Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.033
Filter
1.
Biosens Bioelectron ; 261: 116515, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38909444

ABSTRACT

An electrochemical (EC) sensor based on metalloporphyrin metal-organic framework (MOF) for the detection of parathion-methyl (PM) has been developed. The prepared MOF-525(Fe) exhibits great signal enhancement toward the electrochemical detection of PM owing to its unique structural properties and electrochemical activities. Under optimal experimental conditions, the as-prepared MOF-525(Fe) based EC sensor exhibited excellent PM sensing performance with a wide linear detection range (0.1 µM-100 µM) and low limit of detection (LOD, 1.4 nM). Compared to its corresponding Fe metalloporphyrin (linker), MOF-525(Fe) exhibited a superior sensitivity (28.31 µA cm-2·µM-1), which is 3.7 times higher than the sensitivity of FeTCPP linker (7.56 µA cm-2·µM-1) towards PM. The improved performance is associated with the high specific surface area and the large pore channels of MOF-525(Fe) facilitating a better interaction between PM and the Fe metalloporphyrin active sites, especially in the lower concentration range. Moreover, a possible affinity of the PM molecules toward Zr6 clusters may also contribute to the selective enrichment of PM on MOF-525(Fe). This EC sensor further demonstrated high selectivity in the presence of interfering molecules. The recovery results further confirm accurate PM sensing in actual samples, which suggests promising applications for the rapid detection of environmental organophosphates by metalloporphyrin MOFs.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Limit of Detection , Metal-Organic Frameworks , Metalloporphyrins , Methyl Parathion , Zirconium , Metal-Organic Frameworks/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods , Metalloporphyrins/chemistry , Zirconium/chemistry , Methyl Parathion/analysis
2.
Redox Biol ; 74: 103238, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38870780

ABSTRACT

Oxidative stress (OS) and endoplasmic reticulum stress (ERS) are at the genesis of placental disorders observed in preeclampsia, intrauterine growth restriction, and maternal hypothyroidism. In this regard, cationic manganese porphyrins (MnPs) comprise potent redox-active therapeutics of high antioxidant and anti-inflammatory potential, which have not been evaluated in metabolic gestational diseases yet. This study evaluated the therapeutic potential of two MnPs, [MnTE-2-PyP]5+ (MnP I) and [MnT(5-Br-3-E-Py)P]5+ (MnP II), in the fetal-placental dysfunction of hypothyroid rats. Hypothyroidism was induced by administration of 6-Propyl-2-thiouracil (PTU) and treatment with MnPs I and II 0.1 mg/kg/day started on the 8th day of gestation (DG). The fetal and placental development, and protein and/or mRNA expression of antioxidant mediators (SOD1, CAT, GPx1), hypoxia (HIF1α), oxidative damage (8-OHdG, MDA), ERS (GRP78 and CHOP), immunological (TNFα, IL-6, IL-10, IL-1ß, IL-18, NLRP3, Caspase1, Gasdermin D) and angiogenic (VEGF) were evaluated in the placenta and decidua on the 18th DG using immunohistochemistry and qPCR. ROS and peroxynitrite (PRX) were quantified by fluorometric assay, while enzyme activities of SOD, GST, and catalase were evaluated by colorimetric assay. MnPs I and II increased fetal body mass in hypothyroid rats, and MnP I increased fetal organ mass. MnPs restored the junctional zone morphology in hypothyroid rats and increased placental vascularization. MnPs blocked the increase of OS and ERS mediators caused by hypothyroidism, showing similar levels of expression of HIFα, 8-OHdG, MDA, Gpx1, GRP78, and Chop to the control. Moreover, MnPs I and/or II increased the protein expression of SOD1, Cat, and GPx1 and restored the expression of IL10, Nlrp3, and Caspase1 in the decidua and/or placenta. However, MnPs did not restore the low placental enzyme activity of SOD, CAT, and GST caused by hypothyroidism, while increased the decidual and placental protein expression of TNFα. The results show that treatment with MnPs improves the fetal-placental development and the placental inflammatory state of hypothyroid rats and protects against oxidative stress and reticular stress caused by hypothyroidism at the maternal-fetal interface.


Subject(s)
Hypothyroidism , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Animals , Pregnancy , Female , Rats , Hypothyroidism/drug therapy , Hypothyroidism/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress/drug effects , Inflammasomes/metabolism , Disease Models, Animal , Placenta/metabolism , Placenta/drug effects , Placentation/drug effects , Antioxidants/pharmacology , Endoplasmic Reticulum Stress/drug effects , Fetal Development/drug effects , Manganese , Metalloporphyrins/pharmacology , Endoplasmic Reticulum Chaperone BiP
3.
ACS Appl Mater Interfaces ; 16(24): 30810-30818, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38850233

ABSTRACT

Photothermal therapy (PTT) is a promising clinical antitumor strategy. However, local hyperthermia inevitably induces heat damage to adjacent normal tissues, while alternative mild-temperature therapy (MPTT, T < 45 °C) is also inefficient due to the overexpressed hyperthermia-induced heat shock proteins (HSPs) by cancer cells. Therefore, developing PTT strategies with minimizing damage to healthy tissues with improved cellular temperature sensitivity is extremely valuable for clinical application. Herein, we proposed the strategy of disrupting the intracellular redox environment via destroying the ROS-defending systems to promote MPTT. The gold(III) porphyrin-Fe3+-tannic acid nanocomplexes (AuTPP@TA-Fe NPs) were achieved via interfacial cohesion and supramolecular assembly of bioadhesive species, which could trigger the Fenton reaction to produce ·OH radicals and downregulation of reductive TrxR enzyme and mitochondrial chaperone protein Hsp60. The aggravation of oxides and the inactivation of Hsp60 provide favorable pathways for impeding the heat shock-induced self-repair mechanism of cancer cells, which strengthens AuTPP@TA-Fe NPs mediated MPTT.


Subject(s)
Gold , Oxidation-Reduction , Photothermal Therapy , Humans , Gold/chemistry , Porphyrins/chemistry , Porphyrins/radiation effects , Porphyrins/pharmacology , Animals , Chaperonin 60/chemistry , Chaperonin 60/metabolism , Mice , Cell Line, Tumor , Metalloporphyrins/chemistry , Metalloporphyrins/pharmacology , Neoplasms/therapy , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use
4.
Mikrochim Acta ; 191(7): 364, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38831034

ABSTRACT

CdIn2S4 and zinc tetrakis(4-carboxyphenyl)porphyrin (ZnTCPP) were synthesized by hydrothermal method, and an organic dye-sensitized inorganic semiconductor ZnTCPP/CdIn2S4 type II heterojunction was constructed on a fluorine-doped tin oxide (FTO) substrate electrode. A sandwich immunostructure for signal-attenuation photoelectrochemical (PEC) detection of cardiac troponin I (cTnI) was constructed using the ZnTCPP/CdIn2S4/FTO photoanode and a horseradish peroxidase (HRP)-ZnFe2O4-Ab2-bovine serum albumin (BSA) immunolabeling complex. The bioenzyme HRP and the HRP-like nanozyme ZnFe2O4 can co-catalyze the oxidation of 4-chloro-1-naphthol (4-CN) by H2O2 to produce an insoluble precipitate on the photoanode, thus notably reducing the anodic photocurrent for quantitative determination of cTnI. Under the optimal conditions, the photocurrent at 0 V vs. SCE in 0.1 M phosphate buffer solution (pH 7.40) containing 0.1 M ascorbic acid was linear with the logarithm of cTnI concentration from 500 fg mL-1 to 50.0 ng mL-1, and the limit of detection (LOD, S/N = 3) is 0.15 pg mL-1. Spiked recoveries were 95.1% ~ 104% for assay of cTnI in human serum samples.


Subject(s)
Electrochemical Techniques , Limit of Detection , Tin Compounds , Troponin I , Troponin I/blood , Humans , Electrochemical Techniques/methods , Immunoassay/methods , Tin Compounds/chemistry , Catalysis , Horseradish Peroxidase/chemistry , Naphthols/chemistry , Metalloporphyrins/chemistry , Electrodes , Hydrogen Peroxide/chemistry , Serum Albumin, Bovine/chemistry , Photochemical Processes , Animals , Biosensing Techniques/methods , Semiconductors , Cattle , Sulfides/chemistry , Porphyrins/chemistry
5.
ACS Sens ; 9(6): 3037-3047, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38773722

ABSTRACT

Nitric oxide (NO) is an inorganic signaling molecule that plays a crucial role in the regulation of numerous physiological functions. An oxidation product of the cytoprotective NO is cytotoxic peroxynitrite (ONOO-). In biological systems, the concentrations of NO and ONOO- are typically transient, ranging from nanomolar to micromolar, and these increases are normally followed by a swift return to their basal levels due to their short life spans. To understand the vital physiological role of NO and ONOO- in vitro and in vivo, sensitive and selective methods are necessary for direct and continuous NO and ONOO- measurements in real time. Because electrochemical methods can be adjusted for selectivity, sensitivity, and biocompatibility in demanding biological environments, they are suitable for real-time monitoring of NO and ONOO- release. Metalloporphyrin nanosensors, described here, have been designed to measure the concentration of NO and ONOO- produced by a single human neural progenitor cell (hNPC) in real time. These nanosensors (200-300 nm in diameter) can be positioned accurately in the proximity of 4-5 ± 1 µm from an hNPC membrane. The response time of the sensors is better than a millisecond, while detection limits for NO and ONOO- are 1 × 10-9 and 3 × 10-9 mol/L, respectively, with a linear concentration response of up to about 1 µM. The application of these metalloporphyrin nanosensors for the efficient measurement of the concentrations of NO and ONOO- in hNPCs is demonstrated, providing an opportunity to observe in real time the molecular changes of the two signaling molecules in situ.


Subject(s)
Metalloporphyrins , Neural Stem Cells , Nitric Oxide , Peroxynitrous Acid , Peroxynitrous Acid/analysis , Humans , Nitric Oxide/analysis , Neural Stem Cells/cytology , Metalloporphyrins/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Nanotechnology/methods
6.
Talanta ; 276: 126253, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759359

ABSTRACT

A novel zeolitic imidazolate framework-encapsulated zinc porphyrin (ZnTCPP@ZIF-90) photoresponsive nanozyme is proposed for the colorimetric/fluorescent dual-mode visual sensing of glyphosate (Gly). ZnTCPP@ZIF-90 exhibits photoresponsive oxidase-like activity and fluorescence quenching behavior. Meanwhile, the outer ZIF-90 layer can be selectively destroyed by Gly, causing the release of free ZnTCPP, resulting in the enhanced enzyme-like activity as well as fluorescence emission. The constructed ZnTCPP@ZIF-90 was successfully used for the colorimetric/fluorescent dual-mode detection of Gly. Additionally, the colorimetric and fluorescent images information captured by the smartphone were converted to color intensity (HSV/RGB values), with limits of detection of 0.27 µg/mL and 0.19 µg/mL, respectively. The proposed dual-mode sensor exhibits excellent selectivity and reliability for detecting Gly, and can be successfully applied to the analysis of real samples such as tap water, lake water, and fruit washing water. The current research efforts are expected to provide new perspectives for designing highly active photoresponsive nanozymes and their stimuli-responsive sensing systems, paving the way for their applications in portable dual-mode chemical sensing and environmental monitoring.


Subject(s)
Colorimetry , Glycine , Glyphosate , Imidazoles , Metal-Organic Frameworks , Metalloporphyrins , Zeolites , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Colorimetry/methods , Zeolites/chemistry , Imidazoles/chemistry , Metalloporphyrins/chemistry , Metal-Organic Frameworks/chemistry , Water Pollutants, Chemical/analysis , Spectrometry, Fluorescence/methods , Photochemical Processes , Limit of Detection , Herbicides/analysis , Fluorescence , Smartphone
7.
Water Res ; 258: 121803, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38795548

ABSTRACT

Nano zero-valent metals (nZVMs) have been extensively utilized for decades in the reductive remediation of groundwater contaminated with chlorinated organic compounds, owing to their robust reducing capabilities, simple application, and cost-effectiveness. Nevertheless, there remains a dearth of information regarding the efficient reductive defluorination of linear or branched per- and polyfluoroalkyl substances (PFASs) using nZVMs as reductants, largely due to the absence of appropriate catalysts. In this work, various soluble porphyrin ligands [[meso­tetra(4-carboxyphenyl)porphyrinato]cobalt(III)]Cl·7H2O (CoTCPP), [[meso­tetra(4-sulfonatophenyl) porphyrinato]cobalt(III)]·9H2O (CoTPPS), and [[meso­tetra(4-N-methylpyridyl) porphyrinato]cobalt(II)](I)4·4H2O (CoTMpyP) have been explored for defluorination of PFASs in the presence of the nZn0 as reductant. Among these, the cationic CoTMpyP showed best defluorination efficiencies for br-perfluorooctane sulfonate (PFOS) (94%), br-perfluorooctanoic acid (PFOA) (89%), and 3,7-Perfluorodecanoic acid (PFDA) (60%) after 1 day at 70 °C. The defluorination rate constant of this system (CoTMpyP-nZn0) is 88-164 times higher than the VB12-nZn0 system for the investigated br-PFASs. The CoTMpyP-nZn0 also performed effectively at room temperature (55% for br-PFOS, 55% for br-PFOA and 25% for 3,7-PFDA after 1day), demonstrating the great potential of in-situ application. The effect of various solubilizing substituents, electron transfer flow and corresponding PFASs defluorination pathways in the CoTMpyP-nZn0 system were investigated by both experiments and density functional theory (DFT) calculations. SYNOPSIS: Due to the unavailability of active catalysts, available information on reductive remediation of PFAS by zero-valent metals (ZVMs) is still inadequate. This study explores the effective defluorination of various branched PFASs using soluble porphyrin-ZVM systems and offers a systematic approach for designing the next generation of catalysts for PFAS remediation.


Subject(s)
Zinc , Zinc/chemistry , Porphyrins/chemistry , Fluorocarbons/chemistry , Metalloporphyrins/chemistry , Water Pollutants, Chemical/chemistry , Oxidation-Reduction
8.
ACS Appl Bio Mater ; 7(4): 2346-2353, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38556982

ABSTRACT

In this study, we designed and synthesized metalloporphyrin derivatives (with Ni and Zn) specifically intended for the fluorescence detection of nicotine in aqueous solutions. Our results showcased a notable selectivity for nicotine over other naturally occurring food toxins, exhibiting an exceptional sensitivity with a limit of detection as low as 7.2 nM. Through mechanistic investigations (1H NMR, FT-IR, etc.), we elucidated the binding mechanism, revealing the specific interaction between the pyridine ring of nicotine and the metal center, while the N atom pyrrolidine unit engaged in the hydrogen bonding with the side chain of the porphyrin ring. Notably, we observed that the nature of the metal center dictated the extent of interaction with nicotine; particularly, Zn-porphyrin demonstrated a superior response compared to Ni-porphyrin. Furthermore, we performed the quantitative estimation of nicotine in commercially available tobacco products. Additionally, we conducted the antibacterial (Staphylococcus aureus and Escherichia coli) and antifungal (Candida albicans) activities of the porphyrin derivatives.


Subject(s)
Metalloporphyrins , Porphyrins , Metalloporphyrins/pharmacology , Nicotine/pharmacology , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metals , Porphyrins/pharmacology , Porphyrins/chemistry , Escherichia coli
9.
ACS Nano ; 18(19): 12168-12186, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38687976

ABSTRACT

Assessment of hypoxia, nutrients, metabolite gradients, and other hallmarks of the tumor microenvironment within 3D multicellular spheroid and organoid models represents a challenging analytical task. Here, we report red/near-infrared (NIR) emitting cell staining with O2-sensitive nanoparticles, which enable measurements of spheroid oxygenation on a conventional fluorescence microscope. Nanosensor probes, termed "MMIR" (multimodal infrared), incorporate an NIR O2-sensitive metalloporphyrin (PtTPTBPF) and deep red aza-BODIPY reference dyes within a biocompatible polymer shell, allowing for oxygen gradient quantification via fluorescence ratio and phosphorescence lifetime readouts. We optimized staining techniques and evaluated the nanosensor probe characteristics and cytotoxicity. Subsequently, we applied nanosensors to the live spheroid models based on HCT116, DPSCs, and SKOV3 cells, at rest, and treated with drugs affecting cell respiration. We found that the growth medium viscosity, spheroid size, and formation method influenced spheroid oxygenation. Some spheroids produced from HCT116 and dental pulp stem cells exhibited "inverted" oxygenation gradients, with higher core oxygen levels than the periphery. This contrasted with the frequently encountered "normal" gradient of hypoxia toward the core caused by diffusion. Further microscopy analysis of spheroids with an "inverted" gradient demonstrated metabolic stratification of cells within spheroids: thus, autofluorescence FLIM of NAD(P)H indicated the formation of a glycolytic core and localization of OxPhos-active cells at the periphery. Collectively, we demonstrate a strong potential of NIR-emitting ratiometric nanosensors for advanced microscopy studies targeting live and quantitative real-time monitoring of cell metabolism and hypoxia in complex 3D tissue models.


Subject(s)
Nanoparticles , Oxygen , Spheroids, Cellular , Humans , Spheroids, Cellular/metabolism , Spheroids, Cellular/drug effects , Oxygen/metabolism , Oxygen/chemistry , Nanoparticles/chemistry , Microscopy, Fluorescence , Infrared Rays , Metalloporphyrins/chemistry , Metalloporphyrins/pharmacology
10.
J Phys Chem B ; 128(16): 3807-3823, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38605466

ABSTRACT

The origin of highly efficient asymmetric aminohydroxylation of styrene catalyzed by engineered cytochrome c is investigated by the developed Atom-Bond Electronegativity Equalization Method polarizable force field (ABEEM PFF), which is a combined outcome of electronic and steric effects. Model molecules were used to establish the charge parameters of the ABEEM PFF, for which the bond-stretching and angle-bending parameters were obtained by using a combination of modified Seminario and scan methods. The interactions between carbon-radical Fe-porphyrin (FePP) and waters are simulated by molecular dynamics, which shows a clear preference for the pre-R over the pre-S. This preference is attributed to the hydrogen-bond between the mutated 100S and 101P residues as well as van der Waals interactions, enforcing a specific conformation of the carbon-radical FePP complex within the binding pocket. Meanwhile, the hydrogen-bond between water and the nitrogen atom in the active intermediate dictates the stereochemical outcome. Quantum mechanics/molecular mechanics (QM/MM (ABEEM PFF)) and free-energy perturbation calculations elucidate that the 3RTS is characterized by sandwich-like structure among adjacent amino acid residues, which exhibits greater stability than crowed arrangement in 3STS and enables the R enantiomer to form more favorably. Thus, this study provides mechanistic insight into the catalytic reaction of hemoproteins.


Subject(s)
Cytochromes c , Molecular Dynamics Simulation , Quantum Theory , Stereoisomerism , Cytochromes c/chemistry , Cytochromes c/metabolism , Hydrolysis , Carbon/chemistry , Protein Engineering , Hydrogen Bonding , Biocatalysis , Metalloporphyrins/chemistry , Metalloporphyrins/metabolism
11.
Anal Chim Acta ; 1304: 342524, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38637033

ABSTRACT

The inappropriate use of antibiotics undoubtedly poses a potential threat to public health, creating an increasing need to develop highly sensitive tests. In this study, we designed a new type of porphyrin metal-organic frameworks (Fe TCPP(Zn) MOFs) with homogeneous catalytic sites. The ferric-based metal ligands of Fe TCPP(Zn) MOFs acted as co-reaction accelerators, which effectively improved the conversion efficiency of H2O2 on the surface of MOFs, then increased the concentration of •OH surrounding porphyrin molecules to achieve self-enhanced electrochemiluminescence (ECL). Based on this, an aptasensor for the specific detection of kanamycin (KAN) in food and environmental water samples was constructed in combination with resonance energy transform (RET), in which Fe TCPP(Zn) MOFs were used as luminescence donor and AuNPs were used as acceptor. Under the best conditions, there was a good linear relationship between the ECL intensity and the logarithm of KAN concentration with a detection limit of 0.28 fM in the range of 1.0 × 10-7-1.0 × 10-13 M, demonstrating satisfactory selectivity and stability. At the same time, the complexity of the detection environment was reduced, which further realized the reliable analysis of KAN in milk, honey and pond water. Overall, this innovative self-enhanced ECL strategy provides a novel approach for constructing efficient ECL systems in MOFs, and also extends the application of MOFs to the analysis and detection of trace antibiotics in food and the environment.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Metalloporphyrins , Kanamycin/analysis , Gold , Catalytic Domain , Hydrogen Peroxide , Luminescent Measurements , Anti-Bacterial Agents/analysis , Electrochemical Techniques , Water , Limit of Detection
12.
Environ Res ; 251(Pt 2): 118704, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38493852

ABSTRACT

Dye-sensitized solar cells, represent the alternate technology in solar research due to their cost effective, easy fabrication processes, higher efficiencies, and design flexibility. In this research, dual donor group modified zinc porphyrin dyes, have been synthesized for DSSCs. The complexes of zinc porphyrin functioned as acceptor or attaching groups within each mesophenyl ring and carboxylic acid. These complexes exhibited diverse alkyl substituents and sizable electron-donating substituents, contributing to their varied chemical structures and potential applications. The dual Donor-π bridge -Acceptor group sensitizers, Zn[5,15-diphenylcarbazole-10,20-(4-carboxyphenyl) Porphyrin] (KSR-1) and Zn [5,15-thiadiazole-10,20-(4-carboxyphenyl) Porphyrin] (KSR-2) have been synthesized and adopted for DSSCs implementation. The molar absorption coefficients (ε) of KSR-2 and KSR-1 Soret bands were 0.56 x 105 mol/L/cm and 0.47 x 105 mol/L/cm, respectively. The Q bands of the KSR-1 and KSR-2 dyes were 1.10 x 105 mol/L/cm and 1.0 x 105 mol/L/cm, respectively and the molar absorption coefficient of the KSR-1 dye was greater when compared to the KSR-2 dye. The molar absorption coefficient of 0.71 x 105 mol/L/cm was visible in the KSR -1 Q-band. DFT calculations and the electrochemical characteristics of the KSR-1 and KSR-2 dyes have been studied and discussed. The exploration involved in investigating the photophysical properties and photovoltaic performance which were affected by varying the length and number of the donor entities. The wall-plug efficiency of the KSR-1 based solar panel was Voc = 0.68 V, Jsc = 8.94 mA/m2, FF = 56 and Efficiency (µ) = 3.44%. The wall-plug efficiency of the KSR-2 based solar panel was Voc = 0.63 V, Jsc = 5.42 mA/m2, FF = 53 and Efficiency (µ) = 1.83%.


Subject(s)
Coloring Agents , Metalloporphyrins , Solar Energy , Coloring Agents/chemistry , Metalloporphyrins/chemistry , Electric Power Supplies , Zinc/chemistry
13.
Food Chem ; 447: 138960, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38461727

ABSTRACT

Iron Chlorin e6 (ICE6), a star plant growth regulator (PGR) with independent intellectual property rights in China, has demonstrated its efficacy through numerous field experiments. We innovatively employed salting-out assisted liquid-liquid extraction (SALLE) with HPLC-UV/Vis to detect ICE6 residues in water, soil, garlic seeds, and sprouts. Using methanol and a C18 column with acetonitrile: 0.1% phosphoric acid mobile phase (55:45, v:v), we achieved a low LOQ of 0.43 to 0.77 µg kg-1. Calibration curves showed strong linearity (R2 > 0.992) within 0.01 to 5.00 mg kg-1. Inter-day and intra-day recoveries (0.05 to 0.50 mg kg-1) demonstrated high sensitivity and accuracy (recoveries: 75.36% to 107.86%; RSD: 1.03% to 8.78%). Additionally, density functional theory (DFT) analysis aligned UV/Vis spectra and indicated ICE6's first-order degradation (2.03 to 4.94 days) under various environmental conditions, mainly driven by abiotic degradation. This study enhances understanding of ICE6's environmental behavior, aids in risk assessment, and guides responsible use in agroecosystems.


Subject(s)
Garlic , Metalloporphyrins , Chromatography, High Pressure Liquid/methods , Hydrolysis , Soil , Liquid-Liquid Extraction/methods
14.
J Inorg Biochem ; 254: 112516, 2024 05.
Article in English | MEDLINE | ID: mdl-38471287

ABSTRACT

Tunichlorin, the naturally occurring chlorophyll cofactor containing Ni(II) ion, sets up a golden standard for designing the electrocatalysts for hydrogen evolution reaction (HER) via ß-peripheral modification. Besides the fine-tuning of the porphyrin ß-periphery such as adjusting the aromatics (the saturated level of tetrapyrrole) or installing hydroxyl group (hydrogen bond network) to enhance the catalytic HER efficiency, here we report that ß-fluorination of porphyrin is also an important approach to increase the reactivity of Ni(II) center. Benefiting the previously reported derivatization of ß-fluorinated porpholactones, we constructed a ß-fluorinated tunichlorin mimic (6). Compared with the non-fluorinated analogs (1, 3, and 5), we found that 2, 4, and 6 exhibit significant electrocatalytic HER reactivity acceleration (in terms of turnover frequencies, TOF, s-1) of ca. 37, 170, 133-fold, respectively. Mechanism studies suggested that ß-fluorination negatively shifts the metal complexes' reduction potentials and accelerates the electron transfer process, both contributing to the boosting of HER reaction. Notably, 6 showed an 890-fold increase of TOFs than 1, demonstrating the combining advantages of the of fluorination, hydrogenation, and hydroxylation at porphyrin ß-periphery.


Subject(s)
Metalloporphyrins , Porphyrins , Porphyrins/chemistry , Hydrogen/chemistry , Nickel/chemistry , Halogenation , Catalysis
15.
Proc Natl Acad Sci U S A ; 121(9): e2314620121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38381784

ABSTRACT

Photon-controlled pyroptosis activation (PhotoPyro) is a promising technique for cancer immunotherapy due to its noninvasive nature, precise control, and ease of operation. Here, we report that biomolecular photoredox catalysis in cells might be an important mechanism underlying PhotoPyro. Our findings reveal that the photocatalyst lutetium texaphyrin (MLu) facilitates rapid and direct photoredox oxidation of nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, and various amino acids, thereby triggering pyroptosis through the caspase 3/GSDME pathway. This mechanism is distinct from the well-established role of MLu as a photodynamic therapy sensitizer in cells. Two analogs of MLu, bearing different coordinated central metal cations, were also explored as controls. The first control, gadolinium texaphyrin (MGd), is a weak photocatalyst but generates reactive oxygen species (ROS) efficiently. The second control, manganese texaphyrin (MMn), is ineffective as both a photocatalyst and a ROS generator. Neither MGd nor MMn was found to trigger pyroptosis under the conditions where MLu was active. Even in the presence of a ROS scavenger, treating MDA-MB-231 cells with MLu at concentrations as low as 50 nM still allows for pyroptosis photo-activation. The present findings highlight how biomolecular photoredox catalysis could contribute to pyroptosis activation by mechanisms largely independent of ROS.


Subject(s)
Metalloporphyrins , Pyroptosis , Reactive Oxygen Species/metabolism
16.
Biosens Bioelectron ; 251: 116080, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38324972

ABSTRACT

Highly sensitive ratiometric biosensors have attracted much attention in biomarker detection, but most rely on single-mode signals, which can affect accuracy. The development of new principles and methods for dual-mode ratiometric sensing can enhance detection accuracy. Herein, the zinc(II) meso-tetra(4-carboxyphenyl) porphyrin/MXene (ZnTCPP/Ti3C2Tx) hybrids with phosphate-induced stimuli-responsive behavior are used to develop a novel dual-mode fluorescent/electrochemiluminescent (FL/ECL) ratiometric biosensor. The composites exhibit FL quenching and enhanced ECL behavior involving dissolved O2. The FL quenching of ZnTCPP/Ti3C2Tx is caused by energy transfer (EnT) and photo-induced electron transfer (PET) from ZnTCPP to Ti3C2Tx. While the introduction of MXene compensates for the inadequate conductivity of ZnTCPP, facilitating electron transfer, which further makes the surface ZnTCPP more capable of activating O2 to produce singlet oxygen (1O2), thereby generating enhanced cathodic ECL. Furthermore, phosphate ions (PO43-) can interact with the Ti sites of ZnTCPP/Ti3C2Tx, leading to competition for coordination with ZnTCPP, which in turn detaches ZnTCPP, resulting in enhanced FL and reduced ECL. On the basis of the phosphate-induced stimuli-responsive behavior, the dual-mode FL/ECL ratiometric biosensing of alkaline phosphatase (ALP) is achieved through ALP-catalyzed production of PO43- cascade effect with ZnTCPP/Ti3C2Tx. The linear detection range for ALP is 0.1-50 mU/mL, with a detection limit as low as 0.0083 mU/mL. This proposed ZnTCPP/Ti3C2Tx composites with stimuli-responsive behavior is expected to provide new ideas for the development of high-sensitivity dual-mode ratiometric biosensors with promising applications in the precise detection of important biomarkers.


Subject(s)
Biosensing Techniques , Metalloporphyrins , Nitrites , Phosphates , Transition Elements , Biosensing Techniques/methods , Coloring Agents
17.
Biomacromolecules ; 25(3): 1671-1681, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38354397

ABSTRACT

Nanoparticles (NPs) containing light-responsive polymers and imaging agents show great promise for controlled drug delivery. However, most light-responsive NPs rely on short-wavelength excitation, resulting in poor tissue penetration and potential cytotoxicity. Moreover, excessively sensitive NPs may prematurely release drugs during storage and circulation, diminishing their efficacy and causing off-target toxicity. Herein, we report visible-light-responsive NPs composed of an amphiphilic block copolymer containing responsive 4-acrylamide benzenesulfonyl azide (ABSA) and hydrophilic N,N'-dimethylacrylamide (DMA) units. The polymer pDMA-ABSA was loaded with the chemotherapy drug dasatinib and zinc tetraphenylporphyrin (ZnTPP). ZnTPP acted as an imaging reagent and a photosensitizer to reduce ABSA upon visible light irradiation, converting hydrophobic units to hydrophilic units and disrupting NPs to trigger drug release. These NPs enabled real-time fluorescence imaging in cells and exhibited synergistic chemophotodynamic therapy against multiple cancer cell lines. Our light-responsive NP platform holds great promise for controlled drug delivery and cancer theranostics, circumventing the limitations of traditional photosensitive nanosystems.


Subject(s)
Drug Carriers , Metalloporphyrins , Nanoparticles , Drug Carriers/chemistry , Azides , Polymers/chemistry , Light , Nanoparticles/chemistry , Drug Liberation
18.
J Chromatogr A ; 1715: 464631, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38184989

ABSTRACT

This study investigated the removal of Reactive Blue 21 (RB 21) dye from aqueous solutions by adsorption, evaluating the waste fly ash (FA). The effects of the parameters, such as initial dye concentration (100-750 mg/L), initial pH (2.0-8.0), adsorbent dose (1.0-4.0 g/L), and temperature (298-323 K) on the adsorption process were investigated. The optimum initial pH value was 2.0 for the highest RB21 dye removal (75.2 mg/g). At optimized conditions (pH 2.0, an adsorbent dosage of 1.0 g/L, a dye concentration of 750 mg/L, and an equilibrium time of 72 h), the highest adsorption capacity was found to be 105.2 mg/g. Moreover, the results of the kinetic studies fitted the pseudo-second-order kinetic model. Equilibrium data were best represented by the Langmuir isotherm model, with a maximum monolayer adsorption capacity of 103.41 mg/g at 323 K. ΔGads0 values were negative and varied from 11.64 to 9.50 kJ/mol in the temperature range of 298-323 K, the values of enthalpy (ΔHadso) and entropy (ΔSadso) of thermodynamics parameters were calculated as 37.62 kJ/mol and 86.67 J/mol K, respectively, indicating that this process was endothermic. Furthermore, the adsorbent costs for powdered activated carbon (PAC) and FA to remove 1 kg of RB 21 dye from aqueous solutions are calculated as 2.52 U.S. $ and 0.34 U.S. $, respectively. It is seen that the cost of FA is approximately 7.4 times lower than PAC. The results showed that FA, a low-cost industrial waste, was promising for the adsorption of RB 21 from aqueous solutions.


Subject(s)
Metalloporphyrins , Water Pollutants, Chemical , Water Purification , Coal Ash , Kinetics , Water Purification/methods , Thermodynamics , Adsorption , Hydrogen-Ion Concentration
19.
J Med Chem ; 67(3): 2004-2018, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38241140

ABSTRACT

Antimicrobial photodynamic therapy (APDT) utilizes photosensitizers (PSs) that eradicate a broad spectrum of bacteria in the presence of light and molecular oxygen. On the other hand, some light sources such as ultraviolet (UVB and UVC) have poor penetration and high cytotoxicity, leading to undesired PDT of the PSs. Herein, we have synthesized conjugatable mesosubstituted porphyrins and extensively characterized them. Time-dependent density functional theory (TD-DFT) calculations revealed that metalloporphyrin EP (5) is a suitable candidate for further applications. Subsequently, the metalloporphyrin was conjugated with lignin-based zinc oxide nanocomposites (ZnOAL and ZnOKL) to develop hydrophilic nanoconjugates (ZnOAL@EP and ZnOKL@EP). Upon dual light (UV + green light) exposure, nanoconjugates showed enhanced singlet oxygen generation ability and also demonstrated pH responsiveness. These nanoconjugates displayed significantly improved APDT efficiency (4-7 fold increase) to treat bacterial infection under dual light irradiation.


Subject(s)
Anti-Infective Agents , Metalloporphyrins , Photochemotherapy , Nanoconjugates/chemistry , Metalloporphyrins/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry
20.
Adv Healthc Mater ; 13(12): e2303699, 2024 05.
Article in English | MEDLINE | ID: mdl-38277695

ABSTRACT

Artificial cells are engineered units with cell-like functions for different purposes including acting as supportive elements for mammalian cells. Artificial cells with minimal liver-like function are made of alginate and equipped with metalloporphyrins that mimic the enzyme activity of a member of the cytochrome P450 family namely CYP1A2. The artificial cells are employed to enhance the dealkylation activity within 3D bioprinted structures composed of HepG2 cells and these artificial cells. This enhancement is monitored through the conversion of resorufin ethyl ether to resorufin. HepG2 cell aggregates are 3D bioprinted using an alginate/gelatin methacryloyl ink, resulting in the successful proliferation of the HepG2 cells. The composite ink made of an alginate/gelatin liquid phase with an increasing amount of artificial cells is characterized. The CYP1A2-like activity of artificial cells is preserved over at least 35 days, where 6 nM resorufin is produced in 8 h. Composite inks made of artificial cells and HepG2 cell aggregates in a liquid phase are used for 3D bioprinting. The HepG2 cells proliferate over 35 days, and the structure has boosted CYP1A2 activity. The integration of artificial cells and their living counterparts into larger 3D semi-synthetic tissues is a step towards exploring bottom-up synthetic biology in tissue engineering.


Subject(s)
Bioprinting , Cytochrome P-450 CYP1A2 , Printing, Three-Dimensional , Humans , Hep G2 Cells , Bioprinting/methods , Cytochrome P-450 CYP1A2/metabolism , Alginates/chemistry , Gelatin/chemistry , Tissue Engineering/methods , Cell Proliferation/drug effects , Metalloporphyrins/chemistry , Metalloporphyrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...