Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.399
1.
Front Cell Infect Microbiol ; 14: 1413787, 2024.
Article En | MEDLINE | ID: mdl-38836053

Background: Trimethylamine-N-oxide (TMAO) is produced by hepatic flavin-containing monooxygenase 3 (FMO3) from trimethylamine (TMA). High TMAO level is a biomarker of cardiovascular diseases and metabolic disorders, and it also affects periodontitis through interactions with the gastrointestinal microbiome. While recent findings indicate that periodontitis may alter systemic TMAO levels, the specific mechanisms linking these changes and particular oral pathogens require further clarification. Methods: In this study, we established a C57BL/6J male mouse model by orally administering Porphyromonas gingivalis (P. gingivalis, Pg), Fusobacterium nucleatum (F. nucleatum, Fn), Streptococcus mutans (S. mutans, Sm) and PBS was used as a control. We conducted LC-MS/MS analysis to quantify the concentrations of TMAO and its precursors in the plasma and cecal contents of mice. The diversity and composition of the gut microbiome were analyzed using 16S rRNA sequencing. TMAO-related lipid metabolism and enzymes in the intestines and liver were assessed by qPCR and ELISA methods. We further explored the effect of Pg on FMO3 expression and lipid molecules in HepG2 cells by stimulating the cells with Pg-LPS in vitro. Results: The three oral pathogenic bacteria were orally administered to the mice for 5 weeks. The Pg group showed a marked increase in plasma TMAO, betaine, and creatinine levels, whereas no significant differences were observed in the gut TMAO level among the four groups. Further analysis showed similar diversity and composition in the gut microbiomes of both the Pg and Fn groups, which were different from the Sm and control groups. The profiles of TMA-TMAO pathway-related genera and gut enzymes were not significantly different among all groups. The Pg group showed significantly higher liver FMO3 levels and elevated lipid factors (IL-6, TG, TC, and NEFA) in contrast to the other groups. In vitro experiments confirmed that stimulation of HepG2 cells with Pg-LPS upregulated the expression of FMO3 and increased the lipid factors TC, TG, and IL-6. Conclusion: This study conclusively demonstrates that Pg, compared to Fn and Sm, plays a critical role in elevating plasma TMAO levels and significantly influences the TMA-TMAO pathway, primarily by modulating the expression of hepatic FMO3 and directly impacting hepatic lipid metabolism.


Gastrointestinal Microbiome , Methylamines , Mice, Inbred C57BL , Oxygenases , Porphyromonas gingivalis , Animals , Male , Methylamines/metabolism , Methylamines/blood , Humans , Mice , Oxygenases/metabolism , Porphyromonas gingivalis/metabolism , Fusobacterium nucleatum/metabolism , Metabolic Networks and Pathways , Hep G2 Cells , Lipid Metabolism , Disease Models, Animal , Periodontitis/microbiology , Periodontitis/metabolism , Liver/metabolism , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry , Mouth/microbiology
3.
Int J Food Sci Nutr ; 75(4): 385-395, 2024 Jun.
Article En | MEDLINE | ID: mdl-38690724

There are conflicting animal experiments on the effect of trimethylamine N-oxide (TMAO), the dietary metabolite, on non-alcoholic fatty liver disease (NAFLD). This study aims to determine the effect of TMAO on NAFLD. A diet containing 0.3% TMAO was fed to farnesoid X receptor (Fxr)-null mice, a model of NAFLD, for 13 weeks. Fxr-null mice fed TMAO showed significant reductions in liver damage markers but not wild-type mice. Hepatic bile acid and cholesterol levels were significantly decreased, and triacylglycerol levels tended to decrease in TMAO-fed Fxr-null mice. Changes in mRNA levels of hepatic bile acid and cholesterol transporters and synthetic enzymes were observed, which could explain the decreased hepatic bile acid and cholesterol levels in Fxr-null mice given the TMAO diet but not in the wild-type mice. These results suggest that TMAO intake ameliorates liver damage in Fxr-null mice, further altering bile acid/cholesterol metabolism in an FXR-independent manner.


Bile Acids and Salts , Cholesterol , Liver , Methylamines , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Receptors, Cytoplasmic and Nuclear , Animals , Methylamines/metabolism , Bile Acids and Salts/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Cholesterol/blood , Cholesterol/metabolism , Liver/metabolism , Liver/drug effects , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Male , Triglycerides/metabolism , Mice, Inbred C57BL , Disease Models, Animal , RNA, Messenger/metabolism
4.
J Agric Food Chem ; 72(14): 7870-7881, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38562057

This study compares the inhibitory effects of orange peel polar fraction (OPP) and orange peel nonpolar fraction (OPNP) on trimethylamine (TMA) and trimethylamine N-oxide (TMAO) production in response to l-carnitine treatment in vivo and in vitro. Metabolomics is used to identify bioactive compounds. The research demonstrates that the OPP effectively regulates atherosclerosis-related markers, TMA and TMAO in plasma and urine, compared to the OPNP. Our investigation reveals that these inhibitory effects are independent of changes in gut microbiota composition. The effects are attributed to the modulation of cntA/B enzyme activity and FMO3 mRNA expression in vitro. Moreover, OPP exhibits stronger inhibitory effects on TMA production than OPNP, potentially due to its higher content of feruloylputrescine, which displays the highest inhibitory activity on the cntA/B enzyme and TMA production. These findings suggest that the OPP containing feruloylputrescine has the potential to alleviate cardiovascular diseases by modulating cntA/B and FMO3 enzymes without directly influencing gut microbiota composition.


Citrus sinensis , Coumaric Acids , Gastrointestinal Microbiome , Putrescine/analogs & derivatives , Citrus sinensis/metabolism , Methylamines/metabolism
5.
BMB Rep ; 57(5): 207-215, 2024 May.
Article En | MEDLINE | ID: mdl-38627947

The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions. [BMB Reports 2024; 57(5): 207-215].


Aging , Gastrointestinal Microbiome , Methylamines , Gastrointestinal Microbiome/physiology , Humans , Aging/metabolism , Methylamines/metabolism , Equol/metabolism , Coumarins/metabolism , Imidazoles/metabolism , Propionates/metabolism , Animals
6.
Phytomedicine ; 129: 155621, 2024 Jul.
Article En | MEDLINE | ID: mdl-38678950

BACKGROUND: The metabolites produced from choline contribute to atherosclerosis (AS) pathogenesis, and the gut microbiota is redundantly essential for this process. Indole-3-carbinol (I3C), found in cruciferous vegetables such as broccoli, cabbage, cauliflower and brussels sprouts, helps prevent hyperlipidemia, maintain the gut microbiota balance, and decrease the production of trimethylamine-N-oxide (TMAO) from choline in the diet. PURPOSE: The objective of this research was to investigate the impact of I3C on choline-induced AS and to further elucidate the underlying mechanism involved. METHODS: AS models of high-choline-induced ApoE-/- mice and TMAO-promoted foamy macrophages were established to observe the effect of I3C on the formation of atherosclerotic plaques and foam cells and changes in AS-related indicators (including blood biochemical indicators, TMA, TMAO, SRA, and SRB1), and integrated analyses of the microbiome and metabolome were used to reveal the mechanism of action of I3C. RESULTS: We found that I3C inhibited high-choline-induced atheroma formation (50-100 mg/kg/d, in vivo) and slightly improved the lipid profile (15 mg/kg/d, in vivo). Moreover, I3C suppressed lipid influx at a concentration of 40 µmol/L in vitro, enhanced the diversity of the gut microbiota and the abundance of the phylum Verrucomicrobia, and consequently modified the gut microbial metabolites at a dosage of 50 mg/kg/d in the mice. Associative analyses based on microbiome and metabolomics revealed that 1-methyladenosine was a key modulator of the protective effect of I3C against AS in high-choline-induced ApoE-/- mice. CONCLUSION: These findings demonstrate for the first time that I3C ameliorates AS progression through remodeling of the gut microbiome and metabolomics, which paves the way for the possible therapeutic use of this vegetable-derived natural compound and may reduce the clinical severity of AS-related cardiovascular diseases.


Atherosclerosis , Choline , Gastrointestinal Microbiome , Indoles , Animals , Gastrointestinal Microbiome/drug effects , Choline/pharmacology , Indoles/pharmacology , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Mice , Male , Apolipoproteins E , Methylamines/metabolism , Methylamines/pharmacology , Mice, Inbred C57BL , Metabolomics , Metabolome/drug effects , Plaque, Atherosclerotic/drug therapy
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167188, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657913

The incidence of gallbladder cholesterol stones (GCS) increases rapidly among people living in high-altitude hypoxic environments compared to those in normoxic areas. Upregulation of hepatic hypoxia inducible factor 1α (Hif-1α) plays a key role in the formation of GCS. High plasma trimethylamine-N-oxide (TMAO) levels are positively correlated with the occurrence of GCS. We hypothesized that HIF-1α may upregulate TMAO levels by promoting the transcription of flavin-containing monooxygenase 3 (Fmo3), which eventually leads to GCS formation. Our study shows that in women, high plasma total cholesterol and apolipoprotein B were positively correlated with cholecystolithiasis and hypoxia. Hif-1α binds to the Fmo3 promoter and promotes Fmo3 expression. Hypoxia and lithogenic diet induce the expression of Hif-1α, Fmo3, TMAO and cholesterol tube transporters in the livers of mice, disturb the proportion of bile and plasma components, and induce the formation of GCS. In cell experiments, silencing Hif-1α downregulates the expression of Fmo3, TMAO and cholesterol tube transporters. In a mouse model of hypoxic cholecystolithiasis, silencing Hif-1α downregulates the expression of related genes, restores the proportion of bile and plasma lipid components, and reduces the formation of GCS. Our study shows that Hif-1α binds to the promoter region of Fmo3 and promotes Fmo3 transcription. Thus, it mediates the transcriptional activation of the TMA/Fmo3/TMAO pathway, upregulates the expression of ATP-binding cassettes (Abc) g5 and g8, and participates in the regulation of the occurrence of GCS in the plateau region.


Cholesterol , Gallstones , Hypoxia-Inducible Factor 1, alpha Subunit , Methylamines , Oxygenases , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Animals , Humans , Female , Mice , Cholesterol/metabolism , Gallstones/metabolism , Gallstones/genetics , Gallstones/pathology , Oxygenases/metabolism , Oxygenases/genetics , Methylamines/metabolism , Male , Gallbladder/metabolism , Gallbladder/pathology , Middle Aged , Promoter Regions, Genetic , Hypoxia/metabolism , Hypoxia/genetics , Adult , Mice, Inbred C57BL , Cholecystolithiasis/metabolism , Cholecystolithiasis/genetics
9.
Molecules ; 29(6)2024 Mar 16.
Article En | MEDLINE | ID: mdl-38542959

Previous studies have revealed the microbial metabolism of dietary choline in the gut, leading to its conversion into trimethylamine (TMA). Polymethoxyflavones (PMFs), exemplified by tangeretin, have shown efficacy in mitigating choline-induced cardiovascular inflammation. However, the specific mechanism by which these compounds exert their effects, particularly in modulating the gut microbiota, remains uncertain. This investigation focused on tangeretin, a representative PMFs, to explore its influence on the gut microbiota and the choline-TMA conversion process. Experimental results showed that tangeretin treatment significantly attenuated the population of CutC-active bacteria, particularly Clostridiaceae and Lactobacillus, induced by choline chloride in rat models. This inhibition led to a decreased efficiency in choline conversion to TMA, thereby ameliorating cardiovascular inflammation resulting from prolonged choline consumption. In conclusion, tangeretin's preventive effect against cardiovascular inflammation is intricately linked to its targeted modulation of TMA-producing bacterial activity.


Arteritis , Flavones , Gastrointestinal Microbiome , Rats , Animals , Choline/metabolism , Methylamines/pharmacology , Methylamines/metabolism , Bacteria/metabolism , Inflammation/drug therapy
10.
Kidney Int ; 105(6): 1239-1253, 2024 Jun.
Article En | MEDLINE | ID: mdl-38431216

Intestinal microbiota and their metabolites affect systemic inflammation and kidney disease outcomes. Here, we investigated the key metabolites associated with the acute kidney injury (AKI)-to chronic kidney disease (CKD) transition and the effect of antibiotic-induced microbiota depletion (AIMD) on this transition. In 61 patients with AKI, 59 plasma metabolites were assessed to determine the risk of AKI-to-CKD transition. An AKI-to-CKD transition murine model was established four weeks after unilateral ischemia-reperfusion injury (IRI) to determine the effects of AIMD on the gut microbiome, metabolites, and pathological responses related to CKD transition. Human proximal tubular epithelial cells were challenged with CKD transition-related metabolites, and inhibitory effects of NADPH oxidase 2 (NOX2) signals were tested. Based on clinical metabolomics, plasma trimethylamine N-oxide (TMAO) was associated with a significantly increased risk for AKI-to-CKD transition [adjusted odds ratio 4.389 (95% confidence interval 1.106-17.416)]. In vivo, AIMD inhibited a unilateral IRI-induced increase in TMAO, along with a decrease in apoptosis, inflammation, and fibrosis. The expression of NOX2 and oxidative stress decreased after AIMD. In vitro, TMAO induced fibrosis with NOX2 activation and oxidative stress. NOX2 inhibition successfully attenuated apoptosis, inflammation, and fibrosis with suppression of G2/M arrest. NOX2 inhibition (in vivo) showed improvement in pathological changes with a decrease in oxidative stress without changes in TMAO levels. Thus, TMAO is a key metabolite associated with the AKI-to-CKD transition, and NOX2 activation was identified as a key regulator of TMAO-related AKI-to-CKD transition both in vivo and in vitro.


Acute Kidney Injury , Anti-Bacterial Agents , Disease Models, Animal , Gastrointestinal Microbiome , Methylamines , NADPH Oxidase 2 , Oxidative Stress , Renal Insufficiency, Chronic , Acute Kidney Injury/chemically induced , Acute Kidney Injury/microbiology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Acute Kidney Injury/drug therapy , Methylamines/blood , Methylamines/metabolism , Animals , NADPH Oxidase 2/antagonists & inhibitors , NADPH Oxidase 2/metabolism , Humans , Male , Gastrointestinal Microbiome/drug effects , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/complications , Middle Aged , Mice , Oxidative Stress/drug effects , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Mice, Inbred C57BL , Female , Reperfusion Injury/prevention & control , Aged , Apoptosis/drug effects , Disease Progression
11.
Curr Nutr Rep ; 13(2): 152-165, 2024 06.
Article En | MEDLINE | ID: mdl-38427291

PURPOSE OF REVIEW: Choline is an essential nutrient for human health and cellular homeostasis as it is necessary for the synthesis of lipid cell membranes, lipoproteins, and the synthesis of the neurotransmitter acetylcholine. The aim of this review is to analyze the beneficial effects of choline and its significance in cellular metabolism and various inflammatory pathways, such as the inflammasome. We will discuss the significance of dietary choline in cardiometabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and chronic kidney disease (CKD) as well as in cognitive function and associated neuropsychiatric disorders. RECENT FINDINGS: Choline deficiency has been related to the development of NAFLD and cognitive disability in the offspring as well as in adulthood. In sharp contrast, excess dietary intake of choline mediated via the increased production of trimethylamine by the gut microbiota and increased trimethylamine-N-oxide (TMAO) levels has been related to atherosclerosis in most studies. In this context, CVD and CKD through the accumulation of TMAO, p-Cresyl-sulfate (pCS), and indoxyl-sulfate (IS) in serum may be the result of the interplay between excess dietary choline, the increased production of TMAO by the gut microbiota, and the resulting activation of inflammatory responses and fibrosis. A balanced diet, with no excess nor any deficiency in dietary choline, is of outmost importance regarding the prevention of cardiometabolic disorders as well as cognitive function. Large-scale studies with the use of next-generation probiotics, especially Akkermansia muciniphila and Faecalibacterium prausnitzii, should further examine their therapeutic potential in this context.


Cardiovascular Diseases , Choline , Diet , Gastrointestinal Microbiome , Renal Insufficiency, Chronic , Humans , Cardiovascular Diseases/prevention & control , Non-alcoholic Fatty Liver Disease , Choline Deficiency/complications , Methylamines/metabolism
12.
Phytomedicine ; 128: 155349, 2024 Jun.
Article En | MEDLINE | ID: mdl-38522315

BACKGROUND: Trimethylamine N-oxide (TMAO), a metabolite produced by intestinal microbiota through metabolizing phosphatidylcholine, choline, l-carnitine and betaine in the diet, has been implicated in the pathogenesis of atherosclerosis (AS). Concurrently, dietary polyphenols have garnered attention for their potential to ameliorate obesity, diabetes and atherosclerosis primarily by modulating the intestinal microbial structure. Hickory (Carya cathayensis) nut, a polyphenol-rich food product favored for its palatability, emerges as a candidate for exploration. HYPOTHESIS/PURPOSE: The relationship between polyphenol of hickory nut and atherosclerosis prevention will be firstly clarified, providing theoretical basis for the discovery of natural products counteracting TMAO-induced AS process in hickory nut. STUDY DESIGN AND METHODS: Employing Enzyme-linked Immunosorbent Assay (ELISA) and histological examination of aortic samples, the effects of total polyphenol extract on obesity index, inflammatory index and pathological changes of atherosclerosis in C57BL/6 J mice fed with high-fat and high choline diet were evaluated. Further, the composition, abundance, and function of mouse gut microbiota were analyzed through 16srDNA sequencing. Concurrently, the levels of TMAO and the expression of key enzymes (CutC and FMO3) involved in its synthesis are quantified using ELISA, Western Blot and Real-Time Quantitative PCR (RT-qPCR). Additionally, targeted metabolomic profiling of the hickory nut polyphenol extract was conducted, accompanied by molecular docking simulations to predict interactions between candidate polyphenols and the CutC/FMO3 using Autodock Vina. Finally, the docking prediction were verified by microscale thermophoresis (MST) . RESULTS: Polyphenol extracts of hickory nut improved the index of obesity and inflammation, and alleviated the pathological changes of atherosclerosis in C57BL/6 J mice fed with high-fat and high-choline diet. Meanwhile, these polyphenol extracts also changed the composition and function of intestinal microbiota, and increased the abundance of microorganisms in mice. Notably, the abundance of intestinal microbiota endowed with CutC gene was significantly reduced, coherent with expression of CutC catalyzing TMA production. Moreover, polyphenol extracts also decreased the expression of FMO3 in the liver, contributing to the reduction of TMAO levels in serum. Furthermore, metabonomic profile analysis of these polyphenol extracts identified 647 kinds of polyphenols. Molecular docking predication further demonstrated that Casuariin and Cinnamtannin B2 had the most potential inhibition on the enzymatic activities of CutC or FMO3, respectively. Notably, MST analysis corroborated the potential for direct interaction between CutC enzyme and available polyphenols such as Corilagin, (-)-Gallocatechin gallate and Epigallocatechin gallate. CONCLUSION: Hickory polyphenol extract can mitigate HFD-induced AS by regulating intestinal microflora in murine models. In addition, TMA-FMO3-TMAO pathway may play a key role in this process. This research unveils, for the inaugural time, the complex interaction between hickory nut-derived polyphenols and gut microbial, providing novel insights into the role of dietary polyphenols in AS prevention.


Atherosclerosis , Gastrointestinal Microbiome , Methylamines , Mice, Inbred C57BL , Oxygenases , Polyphenols , Animals , Polyphenols/pharmacology , Gastrointestinal Microbiome/drug effects , Methylamines/metabolism , Atherosclerosis/prevention & control , Atherosclerosis/drug therapy , Male , Mice , Nuts/chemistry , Diet, High-Fat/adverse effects , Choline , Plant Extracts/pharmacology , Plant Extracts/chemistry , Obesity/prevention & control , Molecular Docking Simulation
13.
Atherosclerosis ; 391: 117431, 2024 Apr.
Article En | MEDLINE | ID: mdl-38408412

BACKGROUND AND AIMS: The gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) has been implicated in the development of cardiovascular fibrosis. Endoplasmic reticulum (ER) stress occurs after the dysfunction of ER and its structure. The three signals PERK/ATF-4, IRE-1α/XBP-1s and ATF6 are activated upon ER stress. Recent reports have suggested that the activation of PERK/ATF-4 and IRE-1α/XBP-1s signaling contributes to cardiovascular fibrosis. However, whether TMAO mediates aortic valve fibrosis by activating PERK/ATF-4 and IRE-1α/XBP-1s signaling remains unclear. METHODS: Human aortic valve interstitial cells (AVICs) were isolated from aortic valve leaflets. PERK IRE-1α, ATF-4, XBP-1s and CHOP expression, and production of collagen Ⅰ and TGF-ß1 were analyzed following treatment with TMAO. The role of PERK/ATF-4 and IRE-1α/XBP-1s signaling pathways in TMAO-induced fibrotic formation was determined using inhibitors and small interfering RNA. RESULTS: Diseased valves produced greater levels of ATF-4, XBP-1, collagen Ⅰ and TGF-ß1. Interestingly, diseased cells exhibited augmented PERK/ATF-4 and IRE-1α/XBP-1s activation after TMAO stimulation. Inhibition and silencing of PERK/ATF-4 and IRE-1α/XBP-1s each resulted in enhanced suppression of TMAO-induced fibrogenic activity in diseased cells. Mice treated with dietary choline supplementation had substantially increased TMAO levels and aortic valve fibrosis, which were reduced by 3,3-dimethyl-1-butanol (DMB, an inhibitor of trimethylamine formation) treatment. Moreover, a high-choline and high-fat diet remodeled the gut microbiota in mice. CONCLUSIONS: TMAO promoted aortic valve fibrosis through activation of PERK/ATF-4 and IRE-1α/XBP-1s signaling pathways in vitro and in vivo. Modulation of diet, gut microbiota, TMAO, PERK/ATF-4 and IRE1-α/XBP-1s may be a promising approach to prevent aortic valve fibrosis.


Gastrointestinal Microbiome , Transforming Growth Factor beta1 , Mice , Humans , Animals , Transforming Growth Factor beta1/metabolism , Aortic Valve/metabolism , Methylamines/toxicity , Methylamines/metabolism , Fibrosis , Collagen , Choline , Oxides
14.
Gut Microbes ; 16(1): 2311888, 2024.
Article En | MEDLINE | ID: mdl-38351748

Pre-eclampsia (PE) is the most common complication of pregnancy and seriously threatens the health and safety of the mother and child. Studies have shown that an imbalance in gut microbiota can affect the progression of PE. Trimethylamine N-oxide (TMAO) is an intestinal microbiota-derived metabolite that is thought to be involved in the occurrence of PE; however, its causal relationship and mechanism remain unclear. In this clinical cohort study, including 28 patients with eclampsia and 39 matched healthy controls, fecal samples were collected for 16S rRNA gene sequencing, and serum was collected for targeted metabolomics research. The results showed that the level of TMAO and the abundance of its source bacteria had significantly increased in patients with PE, and were positively correlated with the clinical progression of PE. Fecal microbiota transplantation (FMT) was applied to an antibiotic-depleted-treated mouse model and targeted inhibition of TMAO. The results of the FMT experiment revealed that mice that received fecal microbiota transplantation from patients with PE developed typical PE symptoms and increased oxidative stress and inflammatory damage, both of which were reversed by 3,3-Dimethyl-1-butanol (DMB), a TMAO inhibitor, which also improved pregnancy outcomes in the model mice. Similar results were obtained in the classical NG-Nitroarginine methyl ester (L-NAME) induced PE mouse model. Mechanistically, TMAO promotes the progression of PE by regulating inflammatory and oxidative stress-related signaling pathways, affecting the migration and angiogenesis of vascular endothelial cells, as well as the migration and invasion of trophoblast cells. Our results reveal the role and mechanism of gut microbiota and TMAO in the progression of PE, provides new ideas for exploring the pathogenesis and therapeutic targets of PE, and determines the potential application value of TMAO as a target for PE intervention.


Gastrointestinal Microbiome , Pre-Eclampsia , Animals , Female , Humans , Mice , Pregnancy , Cohort Studies , Endothelial Cells/metabolism , Methylamines/metabolism , Pre-Eclampsia/therapy , RNA, Ribosomal, 16S
15.
Biochem Biophys Res Commun ; 703: 149667, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38382362

Trimethylamine N-oxide (TMAO) is a novel risk factor for atherosclerosis, and its underlying regulatory mechanisms are under intensive investigation. Inflammation-related vascular endothelial damage is the major driver in atherogenic process. Pyroptosis, a type of proinflammatory programmed cell death, has been proved to promote the initiation and progression of atherosclerosis. In our study, we found that TMAO triggered endothelial cells excessive mitophagy, thereby facilitating pyroptosis. This process is mediated by the upexpression of phosphatidylethanolamine acyltransferase (LPEAT). These findings provide insights into TMAO-induced vascular endothelial cell damage and suggest that LPEAT may be a valuable target for the prevention and treatment of atherosclerosis.


Atherosclerosis , Endothelial Cells , Humans , Endothelial Cells/metabolism , Pyroptosis , Mitophagy , Methylamines/pharmacology , Methylamines/metabolism , Atherosclerosis/metabolism
16.
Methods ; 222: 81-99, 2024 Feb.
Article En | MEDLINE | ID: mdl-38185226

Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.


Gastrointestinal Microbiome , Microbiota , Humans , Microbiota/genetics , Fatty Acids, Volatile/metabolism , Methylamines/metabolism
17.
J Physiol Biochem ; 80(1): 67-79, 2024 Feb.
Article En | MEDLINE | ID: mdl-37932654

Recently, trimethylamine N-oxide (TMAO) has been considered a risk factor for cardiovascular disease and has a proatherogenic effect. Many studies have found that TMAO is involved in plaque oxidative stress and lipid metabolism, but the specific mechanism is still unclear. In our study, meta-analysis and bioinformatic analysis were firstly conducted in the database, and found that the effect of high plasma TMAO levels on promoting atherosclerotic plaque may be related to the expression of key antioxidant genes nuclear factor erytheroid-derived-2-like 2 (NFE2L2/Nrf2) decreased. Next, we assessed the role of Nrf2-mediated signaling pathway in TMAO-treated foam cells. Our results showed that TMAO can inhibit the expression of Nrf2 and its downstream antioxidant response element such as heme oxygenase-1 (HO-1) and glutathione peroxidase4 (GPX4), resulting in increased production of reactive oxygen species and decreased activity of superoxide dismutase, promoting oxidative stress. And TMAO can also promote lipid accumulation in foam cells by inhibiting cholesterol efflux protein expression. In addition, upregulation of Nrf2 expression partially rescues TMAO-induced oxidative stress and reduces ATP-binding cassette A1 (ABCA1)-mediated lipid accumulation. Therefore, TMAO promotes oxidative stress and lipid accumulation in macrophage foam cells through the Nrf2/ABCA1 pathway, which may provide a potential mechanism for the proatherogenic effect of TMAO.


Atherosclerosis , Foam Cells , Methylamines , Plaque, Atherosclerotic , Humans , Atherosclerosis/metabolism , ATP Binding Cassette Transporter 1/genetics , Lipids/pharmacology , Macrophages/metabolism , Methylamines/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress
18.
Postgrad Med J ; 100(1183): 283-288, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38158712

Trimethylamine-N-oxide (TMAO) is a common intestinal metabolite. The Choline in the nutrient forms TMA under the action of the gut microbiota, which passes through the liver and eventually forms TMAO. Initial studies of TMAO focused on cardiovascular disease, but as research progressed, TAMO's effects were found to be multisystem and closely related to the development of neurological diseases. Intestinal tract is the organ with the largest concentration of bacteria in human body, and the composition and metabolism of gut microbiota affect human health. As a two-way communication axis connecting the central nervous system and the gastrointestinal tract, the brain-gut axis provides the structural basis for TMAO to play its role. This article will review the correlation between TMA/TMAO and neurological diseases in order to find new directions and new targets for the treatment of neurological diseases.


Gastrointestinal Microbiome , Methylamines , Nervous System Diseases , Methylamines/metabolism , Humans , Nervous System Diseases/metabolism , Gastrointestinal Microbiome/physiology , Brain-Gut Axis/physiology
19.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article En | MEDLINE | ID: mdl-38139384

In this study, the plausible role of trimethylamine N-oxide (TMAO), a microbiota metabolite, was investigated as a link between peripheral inflammation and the inflammation of the central nervous system using different cell lines. TMAO treatment favored the differentiation of adipocytes from preadipocytes (3T3-L1 cell line). In macrophages (RAW 264.7 cell line), which infiltrate adipose tissue in obesity, TMAO increased the expression of pro-inflammatory cytokines. The treatment with 200 µM of TMAO seemed to disrupt the blood-brain barrier as it induced a significant decrease in the expression of occludin in hCMECs. TMAO also increased the expression of pro-inflammatory cytokines in primary neuronal cultures, induced a pro-inflammatory state in primary microglial cultures, and promoted phagocytosis. Data obtained from this project suggest that microbial dysbiosis and increased TMAO secretion could be a key link between peripheral and central inflammation. Thus, TMAO-decreasing compounds may be a promising therapeutic strategy for neurodegenerative diseases.


Inflammation , Methylamines , Humans , Inflammation/metabolism , Methylamines/pharmacology , Methylamines/metabolism , Cytokines , Research Design
20.
Sci Rep ; 13(1): 20303, 2023 11 20.
Article En | MEDLINE | ID: mdl-37985702

Endothelial dysfunction is a critical initiating factor contributing to cardiovascular diseases, involving the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO). This study aims to clarify the time-dependent molecular pathways by which TMAO mediates endothelial dysfunction through transcriptomics and metabolomics analyses in human microvascular endothelial cells (HMEC-1). Cell viability and reactive oxygen species (ROS) generation were also evaluated. TMAO treatment for either 24H or 48H induces reduced cell viability and enhanced oxidative stress. Interestingly, the molecular signatures were distinct between the two time-points. Specifically, few Gene Ontology biological processes (BPs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were modulated after a short (24H) compared to a long (48H) treatment. However, the KEGG signalling pathways namely "tumour necrosis factor (TNF)" and "cytokine-cytokine receptor interaction" were downregulated at 24H but activated at 48H. In addition, at 48H, BPs linked to inflammatory phenotypes were activated (confirming KEGG results), while BPs linked to extracellular matrix (ECM) structural organisation, endothelial cell proliferation, and collagen metabolism were repressed. Lastly, metabolic profiling showed that arachidonic acid, prostaglandins, and palmitic acid were enriched at 48H. This study demonstrates that TMAO induces distinct time-dependent molecular signatures involving inflammation and remodelling pathways, while pathways such as oxidative stress are also modulated, but in a non-time-dependent manner.


Endothelial Cells , Vascular Diseases , Humans , Endothelial Cells/metabolism , Methylamines/metabolism , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Oxides
...