-Dawley , Methacrylates/chemistry , Methacrylates/pharmacology , Microbial Sensitivity Tests , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Nanocomposites/chemistry , RAW 264.7 Cells , Bone Regeneration/drug effects , Nanostructures/chemistry
8.
J Hazard Mater ; 474: 134807, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850939

ABSTRACT

Nanocrop protectants have attracted much attention as sustainable platforms for controlling pests and diseases and improving crop nutrition. Here, we reported the fungicidal activity and disease inhibition potential of pectin-coated metal-iron organic framework nanoparticles (Fe-MOF-PT NPs) against rice stripe blight (RSB). An in vitro bacterial inhibition assay showed that Fe-MOF-PT NPs (80 mg/L) significantly inhibited mycelial growth and nucleus formation. The Fe-MOF-PT NPs adsorbed to the surface of mycelia and induced toxicity by disrupting cell membranes, mitochondria, and DNA. The results of a nontargeted metabolomics analysis showed that the metabolites of amino acids and their metabolites, heterocyclic compounds, fatty acids, and nucleotides and their metabolites were significantly downregulated after treatment with 80 mg/L NPs. The difference in metabolite abundance between the CK and Fe-MOF-PT NPs (80 mg/L) treatment groups was mainly related to nucleotide metabolism, pyrimidine metabolism, purine metabolism, fatty acid metabolism, and amino acid metabolism. The results of the greenhouse experiment showed that Fe-MOF-PT NPs improved rice resistance to R. solani by inhibiting mycelial invasion, enhancing antioxidant enzyme activities, activating the jasmonic acid signaling pathway, and enhancing photosynthesis. These findings indicate the great potential of Fe-MOF-PT NPs as a new RSB disease management strategy and provide new insights into plant fungal disease management.


Subject(s)
Iron , Metal-Organic Frameworks , Oryza , Pectins , Plant Diseases , Rhizoctonia , Oryza/metabolism , Oryza/drug effects , Oryza/microbiology , Rhizoctonia/drug effects , Plant Diseases/prevention & control , Plant Diseases/microbiology , Iron/chemistry , Iron/metabolism , Pectins/chemistry , Pectins/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/toxicity , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Disease Resistance/drug effects
9.
ACS Appl Mater Interfaces ; 16(26): 33093-33105, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38884171

ABSTRACT

The morphological features of materials significantly influence their interactions with cells, consequently affecting the cellular uptake of these materials. In this study, we examine the cellular uptake behavior of spherical metal-organic frameworks (MOFs) and petaloid MOFs, both possessing similar sizes and compositions. In comparison to spherical MOFs, dendritic cells (DCs) and macrophages exhibit superior phagocytic uptake of petaloid MOFs. Next, the results demonstrate that R848@petaloid MOFs more effectively promote the repolarization of tumor-associated macrophages (TAMs) from the M2 to M1 phenotype and the maturation of DCs. More importantly, the R848-loaded petaloid MOFs are found to significantly enhance the therapeutic effects of radiotherapy (RT) by eliciting antitumor responses. Furthermore, R848@petaloid MOFs combined with RT and αPD-L1 elicit a potent abscopal effect, effectively suppressing tumor metastasis. Therefore, this work proposes a new strategy to enhance the uptake of immunomodulators by immune cells through modulating the morphology of drug delivery carriers.


Subject(s)
Imidazoles , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Animals , Imidazoles/chemistry , Imidazoles/pharmacology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Drug Carriers/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , RAW 264.7 Cells , Cell Line, Tumor , Mice, Inbred C57BL , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Female , B7-H1 Antigen/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/immunology
10.
Sci Rep ; 14(1): 13050, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844812

ABSTRACT

This study introduces a novel approach for synthesizing a Cu(II)-based coordination polymer (CP), {[Cu(L)(4,4´-OBA)]·H2O}n (1), using a mixed ligand method. The CP was successfully prepared by reacting Cu(NO3)2·3H2O with the ligand 3,6-bis(benzimidazol-1-yl)pyridazine in the presence of 4,4´-H2OBA, demonstrating an innovative synthesis strategy. Furthermore, a novel hydrogel composed of hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) with a porous structure was developed for drug delivery purposes. This hydrogel facilitates the encapsulation of CP1, and enables the loading of paclitaxel onto the composite to form HA/CMCS-CP1@paclitaxel. In vitro cell experiments demonstrated the promising modulation of thyroid cancer biomarker genes S100A6 and ARID1A by HA/CMCS-CP1@paclitaxel. Finally, reinforcement learning simulations were employed to optimize novel metal-organic frameworks, underscoring the innovative contributions of this study.


Subject(s)
Copper , Hydrogels , Paclitaxel , Thyroid Neoplasms , Paclitaxel/chemistry , Paclitaxel/pharmacology , Copper/chemistry , Hydrogels/chemistry , Humans , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Chitosan/chemistry , Chitosan/analogs & derivatives , Cell Line, Tumor , Hyaluronic Acid/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Drug Carriers/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology
11.
ACS Appl Mater Interfaces ; 16(24): 30728-30741, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38847598

ABSTRACT

The prevalence of pathogenic bacterial infections with high morbidity and mortality poses a widespread challenge to the healthcare system. Therefore, it is imperative to develop nanoformulations capable of adaptively releasing antimicrobial factors and demonstrating multimodal synergistic antimicrobial activity. Herein, an NIR-activated multifunctional synergistic antimicrobial nanospray MXene/ZIF-90@ICG was prepared by incorporating ZIF-90@ICG nanoparticles onto MXene-NH2 nanosheets. MXene/ZIF-90@ICG can on-demand release the antimicrobial factors MXenes, ICG, and Zn2+ in response to variations in pH and ATP levels within the bacterial infection microenvironment. Under NIR radiation, the combination of MXenes, Zn2+, and ICG generated a significant amount of ROS and elevated heat, thereby enhancing the antimicrobial efficacy of PDT and PTT. Meanwhile, NIR excitation could accelerate the further release of ICG and Zn2+, realizing the multimodal synergistic antibacterial effect of PDT/PTT/Zn2+. Notably, introducing MXenes improved the dispersion of the synthesized antimicrobial nanoparticles in aqueous solution, rendering MXene/ZIF-90@ICG a candidate for application as a nanospray. Importantly, MXene/ZIF-90@ICG demonstrated antimicrobial activity and accelerated wound healing in the constructed in vivo subcutaneous Staphylococcus aureus infection model with NIR activation, maintaining a favorable biosafety level. Therefore, MXene/ZIF-90@ICG holds promise as an innovative nanospray for adaptive multimodal synergistic and efficient antibacterial applications with NIR activation.


Subject(s)
Adenosine Triphosphate , Anti-Bacterial Agents , Indocyanine Green , Infrared Rays , Staphylococcus aureus , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Wound Healing/drug effects , Hydrogen-Ion Concentration , Staphylococcus aureus/drug effects , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Mice , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Nanoparticles/chemistry , Microbial Sensitivity Tests , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Escherichia coli/drug effects , Humans , Photochemotherapy
12.
Inorg Chem ; 63(26): 12377-12384, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38902911

ABSTRACT

Pathogenic bacteria have consistently posed a formidable challenge to human health, creating the critical need for effective antibacterial solutions. In response, enzyme-metal-organic framework (MOF) composites have emerged as a promising class of antibacterial agents. This study focuses on the development of an enzyme-MOF composite based on HZIF-8, incorporating the advantages of simple synthesis, ZIF-8 antibacterial properties, lysozyme hydrolysis, and high biological safety. Through a one-pot method, core-shell nanoparticles (HZIF-8) were synthesized. This structure enables efficient immobilization of lysozyme and lactoferrin within the HZIF-8, resulting in the formation of the lysozyme-lactoferrin@HZIF-8 (LYZ-LF@HZIF-8) composite. Upon exposure to light irradiation, HZIF-8 itself possessed antibacterial properties. Lysozyme initiated the degradation of bacterial peptidoglycan and lactoferrin synergistically enhanced the antibacterial effect of lysozyme. All of the above ultimately contributed to comprehensive antibacterial activity. Antibacterial assessments demonstrated the efficacy of the LYZ-LF@HZIF-8 composite, effectively eradicating Staphylococcus aureus at a cell density of 1.5 × 106 CFU/mL with a low dosage of 200 µg/mL and completely inactivating Escherichia coli at 400 µg/mL with the same cell density. The enzyme-MOF composite exhibited significant and durable antibacterial efficacy, with no apparent cytotoxicity in vitro, thereby unveiling expansive prospects for applications in the medical and food industries.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Lactoferrin , Metal-Organic Frameworks , Microbial Sensitivity Tests , Muramidase , Staphylococcus aureus , Zeolites , Muramidase/pharmacology , Muramidase/chemistry , Muramidase/metabolism , Lactoferrin/chemistry , Lactoferrin/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Zeolites/chemistry , Zeolites/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis , Porosity , Surface Properties , Particle Size , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/pharmacology
13.
ACS Appl Mater Interfaces ; 16(26): 33070-33080, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38904394

ABSTRACT

Nanomaterials have been extensively exploited in tumor treatment, leading to numerous innovative strategies for cancer therapy. While nanomedicines present immense potential, their application in cancer therapy is characterized by significant complexity and unpredictability, especially regarding biocompatibility and anticancer efficiency. These considerations underscore the essential need for the development of ex vivo research models, which provide invaluable insights and understanding into the biosafety and efficacy of nanomedicines in oncology. Fortunately, the emergence of organoid technology offers a novel approach to the preclinical evaluation of the anticancer efficacy of nanomedicines in vitro. Hence, in this study, we constructed intestine and hepatocyte organoid models (Intestine-orgs and Hep-orgs) for assessing intestinal and hepatic toxicity at the microtissue level. We utilized three typical metal-organic frameworks (MOFs), ZIF-8, ZIF-67, and MIL-125, as nanomedicines to further detect their interactions with organoids. Subsequently, the MIL-125 with biocompatibility loaded methotrexate (MTX), forming the nanomedicine (MIL-125-PEG-MTX), indicated a high loading efficiency (82%) and a well-release capability in an acid microenvironment. More importantly, the anticancer effect of the nanomedicine was investigated using an in vitro patient-derived organoids (PDOs) model, achieving inhibition rates of 48% and 78% for PDO-1 and PDO-2, respectively, demonstrating that PDOs could predict clinical response and facilitate prospective therapeutic selection. These achievements presented great potential for organoid-based ex vivo models for nano theragnostic evaluation in biosafety and function.


Subject(s)
Metal-Organic Frameworks , Nanomedicine , Organoids , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Humans , Organoids/drug effects , Organoids/metabolism , Nanomedicine/methods , Methotrexate/pharmacology , Methotrexate/chemistry , Methotrexate/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Hepatocytes/drug effects , Hepatocytes/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Intestines/drug effects , Intestines/pathology , Animals
14.
Dalton Trans ; 53(26): 10928-10937, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38888155

ABSTRACT

Multifunctional materials that combine antimicrobial properties with the ability to stimulate bone formation are needed to overcome the problem of infected bone defects. As a novel approach, a new composite based on bioactive glass nanoparticles in a simple system of SiO2-CaO (BG) coated with NH4[Cu3(µ3-OH)(µ3-4-carboxypyrazolato)3] (Cu-MOF) with additionally anchored silver nanoparticles (AgNPs) was proposed. Ag@Cu-MOF@BG obtained by the spin coating approach in the form of a disc was characterized using PXRD, ATR-FTIR, XPS, ICP-OES, and TEM. Importantly, the material retained its bioactivity, although ion exchange in the bioactive glass administered as a disc is limited. Hydroxyapatite (HA) formation was identified in TEM images after 7 days of immersion of the composite in a physiological-like buffer (pH 7.4, 37 °C). The Cu and Ag contents of Ag@Cu-MOF@BG were as low as 0.013 and 0.018 wt% respectively, but the slow release of the AgNPs ensured its antibacterial nature. Ag@Cu-MOF@BG exhibited antibacterial activity against all tested bacteria (E. coli, S. aureus, P. aeruginosa, and K. pneumoniae) with the diameter of the inhibition zones of their growth between 8 and 10 mm and the reduction index determined to be ≥3. Moreover, the biocompatibility of the new composite has been demonstrated, as shown by cell culture assays with human dermal fibroblasts (HDFs). The results from the migration test also proved that the HDF cell's phenotypic properties were not changed, and the cell adhesion and migration ability were the same as in control indirect assays.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Glass , Metal Nanoparticles , Metal-Organic Frameworks , Microbial Sensitivity Tests , Silver , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Glass/chemistry , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Copper/chemistry , Copper/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Fibroblasts/drug effects , Pseudomonas aeruginosa/drug effects , Klebsiella pneumoniae/drug effects
15.
Colloids Surf B Biointerfaces ; 240: 113990, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810468

ABSTRACT

Chemodynamic therapy (CDT), which employs intracellular H2O2 to produce toxic hydroxyl radicals to kill cancer cells, has received great attention due to its specificity to tumors. However, the relatively insufficient endogenous H2O2 and the short-lifetime and limited diffusion distance of •OH compromise the therapeutic efficacy of CDT. Mitochondria, which play crucial roles in oncogenesis, are highly vulnerable to elevated oxidative stress. Herein, we constructed a mitochondria-mediated self-cycling system to achieve high dose of •OH production through continuous H2O2 supply. Cinnamaldehyde (CA), which can elevate H2O2 level in the mitochondria, was loaded in Cu(II)-containing metal organic framework (MOF), termed as HKUST-1. After actively targeting mitochondria, the intrinsic H2O2 in mitochondria of cancer cells could induce degradation of MOF, releasing the initial free CA. The released CA further triggered the upregulation of endogenous H2O2, resulting in the subsequent adequate release of CA and the final burst growth of H2O2. The cycle process greatly promoted the Fenton-like reaction between Cu2+ and H2O2 and induced long-term high oxidative stress, achieving enhanced chemodynamic therapy. In a word, we put forward an efficient strategy for enhanced chemodynamic therapy.


Subject(s)
Acrolein , Hydrogen Peroxide , Metal-Organic Frameworks , Mitochondria , Oxidative Stress , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Humans , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Acrolein/pharmacology , Acrolein/chemistry , Acrolein/analogs & derivatives , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Copper/chemistry , Copper/pharmacology , Animals , Cell Survival/drug effects , Mice , Hydroxyl Radical/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Particle Size , Cell Line, Tumor , Surface Properties
16.
Colloids Surf B Biointerfaces ; 240: 113981, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815310

ABSTRACT

Reactive oxygen species (ROS)-driven chemodynamic therapy has emerged as a promising anti-tumor strategy. However, the insufficient hydrogen peroxide (H2O2) supply in tumor microenvironment results in a low Fenton reaction rate and subsequently poor ROS production and therapeutic efficacy. Herein, we report on a new nanocomposite MIL-53@ZIF-67/S loaded with doxorubicin and glucose oxidase, which is decomposed under the acidic tumor microenvironment to release Fe3+, Co3+, glucose oxidase, and doxorubicin. The released content leads to synergistic anti-tumor effect through the following manners: 1) doxorubicin is directly used for chemotherapy; 2) Fe3+and Co3+ result in glutathione depletion and Fenton reaction activation through Fe2+ and Co2+ generation to achieve chemodynamic therapy; 3) glucose oxidase continuously catalyzes glucose consumption to induce starvation of the cancer cells, and 4) at the same time the produced gluconic acid and H2O2 significantly promote Fenton reaction and further boost chemodynamic therapy. This work not only demonstrates the high anti-tumor effect of the new nanocomposite, but also provides an innovative strategy for the development of a multi-in-one nanoplatform for cancer therapy.


Subject(s)
Cobalt , Doxorubicin , Iron , Metal-Organic Frameworks , Nanocomposites , Nanocomposites/chemistry , Cobalt/chemistry , Cobalt/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemical synthesis , Iron/chemistry , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Catalysis , Animals , Mice , Hydrogen Peroxide/chemistry , Glucose Oxidase/metabolism , Glucose Oxidase/chemistry , Tumor Microenvironment/drug effects , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Surface Properties , Particle Size , Drug Screening Assays, Antitumor
17.
Nanoscale ; 16(25): 12037-12049, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38809107

ABSTRACT

A better understanding of the molecular and cellular events involved in the inflammation process has opened novel perspectives in the treatment of inflammatory diseases, particularly through the development of well-designed nanomedicines. Here we describe the design of a novel class of anti-inflammatory nanomedicine (denoted as Au@MIL) synthesized through a one-pot, cost-effective and green approach by coupling a benchmark mesoporous iron(III) carboxylate metal organic framework (MOF) (i.e. MIL-100(Fe)) and glutathionate protected gold nanoclusters (i.e. Au25SG18 NCs). This nano-carrier exhibits low toxicity and excellent colloidal stability combined with the high loading capacity of the glucocorticoid dexamethasone phosphate (DexP) whose pH-dependent delivery was observed. The drug loaded Au@MIL nanocarrier shows high anti-inflammatory activity due to its capacity to specifically hinder inflammatory cell growth, scavenge intracellular reactive oxygen species (ROS) and downregulate pro-inflammatory cytokine secretion. In addition, this formulation has the capacity to inhibit the Toll-like receptor (TLR) signaling cascade namely the nuclear factor kappa B (NF-κB) and the interferon regulatory factor (IRF) pathways. This not only provides a new avenue for the nanotherapy of inflammatory diseases but also enhances our fundamental knowledge of the role of nanoMOF based nanomedicine in the regulation of innate immune signaling.


Subject(s)
Anti-Inflammatory Agents , Dexamethasone , Gold , Inflammation , Metal Nanoparticles , Metal-Organic Frameworks , Signal Transduction , Toll-Like Receptors , Gold/chemistry , Mice , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Signal Transduction/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Animals , Toll-Like Receptors/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Inflammation/drug therapy , Dexamethasone/chemistry , Dexamethasone/pharmacology , Reactive Oxygen Species/metabolism , RAW 264.7 Cells , Drug Carriers/chemistry , Humans , NF-kappa B/metabolism
18.
Acta Biomater ; 182: 245-259, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38729545

ABSTRACT

Diabetic wound healing is a great clinical challenge due to the microenvironment of hyperglycemia and high pH value, bacterial infection and persistent inflammation. Here, we develop a cascade nanoreactor hydrogel (Arg@Zn-MOF-GOx Gel, AZG-Gel) with arginine (Arg) loaded Zinc metal organic framework (Zn-MOF) and glucose oxidase (GOx) based on chondroitin sulfate (CS) and Pluronic (F127) to accelerate diabetic infected wound healing. GOx in AZG-Gel was triggered by hyperglycemic environment to reduce local glucose and pH, and simultaneously produced hydrogen peroxide (H2O2) to enable Arg-to release nitric oxide (NO) for inflammation regulation, providing a suitable microenvironment for wound healing. Zinc ions (Zn2+) released from acid-responsive Zn-MOF significantly inhibited the proliferation and biofilm formation of S.aureus and E.coli. AZG-Gel significantly accelerated diabetic infected wound healing by down-regulating pro-inflammatory tumor necrosis factor (TNF)-α and interleukin (IL)-6, up-regulating anti-inflammatory factor IL-4, promoting angiogenesis and collagen deposition in vivo. Collectively, our nanoreactor cascade strategy combining "endogenous improvement (reducing glucose and pH)" with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new idea for promoting diabetic infected wound healing by addressing both symptoms and root causes. STATEMENT OF SIGNIFICANCE: A cascade nanoreactor (AZG-Gel) is constructed to solve three key problems in diabetic wound healing, namely, hyperglycemia and high pH microenvironment, bacterial infection and persistent inflammation. Local glucose and pH levels are reduced by GOx to provide a suitable microenvironment for wound healing. The release of Zn2+ significantly inhibits bacterial proliferation and biofilm formation, and NO reduces wound inflammation and promotes angiogenesis. The pH change when AZG-Gel is applied to wounds is expected to enable the visualization of wound healing to guide the treatment of diabetic wound. Our strategy of "endogenous improvement (reducing glucose and pH)" combined with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new way for promoting diabetic wound healing.


Subject(s)
Glucose Oxidase , Metal-Organic Frameworks , Nitric Oxide , Wound Healing , Zinc , Wound Healing/drug effects , Animals , Zinc/chemistry , Zinc/pharmacology , Nitric Oxide/metabolism , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemistry , Glucose Oxidase/pharmacology , Glucose Oxidase/metabolism , Diabetes Mellitus, Experimental/pathology , Cellular Microenvironment/drug effects , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Male , Staphylococcus aureus/drug effects , Biofilms/drug effects , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Arginine/pharmacology , Arginine/chemistry
19.
Acta Biomater ; 182: 228-244, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38761962

ABSTRACT

Arsenic (As) poisoning has become a global public problem threatening human health. Chelation therapy (CT) is the preferred treatment for arsenic poisoning. Nevertheless, efficient and safe arsenic removal in vivo remains a daunting challenge due to the limitations of chelators, including weak affinity, poor cell membrane penetration, and short half-life. Herein, a mercapto-functionalized and size-tunable hierarchical porous Zr-MOF (UiO-66-TC-SH) is developed, which possesses abundant arsenic chemisorption sites, effective cell uptake ability, and long half-life, thereby efficiently removing toxic arsenic in vivo. Moreover, the strong binding affinity of UiO-66-TC-SH for arsenic reduces systemic toxicity caused by off-target effects. In animal trials, UiO-66-TC-SH decreases the blood arsenic levels of acute arsenic poisoning mice to a normal value within 48 h, and the efficacy is superior to clinical drugs 2,3-dimercaptopropanesulfonic acid sodium salt (DMPS). Meanwhile, UiO-66-TC-SH also significantly mitigates the arsenic accumulation in the metabolic organs of chronic arsenic poisoning mice. Surprisingly, UiO-66-TC-SH also accelerates the metabolism of arsenic in organs of tumor-bearing mice and alleviates the side effects of arsenic drugs antitumor therapy. STATEMENT OF SIGNIFICANCE: Arsenic (As) contamination has become a global problem threatening public health. The present clinical chelation therapy (CT) still has some limitations, including the weak affinity, poor cell membrane permeability and short half-life of hydrophilic chelators. Herein, a metal-organic framework (MOF)-based multieffective arsenic removal strategy in vivo is proposed for the first time. Mercapto-functionalized and size-tunable hierarchical porous Zr-MOF nanoantidote (denoted as UiO-66-TC-SH) is accordingly designed and synthesized. After injection, UiO-66-TC-SH can form Zr-O-As bonds and As-S bonds with arsenic, thus enhancing arsenic adsorption capacity, cycling stability and systemic safety simultaneously. The acute arsenic poisoning model results indicate that UiO-66-TC-SH shows superior efficacy to the clinical drug sodium dimercaptopropanesulfonate (DMPS). More meaningfully, we find that UiO-66-TC-SH also accelerates the metabolism of arsenic in organs of tumor-bearing mice and alleviates side effects of arsenic drugs anti-tumor therapy.


Subject(s)
Arsenic Poisoning , Arsenic , Metal-Organic Frameworks , Zirconium , Animals , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Zirconium/chemistry , Zirconium/pharmacology , Arsenic/pharmacokinetics , Mice , Arsenic Poisoning/drug therapy , Arsenic Poisoning/metabolism , Humans , Chelating Agents/chemistry , Chelating Agents/pharmacology , Porosity , Phthalic Acids
20.
Adv Colloid Interface Sci ; 329: 103184, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781826

ABSTRACT

With the rapid advancement of nanotechnology, stimuli-responsive nanomaterials have emerged as a feasible choice for the designing of controlled drug delivery systems. Zeolitic imidazolates frameworks are a subclass of Metal-organic frameworks (MOFs) that are recognized by their excellent porosity, structural tunability and chemical modifications make them promising materials for loading targeted molecules and therapeutics agents. The biomedical industry uses these porous materials extensively as nano-carriers in drug delivery systems. These MOFs not only possess excellent targeted imaging ability but also cause the death of tumor cells drawing considerable attention in the current framework of anticancer drug delivery systems. In this review, the outline of stability, porosity, mechanism of encapsulation and release of anticancer drug have been reported extensively. In the end, we also discuss a brief outline of current challenges and future perspectives of ZIFs in the biomedical world.


Subject(s)
Antineoplastic Agents , Drug Carriers , Imidazoles , Metal-Organic Frameworks , Zeolites , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Zeolites/chemistry , Zeolites/pharmacology , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis , Drug Carriers/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemical synthesis , Neoplasms/drug therapy , Neoplasms/pathology , Drug Delivery Systems , Animals , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...