Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.390
Filter
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 447-456, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970519

ABSTRACT

Ischemic stroke (IS) is a severe cerebrovascular disease that seriously endangers human health. Gut microbiota plays a key role as an intermediate mediator in bidirectional regulation between the brain and the intestine. In recent years, trimethylamine N-oxide (TMAO) as a gut microbiota metabolite has received widespread attention in cardiovascular diseases. Elevated levels of TMAO may increase the risk of IS by affecting IS risk factors such as atherosclerosis, atrial fibrillation, hypertension, and type 2 diabetes. TMAO exacerbates neurological damage in IS patients, increases the risk of IS recurrence, and is an independent predictor of post-stroke cognitive impairment (PSCI) in patients. Current research suggests that the mechanisms of TMAO action include endothelial dysfunction, promoting of foam cell formation, influence on cholesterol metabolism, and enhancement of platelet reactivity. Lowering plasma TMAO levels through the rational use of traditional Chinese medicine, dietary management, vitamins, and probiotics can prevent and treat IS.


Subject(s)
Gastrointestinal Microbiome , Ischemic Stroke , Methylamines , Methylamines/metabolism , Methylamines/blood , Humans , Gastrointestinal Microbiome/physiology , Ischemic Stroke/metabolism , Risk Factors
2.
Protein Sci ; 33(8): e5107, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989549

ABSTRACT

Interactions between proteins and osmolytes are ubiquitous within cells, assisting in response to environmental stresses. However, our understanding of protein-osmolyte interactions underlying desiccation tolerance is limited. Here, we employ solid-state NMR (ssNMR) to derive information about protein conformation and site-specific interactions between the model protein, SH3, and the osmolyte trimethylamine N-oxide (TMAO). The data show that SH3-TMAO interactions maintain key structured regions during desiccation and facilitate reversion to the protein's native state once desiccation stress is even slightly relieved. We identify 10 types of residues at 28 sites involved in the SH3-TMAO interactions. These sites comprise hydrophobic, positively charged, and aromatic amino acids located in SH3's hydrophobic core and surface clusters. TMAO locks both the hydrophobic core and surface clusters through its zwitterionic and trimethyl ends. This double locking is responsible for desiccation tolerance and differs from ideas based on exclusion, vitrification, and water replacement. ssNMR is a powerful tool for deepening our understanding of extremely weak protein-osmolyte interactions and providing insight into the evolutionary mechanism of environmental tolerance.


Subject(s)
Desiccation , Hydrophobic and Hydrophilic Interactions , Methylamines , Methylamines/chemistry , Nuclear Magnetic Resonance, Biomolecular , Models, Molecular , Protein Conformation
3.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000542

ABSTRACT

Stroke remains the second leading cause of mortality worldwide, and the third leading cause of death and morbidity combined, affecting more than 12 million people every year. Stroke pathophysiology results from complex interactions of several risk factors related to age, family history, gender, lifestyle, and the presence of cardiovascular and metabolic diseases. Despite all the evidence, it is not possible to fully prevent stroke onset. In recent years, there has been an exploration of innovative methodologies for metabolite analysis aimed at identifying novel stroke biomarkers. Utilizing Nuclear Magnetic Resonance (NMR) spectroscopy, we investigated small molecule variations in urine across different stages of stroke risk. The Framingham Stroke Risk Score was used in people over 63 years of age living in long-term care facilities (LTCFs) to calculate the probability of suffering a stroke: low stroke risk (LSR, control), moderate stroke risk (MSR), and high stroke risk (HSR). Univariate statistical analysis showed that urinary 4-hydroxyphenylacetate levels increased while glycolate levels decreased across the different stroke risk groups, from the LSR to the HSR groups. Trimethylamine N-oxide (TMAO) had average concentration values that were significantly higher in elderly people in the HSR group, while trigonelline levels were significantly lower in the MSR group. These metabolic markers can be used for early detection and to differentiate stages of stroke risk more efficiently.


Subject(s)
Biomarkers , Magnetic Resonance Spectroscopy , Stroke , Humans , Biomarkers/urine , Male , Stroke/urine , Stroke/metabolism , Female , Aged , Magnetic Resonance Spectroscopy/methods , Middle Aged , Risk Factors , Methylamines/urine , Phenylacetates/urine , Aged, 80 and over , Metabolomics/methods , Alkaloids
4.
Rapid Commun Mass Spectrom ; 38(18): e9862, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39005224

ABSTRACT

RATIONALE: The detection of organic nitrogen compounds in exhaled breath is expected to provide an early warning of diseases such as kidney disease. Detecting these trace disease markers in exhaled breath with complex composition and high moisture content is a challenge. Surface ionization (SI) shows a highly selective ionization of organic nitrogen compounds, and it is a good candidate for breath analysis combined with ion mobility spectrometry (IMS). METHODS: A stepwise SI method of low-temperature adsorption/high-temperature ionization was proposed, and trimethylamine (TMA) was detected when combined with an ion mobility spectrometer. TMA at different concentrations and humidity levels and spiked in human breath was detected to evaluate the method's properties. RESULTS: TMA with concentrations from 2 to 200 ppb was detected. The peak intensity of the TMA characteristic ions was linearly related to the "e" exponent of the concentration with a curve fit of 0.996. A standard deviation of less than 0.306% was obtained with 10 replicate analyses of 10 ppb TMA. The signal intensity difference between dry and wet (relative humidity > 93%) TMA samples is only 2.7%, and the recovery rate of the sample was 106.819%. CONCLUSIONS: SI-IMS based on the stepwise SI method has the advantages of low ionization temperature, high detection sensitivity, strong resistance to humidity interference, and good repeatability. It is a promising method for detecting organic nitrogen compounds in exhaled breath.


Subject(s)
Breath Tests , Ion Mobility Spectrometry , Methylamines , Ion Mobility Spectrometry/methods , Humans , Breath Tests/methods , Methylamines/analysis , Humidity , Ions/analysis , Ions/chemistry
5.
Nutr J ; 23(1): 70, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982486

ABSTRACT

BACKGROUND: Trimethylamine-N-oxide (TMAO) is linked with obesity, while limited evidence on its relationship with body fat distribution. Herein, we investigated the associations between serum TMAO and longitudinal change of fat distribution in this prospective cohort study. METHODS: Data of 1964 participants (40-75y old) from Guangzhou Nutrition and Health Study (GNHS) during 2008-2014 was analyzed. Serum TMAO concentration was quantified by HPLC-MS/MS at baseline. The body composition was assessed by dual-energy X-ray absorptiometry at each 3-y follow-up. Fat distribution parameters were fat-to-lean mass ratio (FLR) and trunk-to-leg fat ratio (TLR). Fat distribution changes were derived from the coefficient of linear regression between their parameters and follow-up duration. RESULTS: After an average of 6.2-y follow-up, analysis of covariance (ANCOVA) and linear regression displayed women with higher serum TMAO level had greater increments in trunk FLR (mean ± SD: 1.47 ± 4.39, P-trend = 0.006) and TLR (mean ± SD: 0.06 ± 0.24, P-trend = 0.011). Meanwhile, for women in the highest TMAO tertile, linear mixed-effects model (LMEM) analysis demonstrated the annual estimated increments (95% CI) were 0.03 (95% CI: 0.003 - 0.06, P = 0.032) in trunk FLR and 1.28 (95% CI: -0.17 - 2.73, P = 0.083) in TLR, respectively. In men, there were no similar significant observations. Sensitivity analysis yielded consistent results. CONCLUSION: Serum TMAO displayed a more profound correlation with increment of FLR and TLR in middle-aged and older community-dwelling women in current study. More and further studies are still warranted in the future. TRIAL REGISTRATION: NCT03179657.


Subject(s)
Body Fat Distribution , Methylamines , Humans , Methylamines/blood , Female , Middle Aged , Male , Prospective Studies , Aged , Body Fat Distribution/methods , Adult , Absorptiometry, Photon/methods , Body Composition , Cohort Studies , China
6.
Zhonghua Gan Zang Bing Za Zhi ; 32(6): 484-488, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38964888

ABSTRACT

Portal vein thrombosis (PVT) is divided into cirrhotic and non-cirrhotic PVTs. The incidence rate of PVT varies greatly among different clinical stages of cirrhosis, with an overall incidence rate of about 13.92%, and the prevalence of cirrhotic PVT following splenectomy is as high as 60%. The pathogenesis of cirrhotic PVT is still unclear. However, the activation of Janus kinase/signal transduction and activator transcription signaling pathways, the rise in the expression of von Willebrand factor, and the gut microbiota along with its metabolite trimethylamine-N-oxide play an important role in the injury of vascular endothelial cells and the formation of PVT in cirrhosis. Therefore, these could be a new target for cirrhotic PVT prevention and treatment.


Subject(s)
Liver Cirrhosis , Portal Vein , Venous Thrombosis , Humans , Venous Thrombosis/etiology , Venous Thrombosis/prevention & control , Liver Cirrhosis/complications , Signal Transduction , Methylamines/metabolism , Gastrointestinal Microbiome , von Willebrand Factor/metabolism , Janus Kinases/metabolism
7.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892218

ABSTRACT

Liver transplant recipients (LTRs) have lower long-term survival rates compared with the general population. This underscores the necessity for developing biomarkers to assess post-transplantation mortality. Here we compared plasma trimethylamine-N-oxide (TMAO) levels with those in the general population, investigated its determinants, and interrogated its association with all-cause mortality in stable LTRs. Plasma TMAO was measured in 367 stable LTRs from the TransplantLines cohort (NCT03272841) and in 4837 participants from the population-based PREVEND cohort. TMAO levels were 35% higher in LTRs compared with PREVEND participants (4.3 vs. 3.2 µmol/L, p < 0.001). Specifically, TMAO was elevated in LTRs with metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and polycystic liver disease as underlying etiology (p < 0.001 for each). Among LTRs, TMAO levels were independently associated with eGFR (std. ß = -0.43, p < 0.001) and iron supplementation (std. ß = 0.13, p = 0.008), and were associated with mortality (29 deaths during 8.6 years follow-up; log-rank test p = 0.017; hazard ratio of highest vs. lowest tertile 4.14, p = 0.007). In conclusion, plasma TMAO is likely elevated in stable LTRs, with impaired eGFR and iron supplementation as potential contributory factors. Our preliminary findings raise the possibility that plasma TMAO could contribute to increased mortality risk in such patients, but this need to be validated through a series of rigorous and methodical studies.


Subject(s)
Biomarkers , Liver Transplantation , Methylamines , Adult , Aged , Female , Humans , Male , Middle Aged , Biomarkers/blood , Liver Transplantation/adverse effects , Methylamines/blood , Transplant Recipients
8.
Med Sci Monit ; 30: e944185, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38898640

ABSTRACT

BACKGROUND Sishen Pills (SSPs) are commonly used to treat diarrhea with kidney-yang deficiency syndrome. Trimethylamine-N-oxide (TMAO) is produced through the metabolism of gut microbiota and can participate in diarrhea in kidney-yang deficiency syndrome by mediating the "gut-kidney axis" to transmit inflammatory factors. This study combined network pharmacology with animal experiments to explore whether SSPs can treat diarrhea with kidney-yang deficiency syndrome by affecting the interaction between TMAO and gut microbiota. MATERIAL AND METHODS A mouse model of diarrhea with kidney-yang deficiency syndrome was constructed by using adenine and Folium sennae decoction, and SSP decoction was used for treatment. This study utilized network pharmacology to predict the potential mechanisms of SSPs in treating diarrhea with kidney-yang deficiency syndrome. 16S rRNA high-throughput sequencing was used to analyze gut mucosal microbial characteristics. ELISA was used to measure TMAO, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), interleukin-1ß (IL-1ß), and transforming growth factor-ß1 (TGF-ß1) levels. We performed Masson and immunohistochemical (Occludin, ZO-1) staining of kidney and small intestinal tissues. The fluorescein diacetate (FDA) hydrolysis spectrophotometric method was used to assess the microbial activity in contents of the small intestine. RESULTS Network pharmacology analysis revealed that SSPs can modulate 108 target points involved in the development of diarrhea, including IL-1ß and TNF. The experimental results demonstrated that SSP decoction significantly improved the general behavioral profiles of the mice, and also reduced TMAO, NLRP3, IL-1ß, and TGF-ß1 levels (P<0.05). Correlation analysis revealed significant positive correlations between TMAO concentrations and NLRP3, IL-1ß and TGF-ß1 levels (P<0.05). Pathological analysis revealed improvements in renal fibrosis and increased expression of the Occludin and ZO-1 proteins in intestinal tissue. In the SSP group, there was a significant increase in microbial activity (P<0.001). According to the sequencing results, the characteristic bacteria of the SSP and NR groups included Succinatimonas hippei, uncultured Solirubrobacter sp., and Clostridium tyrobutyricum. Furthermore, TMAO, NLRP3, IL-1ß, and TGF-ß1 were significantly positively correlated (P<0.05) with Succinatimonas hippei and Clostridium tyrobutyricum. By modulating Firmicutes, Succinatimonas hippei, and Clostridium tyrobutyricum, SSP decoction lowers TMAO levels to alleviate diarrhea with kidney-yang deficiency syndrome. CONCLUSIONS TMAO likely plays a significant role in the "gut-kidney axis" of diarrhea with kidney-yang deficiency syndrome. By adjusting gut microbiota to reduce the inflammatory response that is transmitted through the "gut-kidney axis" as a result of elevated TMAO levels, SSP decoction can alleviate diarrhea with kidney-yang deficiency syndrome.


Subject(s)
Diarrhea , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Inflammation , Kidney , Methylamines , Yang Deficiency , Animals , Yang Deficiency/metabolism , Yang Deficiency/drug therapy , Gastrointestinal Microbiome/drug effects , Mice , Diarrhea/drug therapy , Diarrhea/microbiology , Diarrhea/metabolism , Methylamines/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Inflammation/metabolism , Inflammation/drug therapy , Male , Disease Models, Animal , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-1beta/metabolism , RNA, Ribosomal, 16S/genetics , Mice, Inbred C57BL , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
9.
Nutrients ; 16(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892643

ABSTRACT

BACKGROUND: A gut-microbial metabolite, trimethylamine N-oxide (TMAO), has been associated with type 2 diabetes mellitus (T2DM). Few previous prospective studies have addressed associations between the changes in TMAO and T2DM incidence. METHODS: Data were derived from a longitudinal cohort conducted from 2019 to 2021 in rural areas of Fuxin County, Liaoning Province, China, and 1515 diabetes-free participants aged above 35 years were included. The concentrations of serum TMAO and its precursors were measured at two time points, namely in 2019 and 2021. TMAO and TMAO changes (ΔTMAO) were separately tested in a logistic regression model. For further examination, the odds ratios (ORs) for T2DM were calculated according to a combination of TMAO levels and ΔTMAO levels. RESULTS: During a median follow-up of 1.85 years, 81 incident cases of T2DM (5.35%) were identified. Baseline TMAO levels exhibited a nonlinear relationship, first decreasing and then increasing, and only at the highest quartile was it associated with the risk of T2DM. The OR for T2DM in the highest quartile of serum TMAO was 3.35 (95%CI: 1.55-7.26, p = 0.002), compared with the lowest quartile. As for its precursors, only choline level was associated with T2DM risk and the OR for T2DM in the Q3 and Q4 of serum choline was 3.37 (95%CI: 1.41-8.05, p = 0.006) and 4.72 (95%CI: 1.47-15.13, p = 0.009), respectively. When considering both baseline TMAO levels and ΔTMAO over time, participants with sustained high TMAO levels demonstrated a significantly increased risk of T2DM, with a multivariable-adjusted OR of 8.68 (95%CI: 1.97, 38.34). CONCLUSION: Both initial serum TMAO levels and long-term serum TMAO changes were collectively and significantly associated with the occurrence of subsequent T2DM events. Interventions aimed at normalizing TMAO levels, such as adopting a healthy dietary pattern, may be particularly beneficial in T2DM prevention.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Methylamines , Humans , Diabetes Mellitus, Type 2/prevention & control , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Methylamines/blood , Female , Male , Middle Aged , Longitudinal Studies , China/epidemiology , Adult , Risk Factors , Diet , Prospective Studies , Incidence , Aged , Choline/blood
10.
Front Cell Infect Microbiol ; 14: 1413787, 2024.
Article in English | MEDLINE | ID: mdl-38836053

ABSTRACT

Background: Trimethylamine-N-oxide (TMAO) is produced by hepatic flavin-containing monooxygenase 3 (FMO3) from trimethylamine (TMA). High TMAO level is a biomarker of cardiovascular diseases and metabolic disorders, and it also affects periodontitis through interactions with the gastrointestinal microbiome. While recent findings indicate that periodontitis may alter systemic TMAO levels, the specific mechanisms linking these changes and particular oral pathogens require further clarification. Methods: In this study, we established a C57BL/6J male mouse model by orally administering Porphyromonas gingivalis (P. gingivalis, Pg), Fusobacterium nucleatum (F. nucleatum, Fn), Streptococcus mutans (S. mutans, Sm) and PBS was used as a control. We conducted LC-MS/MS analysis to quantify the concentrations of TMAO and its precursors in the plasma and cecal contents of mice. The diversity and composition of the gut microbiome were analyzed using 16S rRNA sequencing. TMAO-related lipid metabolism and enzymes in the intestines and liver were assessed by qPCR and ELISA methods. We further explored the effect of Pg on FMO3 expression and lipid molecules in HepG2 cells by stimulating the cells with Pg-LPS in vitro. Results: The three oral pathogenic bacteria were orally administered to the mice for 5 weeks. The Pg group showed a marked increase in plasma TMAO, betaine, and creatinine levels, whereas no significant differences were observed in the gut TMAO level among the four groups. Further analysis showed similar diversity and composition in the gut microbiomes of both the Pg and Fn groups, which were different from the Sm and control groups. The profiles of TMA-TMAO pathway-related genera and gut enzymes were not significantly different among all groups. The Pg group showed significantly higher liver FMO3 levels and elevated lipid factors (IL-6, TG, TC, and NEFA) in contrast to the other groups. In vitro experiments confirmed that stimulation of HepG2 cells with Pg-LPS upregulated the expression of FMO3 and increased the lipid factors TC, TG, and IL-6. Conclusion: This study conclusively demonstrates that Pg, compared to Fn and Sm, plays a critical role in elevating plasma TMAO levels and significantly influences the TMA-TMAO pathway, primarily by modulating the expression of hepatic FMO3 and directly impacting hepatic lipid metabolism.


Subject(s)
Gastrointestinal Microbiome , Methylamines , Mice, Inbred C57BL , Oxygenases , Porphyromonas gingivalis , Animals , Male , Methylamines/metabolism , Methylamines/blood , Humans , Mice , Oxygenases/metabolism , Porphyromonas gingivalis/metabolism , Fusobacterium nucleatum/metabolism , Metabolic Networks and Pathways , Hep G2 Cells , Lipid Metabolism , Disease Models, Animal , Periodontitis/microbiology , Periodontitis/metabolism , Liver/metabolism , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry , Mouth/microbiology
11.
Nutr Diabetes ; 14(1): 42, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858392

ABSTRACT

BACKGROUND: Vitamin D was shown to directly exert a protective effect on diabetic kidney disease (DKD) in our previous study. However, whether it has an effect on perirenal adipose tissue (PRAT) or the intestinal flora and its metabolites (trimethylamine N-oxide, TMAO) is unclear. METHODS: DKD mice were received different concentrations of 1,25-(OH)2D3 for 2 weeks. Serum TNF-α levels and TMAO levels were detected. 16S rRNA sequencing was used to analyze gut microbiota. qPCR was used to detect the expression of TLR4, NF-Κb, PGC1α, and UCP-1 in kidney and adipose tissue. Histological changes in kidney and perirenal adipose tissue were observed using HE, PAS, Masson and oil red staining. Immunofluorescence and immunohistochemistry were used to detect the expression of VDR, PGC1α, podocin, and UCP-1 in kidney and adipose tissue. Electron microscopy was used to observe the pathological changes in the kidney. VDR knockout mice were constructed to observe the changes in the gut and adipose tissue, and immunofluorescence and immunohistochemistry were used to detect the expression of UCP-1 and collagen IV in the kidney. RESULTS: 1,25-(OH)2D3 could improve the dysbiosis of the intestinal flora of mice with DKD, increase the abundance of beneficial bacteria, decrease the abundance of harmful bacteria, reduce the pathological changes in the kidney, reduce fat infiltration, and downregulate the expression of TLR4 and NF-κB in kidneys. The serum TMAO concentration in mice with DKD was significantly higher than that of the control group, and was significantly positively correlated with the urine ACR. In addition, vitamin D stimulated the expression of the surface markers PGC1α, UCP-1 and VDR in the PRAT in DKD mice, and TMAO downregulated the expression of PRAT and renal VDR. CONCLUSIONS: The protective effect of 1,25-(OH)2D3 in DKD mice may affect the intestinal flora and its related metabolite TMAO on perirenal fat and kidneys.


Subject(s)
Diabetic Nephropathies , Gastrointestinal Microbiome , Kidney , Methylamines , Mice, Knockout , Receptors, Calcitriol , Animals , Gastrointestinal Microbiome/drug effects , Mice , Kidney/metabolism , Methylamines/metabolism , Methylamines/blood , Male , Receptors, Calcitriol/metabolism , Diabetic Nephropathies/metabolism , Adipose Tissue/metabolism , Mice, Inbred C57BL , Vitamin D/pharmacology , Calcitriol/pharmacology
12.
Nutrients ; 16(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931219

ABSTRACT

To investigate the changes in the intestinal flora in the Chinese elderly with cardiovascular disease (CVD) and its correlation with the metabolism of trimethylamine (TMA), the intestinal flora composition of elderly individuals with CVD and healthy elderly individuals was analyzed using 16S rRNA sequencing, the TMA levels in the feces of elderly were detected using headspace-gas chromatography (HS-GC), and four kinds of characterized TMA-producing intestinal bacteria in the elderly were quantified using real-time fluorescence quantitative polymerase chain reaction (qPCR). The results showed that Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, and Verrucomicrobia are the dominant microorganisms of the intestinal flora in the Chinese elderly. And there were significant differences in the intestinal bacteria composition between healthy elderly individuals and those with CVD, accompanied by a notable difference in the TMA content. The richness and diversity of the intestinal flora in the elderly with CVD were higher than those in the healthy elderly. Correlation analysis indicated that certain significantly different intestinal flora were associated with the TMA levels. Our findings showed a significant difference in TMA-producing intestinal flora between healthy elderly individuals and those with CVD. The TMA levels were found to be positively and significantly correlated with Klebsiella pneumoniae, suggesting that this bacterium is closely linked to the production of TMA in the elderly gut. This may have implications for the development and progression of CVD in the elderly population.


Subject(s)
Cardiovascular Diseases , Feces , Gastrointestinal Microbiome , Methylamines , Humans , Methylamines/metabolism , Aged , Male , Female , Cardiovascular Diseases/microbiology , Feces/microbiology , China , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Middle Aged , Asian People , Aged, 80 and over , East Asian People
13.
Nutrients ; 16(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931325

ABSTRACT

Branched-chain amino acids (BCAAs), comprising leucine (Leu), isoleucine (Ile), and valine (Val), are essential nutrients vital for protein synthesis and metabolic regulation via specialized signaling networks. Their association with cardiovascular diseases (CVDs) has become a focal point of scientific debate, with emerging evidence suggesting both beneficial and detrimental roles. This review aims to dissect the multifaceted relationship between BCAAs and cardiovascular health, exploring the molecular mechanisms and clinical implications. Elevated BCAA levels have also been linked to insulin resistance (IR), type 2 diabetes mellitus (T2DM), inflammation, and dyslipidemia, which are well-established risk factors for CVD. Central to these processes are key pathways such as mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-light-chain-enhancer of activate B cells (NF-κB)-mediated inflammation, and oxidative stress. Additionally, the interplay between BCAA metabolism and gut microbiota, particularly the production of metabolites like trimethylamine-N-oxide (TMAO), adds another layer of complexity. Contrarily, some studies propose that BCAAs may have cardioprotective effects under certain conditions, contributing to muscle maintenance and metabolic health. This review critically evaluates the evidence, addressing the biological basis and signal transduction mechanism, and also discusses the potential for BCAAs to act as biomarkers versus active mediators of cardiovascular pathology. By presenting a balanced analysis, this review seeks to clarify the contentious roles of BCAAs in CVD, providing a foundation for future research and therapeutic strategies required because of the rising prevalence, incidence, and total burden of CVDs.


Subject(s)
Amino Acids, Branched-Chain , Biomarkers , Cardiovascular Diseases , Humans , Amino Acids, Branched-Chain/metabolism , Cardiovascular Diseases/metabolism , Biomarkers/metabolism , Biomarkers/blood , Gastrointestinal Microbiome , Insulin Resistance , Signal Transduction , Diabetes Mellitus, Type 2/metabolism , Chronic Disease , Inflammation/metabolism , Oxidative Stress , TOR Serine-Threonine Kinases/metabolism , Methylamines
14.
Biomolecules ; 14(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38927134

ABSTRACT

A notable shift in understanding the human microbiome's influence on cardiovascular disease (CVD) is underway, although the causal association remains elusive. A systematic review and meta-analysis were conducted to synthesise current knowledge on microbial taxonomy and metabolite variations between healthy controls (HCs) and those with CVD. An extensive search encompassing three databases identified 67 relevant studies (2012-2023) covering CVD pathologies from 4707 reports. Metagenomic and metabolomic data, both qualitative and quantitative, were obtained. Analysis revealed substantial variability in microbial alpha and beta diversities. Moreover, specific changes in bacterial populations were shown, including increased Streptococcus and Proteobacteria and decreased Faecalibacterium in patients with CVD compared with HC. Additionally, elevated trimethylamine N-oxide levels were reported in CVD cases. Biochemical parameter analysis indicated increased fasting glucose and triglycerides and decreased total cholesterol and low- and high-density lipoprotein cholesterol levels in diseased individuals. This study revealed a significant relationship between certain bacterial species and CVD. Additionally, it has become clear that there are substantial inconsistencies in the methodologies employed and the reporting standards adhered to in various studies. Undoubtedly, standardising research methodologies and developing extensive guidelines for microbiome studies are crucial for advancing the field.


Subject(s)
Cardiovascular Diseases , Gastrointestinal Microbiome , Humans , Cardiovascular Diseases/microbiology , Cardiovascular Diseases/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Methylamines/metabolism , Methylamines/blood
15.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892223

ABSTRACT

The high incidence of atrial fibrillation (AFib) following cardiac surgery (postoperative atrial fibrillation, POAF) relies on specific surgical features. However, in the setting of POAF, the role of the microbiome in the modulation of cardiac fibrosis is still not clear. This study aimed to analyze the effect of the microbiome and its main metabolic product (trimethylamine-N-oxide, TMAO) in the fibrosis of myocardial tissue, to investigate its role in POAF. Patients undergoing elective cardiac surgery with cardiopulmonary bypass, central atrio-caval cannulation and no history of AFib, were included. A fragment of the right atrium was analyzed for qualitative and mRNA-quantitative evaluation. A preoperative blood sample was analyzed with enzyme-linked immunosorbent assay (ELISA). A total of 100 patients have been included, with POAF occurring in 38%. Histologically, a higher degree of fibrosis, angiogenesis and inflammation has been observed in POAF. Quantitative evaluation showed increased mRNA expression of collagen-1, collagen-3, fibronectin, and transforming growth factor beta (TGFb) in the POAF group. ELISA analysis showed higher levels of TMAO, lipopolysaccharide and TGFb in POAF, with similar levels of sP-selectin and zonulin. TMAO ≥ 61.8 ng/mL (odds ratio, OR 2.88 [1.35-6.16], p = 0.006), preoperative hemoglobin < 13.1 g/dL (OR 2.37 [1.07-5.24], p = 0.033) and impaired right ventricular function (OR 2.38 [1.17-4.83], p = 0.017) were independent predictors of POAF. Also, TMAO was significantly associated with POAF by means of increased fibrosis. Gut microbiome product TMAO is crucial for myocardial fibrosis, which is a key factor for POAF. Patients in preoperative sinus rhythm who will develop POAF have increased genetic expression of pro-fibrotic genes and enhanced fibrosis in histological staining. Elevated TMAO level (≥61.8 ng/mL) is an independent risk factor for POAF.


Subject(s)
Atrial Fibrillation , Fibrosis , Gastrointestinal Microbiome , Myocardium , Humans , Atrial Fibrillation/etiology , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Male , Female , Aged , Middle Aged , Myocardium/metabolism , Myocardium/pathology , Postoperative Complications/etiology , Postoperative Complications/microbiology , Methylamines/blood , Methylamines/metabolism
16.
J Biomol Struct Dyn ; 42(11): 5903-5911, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870351

ABSTRACT

Osmolytes are small organic molecules that are known to stabilize proteins and other biological macromolecules under various stressful conditions. They belong to various categories such as amino acids, methylamines, and polyols. These substances are commonly known as 'compatible solutes' because they do not disrupt cellular processes and help regulate the osmotic balance within cells. In the case of ribonuclease A (RNase A), which is prone to aggregation, the presence of osmolytes can help to maintain its structural stability and prevent unwanted interactions leading to protein aggregation. In this study, we investigated the interaction between RNase A and several osmolytes using molecular docking and molecular dynamics (MD) simulations. We performed molecular docking to predict the binding mode and binding affinity of each osmolyte with RNase A. MD simulations were then carried out to investigate the dynamics and stability of the RNase A-osmolyte complexes. Our results show that two osmolytes, glucosylglycerol and sucrose have favorable binding affinities with RNase A. The possible role of these osmolytes in stabilizing the RNase A and prevention of aggregation is also explored. By providing computational insights into the interaction between RNase A and osmolytes, the study offers valuable information that could aid in comprehending the mechanisms by which osmolytes protect proteins and help in designing therapeutics for protein-related disorders based on osmolytes. These findings may have significant implications for the development of novel strategies aimed at preventing protein misfolding and aggregation in diverse disease conditions.Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Ribonuclease, Pancreatic , Ribonuclease, Pancreatic/chemistry , Ribonuclease, Pancreatic/metabolism , Thermodynamics , Binding Sites , Methylamines/chemistry , Methylamines/metabolism , Hydrogen Bonding
17.
J Agric Food Chem ; 72(26): 14498-14520, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885200

ABSTRACT

Trimethylamine N-oxide (TMAO), a characteristic nonprotein nitrogen compound, is widely present in seafood, which exhibits osmoregulatory effects for marine organisms in vivo and plays an important role in aquaculture and aquatic product preservation. However, much attention has been focused on the negative effect of TMAO since it has recently emerged as a putative promoter of chronic diseases. To get full knowledge and maximize our ability to balance the positive and negative aspects of TMAO, in this review, we comprehensively discuss the TMAO in aquatic products from the aspects of physiological functions for marine organisms, flavor, quality, the conversion of precursors, the influences on human health, and the seafood ingredients interaction consideration. Though the circulating TMAO level is inevitably enhanced after seafood consumption, dietary seafood still exhibits beneficial health effects and may provide nutraceuticals to balance the possible adverse effects of TMAO.


Subject(s)
Methylamines , Seafood , Methylamines/analysis , Methylamines/metabolism , Humans , Animals , Seafood/analysis , Aquatic Organisms/chemistry , Fishes
18.
Bioorg Med Chem Lett ; 109: 129855, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38908766

ABSTRACT

The role of G-quadruplex (G4) in cellular processes can be investigated by the covalent modification of G4-DNA using alkylating reagents. Controllable alkylating reagents activated by external stimuli can react elegantly and selectively. Herein, we report a chemical activation system that can significantly boost the reaction rate of methylamine-protected vinyl-quinazolinone (VQ) derivative for the alkylation of G4-DNA. The two screened activators can transform low-reactive VQ-NHR' to highly reactive intermediates following the Michael addition mechanism. This approach expands the toolbox of activable G4 alkylating reagents.


Subject(s)
G-Quadruplexes , Methylamines , Quinazolinones , Alkylation , G-Quadruplexes/drug effects , Methylamines/chemistry , Methylamines/pharmacology , Methylamines/chemical synthesis , Quinazolinones/chemistry , Quinazolinones/pharmacology , Quinazolinones/chemical synthesis , Humans , Molecular Structure , DNA/chemistry , Vinyl Compounds/chemistry , Vinyl Compounds/pharmacology
19.
Nutrients ; 16(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38931160

ABSTRACT

Gut microbiota-derived uremic toxins (UT) accumulate in patients with chronic kidney disease (CKD). Dietary phosphorus and protein restriction are common in CKD treatment, but the relationship between dietary phosphorus, a key nutrient for the gut microbiota, and protein-derived UT is poorly studied. Thus, we explored the relationship between dietary phosphorus and serum UT in CKD rats. For this exploratory study, we used serum samples from a larger study on the effects of dietary phosphorus on intestinal phosphorus absorption in nephrectomized (Nx, n = 22) or sham-operated (sham, n = 18) male Sprague Dawley rats. Rats were randomized to diet treatment groups of low or high phosphorus (0.1% or 1.2% w/w, respectively) for 1 week, with serum trimethylamine oxide (TMAO), indoxyl sulfate (IS), and p-cresol sulfate (pCS) analyzed by LC-MS. Nx rats had significantly higher levels of serum TMAO, IS, and pCS compared to sham rats (all p < 0.0001). IS showed a significant interaction between diet and CKD status, where serum IS was higher with the high-phosphorus diet in both Nx and sham rats, but to a greater extent in the Nx rats. Serum TMAO (p = 0.24) and pCS (p = 0.34) were not affected by dietary phosphorus levels. High dietary phosphorus intake for 1 week results in higher serum IS in both Nx and sham rats. The results of this exploratory study indicate that reducing dietary phosphorus intake in CKD may have beneficial effects on UT accumulation.


Subject(s)
Dietary Proteins , Phosphorus, Dietary , Uremic Toxins , Animals , Male , Rats , Cresols/blood , Gastrointestinal Microbiome/drug effects , Indican/blood , Methylamines/blood , Nephrectomy , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/metabolism , Sulfuric Acid Esters/blood , Dietary Proteins/metabolism
20.
Sci Rep ; 14(1): 13851, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879701

ABSTRACT

Dapagliflozin (DAPA) demonstrates promise in the management of diabetic mellitus (DM) and cardiomyopathy. Trimethylamine N-oxide (TMAO) is synthesized by the gut microbiota through the metabolic conversion of choline and phosphatidylcholine. Ferroptosis may offer novel therapeutic avenues for the management of diabetes and myocardial ischemia-reperfusion injury (IRI). However, the precise mechanism underlying ferroptosis in cardiomyocytes and the specific role of TMAO generated by gut microbiota in the therapeutic approach for DM and myocardial IRI utilizing DAPA need to be further explored. Nine male SD rats with specific pathogen-free (SPF) status were randomly divided equally into the normal group, the DM + IRI (DIR) group, and the DAPA group. The diversity of the gut microbiota was analyzed using 16S rRNA gene sequencing. Additionally, the Wekell technique was employed to measure the levels of TMAO in the three groups. Application of network pharmacology to search for intersection targets of DAPA, DIR, and ferroptosis, and RT-PCR experimental verification. Ultimately, the overlapping targets that were acquired were subjected to molecular docking analysis with TMAO. The changes of Bacteroidetes and Firmicutes in the gut microbiota of DIR rats were most significantly affected by DAPA. Escherichia-Shigella and Prevotella_9 within the phylum Bacteroidetes could be identified as the primary effects of DAPA on DIR. Compared with the normal group, the TMAO content in the DIR group was significantly increased, while the TMAO content in the DAPA group was decreased compared to the DIR group. For the network pharmacology analysis, DAPA and DIR generated 43 intersecting target genes, and then further intersected with ferroptosis-related genes, resulting in 11 overlapping target genes. The mRNA expression of ALB, HMOX1, PPARG, CBS, LCN2, and PPARA decreased in the DIR group through reverse transcription polymerase chain reaction (RT-PCR) validation, while the opposite trend was observed in the DAPA group. The docking score between TMAO and DPP4 was - 5.44, and the MM-GBSA result of - 22.02 kcal/mol. It epitomizes the finest docking performance among all the target genes with the lowest score. DAPA could reduce the levels of metabolite TMAO produced by gut microbiota, thereby regulating related target genes to decrease ferroptosis in DIR cardiomyocytes.


Subject(s)
Benzhydryl Compounds , Ferroptosis , Gastrointestinal Microbiome , Glucosides , Methylamines , Myocardial Reperfusion Injury , Rats, Sprague-Dawley , Animals , Ferroptosis/drug effects , Gastrointestinal Microbiome/drug effects , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/microbiology , Benzhydryl Compounds/pharmacology , Methylamines/metabolism , Rats , Glucosides/pharmacology , Glucosides/metabolism , Molecular Docking Simulation , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Diabetes Mellitus, Experimental/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL