Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.548
Filter
1.
Luminescence ; 39(8): e4840, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109476

ABSTRACT

The study presents Ag2CrO4/Fe2O3/CeO2 ternary nanocomposite, based on Fe2O3/CeO2 binary composites, which demonstrated excellent photocatalytic performance in the photodegradation of methylene blue under solar irradiation. The Ag2CrO4/Fe2O3/CeO2 nanocomposites was orthorhombic, ilmenite, and cubic-fluorite phases of Ag2CrO4, Fe2O3, and CeO2, respectively, according to the XRD examination. A strong bond between Ag2CrO4, Fe2O3, and CeO2 within the nanocomposite was demonstrated by the SEM and TEM investigations. Moreover, it was discovered that the coupling of Ag2CrO4 and Fe2O3 caused a red shift and moved CeO2 absorption edge from the UV to the visible spectrum. The reason behind this is that the band gap of CeO2 reduced 2.85 to 2.69 eV and the absorbance band intensity increased in visible region. Utilizing visible light, Ag2CrO4/Fe2O3/CeO2 ternary nanocomposites exhibit enhanced photocatalytic properties (98.90%) for the degradation of methylene blue (MB) within 100 min. The long-term reliability and recyclability of the photocatalyst were explored through 3 successive cycles. An active radical quenching test was conducted to elucidate the involvement of O2 - and OH which are the primary reactive species in the photocatalytic breakdown of MB. Ag2CrO4/Fe2O3/CeO2 ternary nanocomposites displayed notable improvements in photodegradation activity, making them well suited for the effective removal of hazardous dyes present in textile effluents.


Subject(s)
Cerium , Ferric Compounds , Methylene Blue , Nanocomposites , Photolysis , Nanocomposites/chemistry , Cerium/chemistry , Catalysis , Methylene Blue/chemistry , Ferric Compounds/chemistry , Photochemical Processes , Silver Compounds/chemistry , Silver/chemistry , Particle Size
2.
Environ Geochem Health ; 46(10): 376, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167294

ABSTRACT

Currently, one of the primary challenges that human society must overcome is the task of decreasing the amount of energy used and the adverse effects that it has on the environment. The daily increase in liquid waste (comprising organic pollutants) is a direct result of the creation and expansion of new companies, causing significant environmental disruption. Water contamination is attributed to several industries such as textile, chemical, poultry, dairy, and pharmaceutical. In this study, we present the successful degradation of methylene blue dye using g-C3N4 (GCN) mixed with WO3 and V2O5 composites (GCN/WO3/V2O5 ternary composite) as a photocatalyst, prepared by a simple mechanochemistry method. The GCN/WO3/V2O5 ternary composite revealed a notable enhancement in photocatalytic performance, achieving around 97% degradation of aqueous methylene blue (MB). This performance surpasses that of the individual photocatalysts, namely pure GCN, GCN/WO3, and GCN/V2O5 composites. Furthermore, the GCN/WO3/V2O5 ternary composite exhibited exceptional stability even after undergoing five consecutive cycles. The exceptional photocatalytic activity of the GCN/WO3/V2O5 ternary composite can be ascribed to the synergistic effect of metal-free GCN and metal oxides, resulting in the alteration of the band gap and suppression of charge recombination in the ternary photocatalyst. This study offers a better platform for understanding the characteristics of materials and their photocatalytic performance under visible light conditions.


Subject(s)
Methylene Blue , Oxides , Tungsten , Water Pollutants, Chemical , Tungsten/chemistry , Oxides/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Methylene Blue/chemistry , Graphite/chemistry , Water Purification/methods , Photochemical Processes , Photolysis , Nitrogen Compounds
3.
Bioresour Technol ; 408: 131206, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39097241

ABSTRACT

Carbon quantum dots (CQDs) were successfully synthesized from carbohydrate-rich residue of birch obtained following the lignin-first strategy. The optical and physicochemical properties of the CQDs were studied, along with their potential for photocatalytic pollutant degradation. By combining solvothermal and chemical oxidation methods, the product yield of CQDs from carbohydrate-rich residue reached 8.1 wt%. Doping nitrogen enhances the graphitization of CQDs and introduces abundant amino groups to the surface, thereby boosted the quantum yield significantly from 8.9 % to 18.7 %-19.3 %. Nitrogen-doped CQDs exhibited efficient photocatalytic degradation of methylene blue, reaching 37 % within 60 min, with a kinetic degradation rate of 0.00725 min-1. This study demonstrates that carbohydrate-rich residue obtained from lignin-first strategy are ideal precursors for synthesizing CQD with high mass yield and quantum yield by combining solvothermal treatment and chemical oxidation methods, offering a novel approach for the utilization of whole biomass components following the lignin-first strategy.


Subject(s)
Betula , Carbon , Lignin , Quantum Dots , Quantum Dots/chemistry , Lignin/chemistry , Carbon/chemistry , Betula/chemistry , Carbohydrates/chemistry , Methylene Blue/chemistry , Nitrogen/chemistry , Catalysis , Kinetics
4.
Molecules ; 29(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39125104

ABSTRACT

In this work, we report on an electrochemical method for the signal-on detection of caspase-3 and the evaluation of apoptosis based on the biotinylation reaction and the signal amplification of methylene blue (MB)-loaded metal-organic frameworks (MOFs). Zr-based UiO-66-NH2 MOFs were used as the nanocarriers to load electroactive MB molecules. Recombinant hexahistidine (His6)-tagged streptavidin (rSA) was attached to the MOFs through the coordination interaction between the His6 tag in rSA and the metal ions on the surface of the MOFs. The acetylated peptide substrate Ac-GDEVDGGGPPPPC was immobilized on the gold electrode. In the presence of caspase-3, the peptide was specifically cleaved, leading to the release of the Ac-GDEVD sequence. A N-terminal amine group was generated and then biotinylated in the presence of biotin-NHS. Based on the strong interaction between rSA and biotin, rSA@MOF@MB was captured by the biotinylated peptide-modified electrode, producing a significantly amplified electrochemical signal. Caspase-3 was sensitively determined with a linear range from 0.1 to 25 pg/mL and a limit of detection down to 0.04 pg/mL. Further, the active caspase-3 in apoptosis inducer-treated HeLa cells was further quantified by this method. The proposed signal-on biosensor is compatible with the complex biological samples and shows great potential for apoptosis-related diagnosis and the screening of caspase-targeting drugs.


Subject(s)
Biosensing Techniques , Caspase 3 , Metal-Organic Frameworks , Methylene Blue , Metal-Organic Frameworks/chemistry , Methylene Blue/chemistry , Humans , Caspase 3/metabolism , HeLa Cells , Biosensing Techniques/methods , Electrochemical Techniques/methods , Apoptosis , Streptavidin/chemistry , Biotinylation , Electrodes , Limit of Detection , Zirconium/chemistry , Phthalic Acids
5.
Int J Biol Macromol ; 277(Pt 2): 134351, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39089547

ABSTRACT

Chitosan, as a biomaterial, has increasingly garnered attention. However, its limited solubility in water-only dissolving in certain dilute acidic solutions-substantially restricts its broader application. In this investigation, chitosan underwent a solubilization modification to acquire water solubility, facilitating its dissolution in neutral aqueous mediums. Subsequently, this water-soluble chitosan (WSC) was interlinked with oxidized carboxymethyl cellulose (OCMC), characterized by varied oxidation extents, to synthesize hydrogels. Structural characterization verified the formation of imine bonds resulting from crosslinking interactions between the amino groups of water-soluble chitosan and the aldehyde groups of oxidized carboxymethyl cellulose. Employing performance characterization analysis, it was discerned that an increase in the oxidation level of the oxidized carboxymethyl cellulose corresponded to a denser hydrogel network architecture and the hardness increased from 3.01 N to 6.16 N. Moreover, the capacity of these hydrogels to adsorb methylene blue was meticulously examined. Notably, the hydrogel denoted as WSC/66%OCMC manifested an adsorption capability of 28.08 mg/g for methylene blue. Analytical findings from adsorption kinetics and isotherm studies indicate that the adsorption mechanism of the WSC/66%OCMC hydrogel follows the pseudo-second-order kinetic model and corresponds to the Freundlich isotherm model.


Subject(s)
Carboxymethylcellulose Sodium , Chitosan , Hydrogels , Methylene Blue , Oxidation-Reduction , Solubility , Water , Methylene Blue/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Chitosan/chemistry , Carboxymethylcellulose Sodium/chemistry , Water/chemistry , Adsorption , Kinetics
6.
Int J Biol Macromol ; 277(Pt 2): 134155, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098462

ABSTRACT

N-doped TiO2/carbon composites (N-TiPC) have shown excellent photodegradation performances to the organic contaminants but are limited by the multistage preparation (i.e., preparation of porous carbon, preparation of N-doped TiO2, and loading of N-doped TiO2 on porous carbon). Here, we develop a handy way by combining the Pickering emulsion-gel template route and chelation reaction of polysaccharides. The N-TiPC is obtained by calcinating pectin/Dl-serine hydrazide hydrochloride (SHH)-Ti4+ chelate and is further described by modern characterization techniques. The results show that the N atom is successfully doped into the TiO2 lattice, and the bandgap value of N-TiPC is reduced to 2.3 eV. Moreover, the particle size of N-TiPC remains about 10 nm. The configurations of the composites are simulated using DFT calculation. The photocatalytic experiments show that N-TiPC has a high removal efficiency for methylene blue (MB) and oxytetracycline hydrochloride (OTC-HCL). The removal ratios of MB (20 mg/L, 50 mL) and OTC-HCL (30 mg/L, 50 mL) are 99.41 % and 78.29 %, respectively. The cyclic experiments show that the photocatalyst has good stability. Overall, this study provides a handy way to form N-TiPC with enhanced photodegradation performances. It can also be promoted to other macromolecules such as cellulose and its derivatives, sodium alginate, chitosan, lignin, etc.


Subject(s)
Carbon , Pectins , Serine , Titanium , Pectins/chemistry , Titanium/chemistry , Carbon/chemistry , Serine/chemistry , Nitrogen/chemistry , Catalysis , Photolysis , Porosity , Methylene Blue/chemistry
7.
Mikrochim Acta ; 191(9): 550, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39167218

ABSTRACT

A novel bacteriophage-targeted electrochemical biosensor designed for accurate and quantitative detection of live Salmonella in food samples is presented. The biosensor is simply constructed by electrostatic immobilizing bacteriophages on MXene-nanostructured electrodes. MXene, renowned for its high surface area, biocompatibility, and conductivity, serves as an ideal platform for bacteriophage immobilization. This allows for a high-density immobilization of bacteriophage particles, achieving approximately 71 pcs µm-2. Remarkably, the bacteriophages immobilized MXene nanostructured electrodes still maintain their viability and functionality, ensuring their effectiveness in pathogen detection. Therefore, the proposed biosensor exhibited enhanced sensitivity with a low limit of detection (LOD) of 5 CFU mL-1. Notably, the biosensor shows excellent specificity in the presence of other bacteria that commonly contaminate food and can distinguish live Salmonella from a mixed population. Furthermore, it is applicable in detecting live Salmonella in food samples, which highlights its potential in food safety monitoring. This biosensor offers simplicity, convenience, and suitability for resource-limited environments, making it a promising tool for on-site monitoring of foodborne pathogenic bacteria.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Food Microbiology , Limit of Detection , Methylene Blue , Salmonella , Static Electricity , Biosensing Techniques/methods , Electrochemical Techniques/methods , Salmonella/isolation & purification , Salmonella/virology , Food Microbiology/methods , Methylene Blue/chemistry , Bacteriophages/chemistry , Electrodes , Food Contamination/analysis , Nanostructures/chemistry
8.
Environ Monit Assess ; 196(9): 848, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190194

ABSTRACT

Wodyetia bifurcata, also known as foxtail palm tree leaves, was tested for highly effective methylene blue (MB) removal from commercial and artificial effluent. BET surface area measurement, FESEM, FTIR, and pHzpc were used to get information on the shape and structure of the particles. Several important factors were used to determine its adsorption activity, including intake concentration, contact duration, and pH level. Accelerated adsorption is seen in the experimental results, with more than 94% adsorption occurring successfully in the initial 12 min and reaching equilibrium within 15 min (% removal = 97.45%) at neutral pH. It was discovered that the maximum adsorption capacity was 58.74 mg g-1 at 308 K. The adsorption procedure confirms an active adsorption process of linear and non-linear kinetics of pseudo-second order, and the adsorption path is well addressed by the Freundlich model both in linear and non-linear form, having an R2 value close to unity. Thermodynamic characteristics point to an exothermic, viable, spontaneous reaction with higher entropy. Utilizing a 1:1 MeOH/H2O ratio, spent adsorbent may be readily regenerated by as much as 75% with a possible three-cycle usage. The practical application of biosorbents was confirmed by real-time effectiveness testing using MB-carrying industrial wastewater, and up to 45.75% adsorption was shown. A relative standard deviation confirmed statistical dependability. All things considered, the current material provides a clean and environmentally friendly way to remove MB dye from various wastewater types.


Subject(s)
Methylene Blue , Plant Leaves , Wastewater , Water Pollutants, Chemical , Methylene Blue/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Plant Leaves/chemistry , Adsorption , Waste Disposal, Fluid/methods , Kinetics , Thermodynamics , Water Purification/methods
9.
Environ Monit Assess ; 196(9): 844, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190206

ABSTRACT

The study investigated the utilization of waste palm fiber as an adsorbent for methylene blue (MB) removal. The waste palm fiber was treated by a series of steps to prepare an activated charcoal adsorbent. The adsorption process of MB on the activated charcoal was modeled using the Box-Behnken design (BBD) in the response surface methodology (RSM). Adsorbent mass, solution pH, temperature, and time were selected as factors, while removal efficiency and adsorption capacity were chosen as responses. Both models were significant with correlation factors of 0.85 and 0.99 for removal efficiency and adsorption capacity, respectively. Optimal conditions for MB removal were achieved at an initial pH of 7, an adsorbent dose of 0.05 g/L, and a contact time of 30 min, resulting in a 99% removal efficiency. The adsorption of MB using the activated charcoal indicates the physical nature of the reaction.


Subject(s)
Charcoal , Methylene Blue , Water Pollutants, Chemical , Methylene Blue/chemistry , Adsorption , Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Arecaceae/chemistry , Waste Disposal, Fluid/methods , Hydrogen-Ion Concentration , Coloring Agents/chemistry
10.
Theranostics ; 14(10): 3900-3908, 2024.
Article in English | MEDLINE | ID: mdl-38994024

ABSTRACT

Background: Osteoarthritis (OA) standing as the most prevalent form of arthritis, closely associates with heightened levels of reactive oxygen species, particularly hypochlorous acid (HOCl). Although there are numerous probes available for detecting HOCl in the OA region, probes with dual functions of diagnostic and therapeutic capabilities are still significantly lacking. While this type of probe can reduce the time gap between diagnosis and treatment, which is clinically needed. Methods: We developed a fluorescent probe (DHU-CBA1) toward HOCl with theranostics functions through the release of methylene blue (MB) and ibuprofen (IBP) in this work. DHU-CBA1 can detect HOCl with high specificity and sensitivity, releasing MB and IBP with an impressive efficiency of ≥ 95% in vitro. Results: DHU-CBA1 exhibits good biosafety, enabling in vivo imaging of endogenous HOCl, along with reducing arthritis scores, improving synovitis and cartilage damage, and maintaining catabolic balance while alleviating senescence in cartilage. Conclusions: This study proposes a novel approach to enhance osteoarthritis therapy by releasing IBP via a smart HOCl-enabled fluorescent probe.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Ibuprofen , Methylene Blue , Osteoarthritis , Osteoarthritis/drug therapy , Fluorescent Dyes/chemistry , Ibuprofen/administration & dosage , Animals , Methylene Blue/chemistry , Mice , Humans , Theranostic Nanomedicine/methods , Male , Optical Imaging/methods , Reactive Oxygen Species/metabolism
11.
Environ Geochem Health ; 46(9): 327, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012555

ABSTRACT

The novel bioengineered CuO nanoparticles were successfully synthesized directly using green chemistry, the nontoxic and renewable aqueous extract of waste papaya peel (Carica papaya) as a precursor. The XRD analysis indicated a monoclinic phase of CuO nanoparticles and a size of 20 nm, and the optical absorption analysis showed a peak in the 264 nm range. In TEM, the morphology of the NPs was observed to be almost spherical with a particle size of 15 nm. The CuO nanoparticles showed good efficiency in the degradation of methylene, obtaining up to 50% in 40 min using 6 mg in 60 ml of MB at 10 mg/L. The novel presented in this work derives from using rock minerals, from which we have directly obtained copper salt and copper oxide nanoparticles. This process not only utilizes ecological green chemistry but also offers an economic advantage by directly producing nanoparticles from the mineral instead of purchasing costly pure chemical reagents and employing novel nanomaterials to purify wastewater.


Subject(s)
Coloring Agents , Copper , Metal Nanoparticles , Copper/chemistry , Coloring Agents/chemistry , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Green Chemistry Technology/methods , Carica/chemistry , Mining , X-Ray Diffraction , Methylene Blue/chemistry , Microscopy, Electron, Transmission
12.
ACS Appl Mater Interfaces ; 16(28): 36194-36203, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38952261

ABSTRACT

The occurrence of cancer is often closely related to multiple tumor markers, so it is important to develop multitarget detection methods. By the proper design of the input signals and logical operations of DNA logic gates, detection and diagnosis of cancer at different stages can be achieved. For example, in the early stages, specific input signals can be designed to correspond to early specific tumor markers, thereby achieving early cancer detection. In the late stage, logic gates for multitarget detection can be designed to simultaneously detect multiple biomarkers to improve diagnostic accuracy and comprehensiveness. In this work, we constructed a dual-target-triggered DNA logic gate for anchoring DNA tetrahedra, where methylene blue was embedded in the DNA tetrahedra to sensitize ZnO@CdS@Au, achieving ultrasensitive detection of the target substance. We tested the response of AND and OR logic gates to the platform. For AND logic gates, the sensing platform only responds when both miRNAs are present. In the concentration range of 10 aM to 10 nM, the photoelectric signal gradually increases with an increase of the target concentration. Subsequently, we used OR logic gates for miRNA detection. Even if only one target exists, the sensing platform exhibits excellent performance. Similarly, within the concentration range of 10 aM to 10 nM, the photoelectric signal gradually increases with an increase of the target concentration. The minimum detection limit is 1.10 aM. Whether it is the need to detect multiple targets simultaneously or only one of them, we can achieve it by selecting the appropriate logic gate. This strategy holds promising application prospects in fields such as biosensing, medical diagnosis, and environmental monitoring.


Subject(s)
Biosensing Techniques , Cadmium Compounds , Electrochemical Techniques , Gold , Methylene Blue , MicroRNAs , Nanotubes , Sulfides , Zinc Oxide , Methylene Blue/chemistry , Zinc Oxide/chemistry , Biosensing Techniques/methods , Gold/chemistry , Nanotubes/chemistry , Cadmium Compounds/chemistry , Electrochemical Techniques/methods , MicroRNAs/analysis , Sulfides/chemistry , Humans , Limit of Detection , Logic
13.
Anal Methods ; 16(29): 5032-5037, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38980034

ABSTRACT

In this work, a sensitive ratiometric electrochemical biosensor for microRNA-155 (miRNA-155) detection is reported based on a hybridization chain reaction amplifying the electrochemical signal. The biosensor was fabricated using Au NPs as a modified material to assemble capture DNA labeled with ferrocene (Fc) molecules, and a DNA probe labeled with methylene blue (MB) was employed for the signal probe. In the presence of target miRNA-155, it can be dual hybridized with capture and signal probe, especially with signal probe to continuously produce long concatemers containing lots of MB molecules. The electrochemical signal of Fc was used for the internal signal, and the signal from MB was used as an indicator signal. As the concentration of miRNA-155 was altered, the internal reference signal of Fc remained constant, and only the indicator signal changed in a sensitive way. The change in the ratio (IMB/IFc) between the indicator signal of MB and internal reference signal of Fc can be used to monitor the concentration of miRNA-155. Under optimal conditions, the prepared ratiometric biosensor could detect miRNA-155 within a wide linear range from 100 fM to 100 nM with low detection limit of 33 fM (at S/N = 3). Moreover, the biosensor was evaluated with human serum samples, and satisfactory recoveries were obtained, indicating that the ratiometric biosensor can be applied to clinical sample analysis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Gold , Limit of Detection , MicroRNAs , Nucleic Acid Hybridization , MicroRNAs/blood , MicroRNAs/analysis , Biosensing Techniques/methods , Humans , Electrochemical Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , DNA Probes/chemistry , DNA Probes/genetics , Methylene Blue/chemistry
14.
Luminescence ; 39(7): e4817, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39019841

ABSTRACT

Alternate antibiotics developed through the involvement of nanomaterials are gaining interest due to their economical and lower toxicity concerns. A newly developed biopolymer-based polyvinylpyrrolidone/zinc oxide (PVP/ZnO) nanocomposite (NCs) was efficiently synthesized by an environment-friendly approach, utilizing onion and garlic peel extract as a bio-surfactant, zinc acetate as the source, PVP as the stabilizing agent, and sodium hydroxide as the precipitant. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) investigations verified the crystalline properties of ZnO, PVP, and PVP/ZnO-based NCs. The structure of the biopolymer-linked ZnO particles interpolated inside the PVP array was seen to have a layered and flaky structure, as validated by field emission scanning electron microscopy (FE-SEM) analysis, which revealed its occurrence in the nanometer range. The XRD examination verified that the surface topographical image of PVP/ZnO NCs had an average thickness of 21 nm. The PVP/ZnO nanocrystals demonstrated exceptional photocatalytic efficacy, with a breakdown rate of 88% and almost 92% for the methylene blue dye. Therefore, the PVP/ZnO matrix exhibits superior antibacterial activity compared to other extracts, resulting in greater microbial suppression. The results above indicate that the ZnO-intercalated PVP array has a stronger reinforcing effect than other components. Hence, PVP/ZnO nanocrystals exhibit enormous potential as a favorable substance for environmental and biomedical intentions.


Subject(s)
Anti-Bacterial Agents , Nanocomposites , Photochemical Processes , Povidone , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Povidone/chemistry , Nanocomposites/chemistry , Catalysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Microbial Sensitivity Tests , Luminescence , Particle Size , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Methylene Blue/chemistry
15.
Environ Geochem Health ; 46(9): 334, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060662

ABSTRACT

This study successfully synthesized ZnO-CuO nanocomposite using the hydrothermal method with Carica papaya leaf extract. The incorporation of the leaf extract significantly enhanced the nanocomposite properties, a novel approach in scientific research. Characterization techniques, including X-ray diffraction, Fourier Transmission Infrared spectroscopy, and Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis, confirmed a cubic crystal structure with an average size of 22.37 nm. The Fourier Transmission Infrared spectrum revealed distinctive vibrations at 627, 661, and 751 cm-1 corresponding to ZnO-CuO nanocomposite corresponding to stretching and vibration modes. SEM images confirmed a cubic-like and irregular structure. The nanocomposite exhibited outstanding photocatalytic activity, degrading methylene blue dye by 96.73% within 120 min under visible light. Additionally, they showed significant antimicrobial activity, inhibiting Staphylococcus aureus (20 mm) and Klebsiella pneumonia (17 mm). The results highlight the efficiency of Carica papaya leaf-derived ZnO-CuO nanocomposite for environmental and health challenges.


Subject(s)
Anti-Bacterial Agents , Carica , Copper , Nanocomposites , Plant Extracts , Plant Leaves , Water Purification , Zinc Oxide , Carica/chemistry , Plant Leaves/chemistry , Nanocomposites/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Copper/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Water Purification/methods , Staphylococcus aureus/drug effects , Methylene Blue/chemistry , Methylene Blue/pharmacology , Green Chemistry Technology/methods , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , X-Ray Diffraction
16.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063138

ABSTRACT

The presented study was focused on the simple, eco-friendly synthesis of composite hydrogels of crosslinked carboxymethyl cellulose (CMC)/alginate (SA) with encapsulated g-C3N4 nanoparticles. The structural, textural, morphological, optical, and mechanical properties were determined using different methods. The encapsulation of g-C3N4 into CMC/SA copolymer resulted in the formation of composite hydrogels with a coherent structure, enhanced porosity, excellent photostability, and good adhesion. The ability of composite hydrogels to eliminate structurally different dyes with the same or opposite charge properties (cationic Methylene Blue and anionic Orange G and Remazol Brilliant Blue R) in both single- and binary-dye systems was examined through adsorption and photocatalytic reactions. The interactions between the dyes and g-C3N4 and the negatively charged CMC/SA copolymers had a notable influence on both the adsorption capacity and photodegradation efficiency of the prepared composites. Scavenger studies and leaching tests were conducted to gain insights into the primary reactive species and to assess the stability and long-term performance of the g-C3N4/CMC/SA beads. The commendable photocatalytic activity and excellent recyclability, coupled with the elimination of costly catalyst separation requirements, render the g-C3N4/CMC/SA composite hydrogels cost-effective and environmentally friendly materials, and strongly support their selection for tackling environmental pollution issues.


Subject(s)
Alginates , Carboxymethylcellulose Sodium , Coloring Agents , Hydrogels , Water Pollutants, Chemical , Carboxymethylcellulose Sodium/chemistry , Hydrogels/chemistry , Alginates/chemistry , Coloring Agents/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Methylene Blue/chemistry , Azo Compounds/chemistry , Nitriles/chemistry , Nitrogen Compounds/chemistry , Photolysis , Adsorption , Green Chemistry Technology/methods , Anthraquinones , Graphite
17.
J R Soc Interface ; 21(216): 20240111, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39081249

ABSTRACT

Selective scleral crosslinking has been proposed as a novel treatment to increase scleral stiffness to counteract biomechanical changes associated with glaucoma and high myopia. Scleral stiffening has been shown by transpupillary peripapillary scleral photocrosslinking in rats, where the photosensitizer, methylene blue (MB), was injected retrobulbarly and red light initiated crosslinking reactions with collagen. Here, we adapted a computational model previously developed to model this treatment in rat eyes to additionally model MB photocrosslinking in minipigs and humans. Increased tissue length and subsequent diffusion and light penetration limitations were found to be barriers to achieving the same extent of crosslinking as in rats. Per cent inspired O2, injected MB concentration and laser fluence were simultaneously varied to overcome these limitations and used to determine optimal combinations of treatment parameters in rats, minipigs and humans. Increasing these three treatment parameters simultaneously resulted in maximum crosslinking, except in rats, where the highest MB concentrations decreased crosslinking. Additionally, the kinetics and diffusion of photocrosslinking reaction intermediates and unproductive side products were modelled across space and time. The model provides a mechanistic understanding of MB photocrosslinking in scleral tissue and a basis for adapting and screening treatment parameters in larger animal models and, eventually, human eyes.


Subject(s)
Sclera , Swine, Miniature , Animals , Rats , Sclera/metabolism , Swine , Humans , Models, Biological , Methylene Blue/chemistry , Collagen/metabolism , Collagen/chemistry , Cross-Linking Reagents , Computer Simulation , Photosensitizing Agents/pharmacology
18.
Bioresour Technol ; 407: 131124, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39025370

ABSTRACT

In this study, magnetic biochar was synthesized by doping Fe3O4 onto the biochar surface followed by analysis of its properties. The efficiency of methylene blue (MB) removal through the combined processes of adsorption and photolysis was assessed. The presence of Fe3O4 on the biochar surface was confirmed using Raman spectroscopy and X-ray photoelectron spectroscopy. The magnetic biochar, after MB adsorption, showed a magnetism of 39.50 emu/g leading to a 97.07 % recovery rate. The specific surface area of biochar was higher (380.68 m2/g) than that of magnetic biochar (234.46 m2/g), and the maximum adsorption capacity of MB was higher in the biochar (0.03 mg/g) than that in magnetic biochar (0.02 mg/g) under the optimal conditions for MB adsorption. The MB adsorption experiments using biochar or magnetic biochar were optimally conducted under 10-20 mg/L MB concentration, 1 g biochar dosage, pH 12, 200 rpm rotation speed, 25 °C temperature, and 30 min duration. Under dark conditions, biochar had a higher MB removal rate, at 83.91 %, compared to magnetic biochar, at 78.30 %. Under visible light (λ > 425 nm), magnetic biochar effectively removed MB within 10 min, highlighting the synergistic effect of adsorption and photolysis. MB is physically and chemically adsorbed by the monolayer on the surface of EB and EMB according to adsorption behavior.


Subject(s)
Charcoal , Lignin , Methylene Blue , Photolysis , Methylene Blue/chemistry , Charcoal/chemistry , Adsorption , Lignin/chemistry , Biomass , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry , Photoelectron Spectroscopy
19.
Anal Chem ; 96(29): 11651-11656, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38979837

ABSTRACT

Lipid nanovectors (LNVs) represent potent and versatile tools in the field of drug delivery for a wide range of medical applications including cancer therapy and vaccines. With this Technical Note, we introduce a novel "portable", easy-to-use, and low-cost strategy for double use: (1) it allows one to both quantify the amount of cargo in LNV formulation and (2) classify the nature of formulation with the aim of chemometrics. In particular, an electrochemical strip, based on a screen-printed electrode, was exploited to detect methylene blue (MB) as the model cargo encapsulated in various liposomes (used as model LNV). The experimental setup, including release of the MB content and its electrochemical quantification were optimized through a multivariate design of experiment (DoE), obtaining a satisfactory 88-95% accuracy in comparison to standard methods. In addition, the use of principal component analysis-linear discriminant analysis (PCA-LDA) highlighted the satisfactory differentiation of liposomes. The combination of portable electroanalysis and multivariate analysis is a potent tool for enhancing quality control in the field of pharmaceutical technologies, and also in the field of diagnostics, this approach might be useful for application toward naturally occurring lipid nanoparticles, i.e., exosomes.


Subject(s)
Electrochemical Techniques , Liposomes , Liposomes/chemistry , Methylene Blue/chemistry , Nanoparticles/chemistry , Lipids/chemistry , Principal Component Analysis , Discriminant Analysis
20.
Anal Methods ; 16(31): 5433-5440, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39041298

ABSTRACT

Saxitoxin (STX) is a cyanotoxin with high toxicity, and therefore, there is an urgent need to develop a facile detection method for STX. In this study, an ordered nanopillar array-based electrochemical aptasensor was fabricated for the high-performance detection of STX. The anti-STX aptamer with methylene blue (MB) incorporated at the 3'-end (MB-Apt) was immobilized at the surface of an Au@PAN nanopillar array electrode and used as the recognition element. The proposed aptasensor demonstrated highly sensitive and selective STX detection because of synergistic catalysis effects of MB and ordered nanopillar arrays along with the selection of MB-Apt. The nanopillar array-based electrochemical aptasensor exhibited high sensitivity over a wide linear concentration range of 1 pM-3 nM with a linear regression equation of ΔI (µA) = 28.0 + 6.9 × log[STX] (R2 = 0.98079) and 3-100 nM with a linear regression equation of ΔI (µA) = 10.7 + 43.4 × log[STX] (R2 = 0.98772), where R is the correlation coefficient. In addition, the limit of detection (LOD) was as low as 1 pM. Furthermore, the designed aptasensor demonstrated excellent selectivity toward STX, preventing interference from neo-STX, okadaic acid, and common metal ions. The presented orderly nanopillar array-based strategy to develop an electrochemical aptasensor for STX detection offers a promising method for developing high-performance electrochemical sensors, and the presented aptasensor should find useful application in the detection of shellfish poison.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Limit of Detection , Saxitoxin , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Saxitoxin/analysis , Saxitoxin/chemistry , Biosensing Techniques/methods , Gold/chemistry , Methylene Blue/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL