Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41.163
1.
Oral Oncol ; 154: 106864, 2024 Jul.
Article En | MEDLINE | ID: mdl-38824812

OBJECTIVE: To compare the changes in the sinonasal mucosa microbiome in patients with nasopharyngeal carcinoma (NPC) before and after radiotherapy (RT), and to explore the pathogenesis of post-irradiation chronic rhinosinusitis (PI-CRS) and its association with dysbiosis. STUDY DESIGN: Prospective cohort study. SETTING: Unicenter, Tertiary referral hospital. METHODS: Included patients newly diagnosed with NPC. Samples of ostiomeatal complex mucosa were collected before and after RT. Microbiome analysis was conducted using 16S rRNA sequencing, and statistical analysis was performed. Subgroup analyses based on RT modality (proton therapy or photon therapy) RESULTS: Total of 18 patients were enrolled in the study, with 62.1% receiving intensity-modulated proton therapy (IMPT). Corynebacterium was the most dominant genus identified in both the pre- and post-RT groups, with a visible increase in Staphylococcus and a decrease in Fusobacterium genus in post-RT group. Alpha-diversity did not significantly differ between groups, although the beta-diversity analysis revealed a dispersed microbiota in the post-RT group. The functional prediction indicated a higher relative abundance of taxonomies associated with biofilm formation in the post-RT group. The subgroup analysis revealed the above changes to be more significant in patients who received photon therapy (Intensity modulated radiation therapy, IMRT). CONCLUSIONS: This is the first study to analyze the microbiome of patients with NPC after IMPT. We identified similarities between the post-RT microenvironment and that reported in patients with CRS, with a more apparent change noted in patients treated with IMRT. Further investigation is required to further elucidate the pathogenesis of PI-CRS and its relationship to post-RT dysbiosis, particularly IMPT.


Dysbiosis , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Male , Female , Dysbiosis/microbiology , Dysbiosis/etiology , Middle Aged , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/microbiology , Pilot Projects , Prospective Studies , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/microbiology , Adult , Aged , Microbiota/radiation effects , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods
2.
Food Res Int ; 188: 114507, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823882

The microorganisms of the pit mud (PM) of Nongxiangxing baijiu (NXXB) have an important role in the synthesis of flavor substances, and they determine attributes and quality of baijiu. Herein, we utilize metagenomics and genome-scale metabolic models (GSMMs) to investigate the microbial composition, metabolic functions in PM microbiota, as well as to identify microorganisms and communities linked to flavor compounds. Metagenomic data revealed that the most prevalent assembly of bacteria and archaea was Proteiniphilum, Caproicibacterium, Petrimonas, Lactobacillus, Clostridium, Aminobacterium, Syntrophomonas, Methanobacterium, Methanoculleus, and Methanosarcina. The important enzymes ofPMwere in bothGH and GT familymetabolism. A total of 38 high-quality metagenome-assembled genomes (MAGs) were obtained, including those at the family level (n = 13), genus level (n = 17), and species level (n = 8). GSMMs of the 38 MAGs were then constructed. From the GSMMs, individual and community capabilities respectively were predicted to be able to produce 111 metabolites and 598 metabolites. Twenty-three predicted metabolites were consistent with the metabonomics detected flavors and served as targets. Twelve sub-community of were screened by cross-feeding of 38 GSMMs. Of them, Methanobacterium, Sphaerochaeta, Muricomes intestini, Methanobacteriaceae, Synergistaceae, and Caloramator were core microorganisms for targets in each sub-community. Overall, this study of metagenomic and target-community screening could help our understanding of the metabolite-microbiome association and further bioregulation of baijiu.


Bacteria , Metagenomics , Microbiota , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Archaea/genetics , Archaea/metabolism , Archaea/classification , Flavoring Agents/metabolism , Metagenome
4.
PeerJ ; 12: e17424, 2024.
Article En | MEDLINE | ID: mdl-38827279

Background: Nonylphenol (NP) is widely recognized as a crucial environmental endocrine-disrupting chemical and persistent toxic substance. The remediation of NP-contaminated sites primarily relies on biological degradation. Compound microbial products, as opposed to pure strains, possess a greater variety of metabolic pathways and can thrive in a wider range of environmental conditions. This characteristic is believed to facilitate the synergistic degradation of pollutants. Limited research has been conducted to thoroughly examine the potential compatibility of compound microbial agents with indigenous microflora, their ability to function effectively in practical environments, their capacity to enhance the dissipation of NP, and their potential to improve soil physicochemical and biological characteristics. Methods: In order to efficiently eliminate NP in contaminated soil in an eco-friendly manner, a simulation study was conducted to investigate the impact of bioaugmentation using the functional compound microbial agent NP-M2 at varying concentrations (50 and 200 mg/L) on the dynamics of the soil microbial community. The treatments were set as follows: sterilized soil with 50 mg/kg NP (CK50) or 200 mg/kg NP (CK200); non-sterilized soil with 50 mg/kg NP (TU50) or 200 mg/kg NP (TU200); non-sterilized soil with the compound microbial agent NP-M2 at 50 mg/kg NP (J50) or 200 mg/kg NP (J200). Full-length 16S rRNA analysis was performed using the PacBio Sequel II platform. Results: Both the indigenous microbes (TU50 and TU200 treatments) and the application of NP-M2 (J50 and J200 treatments) exhibited rapid NP removal, with removal rates ranging from 93% to 99%. The application of NP-M2 further accelerated the degradation rate of NP for a subtle lag period. Although the different treatments had minimal impacts on the soil bacterial α-diversity, they significantly altered the ß-diversity and composition of the bacterial community. The dominant phyla were Proteobacteria (35.54%-44.14%), Acidobacteria (13.55%-17.07%), Planctomycetes (10.78%-11.42%), Bacteroidetes (5.60%-10.74%), and Actinobacteria (6.44%-8.68%). The core species were Luteitalea_pratensis, Pyrinomonas_methylaliphatogenes, Fimbriiglobus_ruber, Longimicrobium_terrae, and Massilia_sp003590855. The bacterial community structure and taxon distribution in polluted soils were significantly influenced by the activities of soil catalase, sucrase, and polyphenol oxidase, which were identified as the major environmental factors. Notably, the concentration of NP and, to a lesser extent, the compound microbial agent NP-M2 were found to cause major shifts in the bacterial community. This study highlights the importance of conducting bioremediation experiments in conjunction with microbiome assessment to better understand the impact of bioaugmentation/biostimulation on the potential functions of complex microbial communities present in contaminated soils, which is essential for bioremediation success.


Biodegradation, Environmental , Phenols , Soil Microbiology , Soil Pollutants , Phenols/pharmacology , Microbiota/drug effects , Soil/chemistry , Ecosystem , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification
5.
PeerJ ; 12: e17412, 2024.
Article En | MEDLINE | ID: mdl-38827283

Modern microbial mats are relictual communities mostly found in extreme environments worldwide. Despite their significance as representatives of the ancestral Earth and their important roles in biogeochemical cycling, research on microbial mats has largely been localized, focusing on site-specific descriptions and environmental change experiments. Here, we present a global comparative analysis of non-lithifying microbial mats, integrating environmental measurements with metagenomic data from 62 samples across eight sites, including two new samples from the recently discovered Archaean Domes from Cuatro Ciénegas, Mexico. Our results revealed a notable influence of environmental filtering on both taxonomic and functional compositions of microbial mats. Functional redundancy appears to confer resilience to mats, with essential metabolic pathways conserved across diverse and highly contrasting habitats. We identified six highly correlated clusters of taxa performing similar ecological functions, suggesting niche partitioning and functional specialization as key mechanisms shaping community structure. Our findings provide insights into the ecological principles governing microbial mats, and lay the foundation for future research elucidating the intricate interplay between environmental factors and microbial community dynamics.


Metagenomics , Archaea/genetics , Archaea/classification , Mexico , Bacteria/genetics , Bacteria/classification , Ecosystem , Microbiota/genetics , Metagenome , Geologic Sediments/microbiology
6.
PeerJ ; 12: e17421, 2024.
Article En | MEDLINE | ID: mdl-38827308

Background: Rainfall-induced coastal runoff represents an important environmental impact in near-shore coral reefs that may affect coral-associated bacterial microbiomes. Shifts in microbiome community composition and function can stress corals and ultimately cause mortality and reef declines. Impacts of environmental stress may be site specific and differ between coral microbiome compartments (e.g., tissue versus mucus). Coastal runoff and associated water pollution represent a major stressor for near-shore reef-ecosystems in Guam, Micronesia. Methods: Acropora pulchra colonies growing on the West Hagåtña reef flat in Guam were sampled over a period of 8 months spanning the 2021 wet and dry seasons. To examine bacterial microbiome diversity and composition, samples of A. pulchra tissue and mucus were collected during late April, early July, late September, and at the end of December. Samples were collected from populations in two different habitat zones, near the reef crest (farshore) and close to shore (nearshore). Seawater samples were collected during the same time period to evaluate microbiome dynamics of the waters surrounding coral colonies. Tissue, mucus, and seawater microbiomes were characterized using 16S DNA metabarcoding in conjunction with Illumina sequencing. In addition, water samples were collected to determine fecal indicator bacteria (FIB) concentrations as an indicator of water pollution. Water temperatures were recorded using data loggers and precipitation data obtained from a nearby rain gauge. The correlation structure of environmental parameters (temperature and rainfall), FIB concentrations, and A. pulchra microbiome diversity was evaluated using a structural equation model. Beta diversity analyses were used to investigate spatio-temporal trends of microbiome composition. Results: Acropora pulchra microbiome diversity differed between tissues and mucus, with mucus microbiome diversity being similar to the surrounding seawater. Rainfall and associated fluctuations of FIB concentrations were correlated with changes in tissue and mucus microbiomes, indicating their role as drivers of A. pulchra microbiome diversity. A. pulchra tissue microbiome composition remained relatively stable throughout dry and wet seasons; tissues were dominated by Endozoicomonadaceae, coral endosymbionts and putative indicators of coral health. In nearshore A. pulchra tissue microbiomes, Simkaniaceae, putative obligate coral endosymbionts, were more abundant than in A. pulchra colonies growing near the reef crest (farshore). A. pulchra mucus microbiomes were more diverse during the wet season than the dry season, a distinction that was also associated with drastic shifts in microbiome composition. This study highlights the seasonal dynamics of coral microbiomes and demonstrates that microbiome diversity and composition may differ between coral tissues and the surface mucus layer.


Anthozoa , Coral Reefs , Microbiota , Seasons , Animals , Anthozoa/microbiology , Microbiota/physiology , Microbiota/genetics , Mucus/microbiology , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
7.
Food Microbiol ; 122: 104534, 2024 Sep.
Article En | MEDLINE | ID: mdl-38839214

The enhancement of the quality of northeast sauerkraut can be achieved by inoculation with lactic acid bacteria. However, a comprehensive ecological understanding of the intricate dynamic processes involved is currently lacking, which could yield valuable insights for regulating sauerkraut fermentation. This study compares spontaneously sauerkrauts with the sauerkrauts inoculated with autochthonous Lactiplantibacillus plantarum SC-MDJ and commercial L. plantarum, respectively. We examine their physicochemical properties, quality characteristics, bacterial community dynamics, and ecological network interactions. Inoculation with L. plantarum leads to reduced bacterial community richness and niche breadth, but an increase in robustness, interactions, and assembly processes. Notably, there appears to be a potential correlation between bacterial community structure and quality characteristics. Particularly, sauerkraut inoculated with L. plantarum SC-MDJ may produce a sourness more quickly, possibly attributed to the enhanced ecological role of L. plantarum SC-MDJ. This study establishes a foundation for the targeted regulation of sauerkraut fermentation.


Fermentation , Lactobacillus plantarum , Lactobacillus plantarum/metabolism , Food Microbiology , Fermented Foods/microbiology , Microbiota
8.
Food Microbiol ; 122: 104565, 2024 Sep.
Article En | MEDLINE | ID: mdl-38839213

To evaluate the effects of bioaugmentation fermentation inoculated with one ester-producing strain (Wickerhamomyces anomalus ZX-1) and two strains of lactic acid bacteria (Lactobacillus plantarum CGMCC 24035 and Lactobacillus acidophilus R2) for improving the flavor of persimmon vinegar, microbial community, flavor compounds and metabolites were analyzed. The results of microbial diversity analysis showed that bioaugmentation fermentation significantly increased the abundance of Lactobacillus, Saccharomyces, Pichia and Wickerhamomyces, while the abundance of Acetobacter, Apiotrichum, Delftia, Komagataeibacter, Kregervanrija and Aspergillus significantly decreased. After bioaugmentation fermentation, the taste was softer, and the sensory irritancy of acetic acid was significantly reduced. The analysis of HS-SPME-GC-MS and untargeted metabolomics based on LC-MS/MS showed that the contents of citric acid, lactic acid, malic acid, ethyl lactate, methyl acetate, isocitrate, acetoin and 2,3-butanediol were significantly increased. By multivariate analysis, 33 differential metabolites were screened out to construct the correlation between the differential metabolites and microorganisms. Pearson correlation analysis showed that methyl acetate, ethyl lactate, betaine, aconitic acid, acetoin, 2,3-butanediol and isocitrate positively associated with Wickerhamomyces and Lactobacillus. The results confirmed that the quality of persimmon vinegar was improved by bioaugmentation fermentation.


Acetic Acid , Diospyros , Fermentation , Microbiota , Acetic Acid/metabolism , Diospyros/microbiology , Diospyros/metabolism , Saccharomycetales/metabolism , Taste , Flavoring Agents/metabolism , Lactobacillus plantarum/metabolism , Food Microbiology , Lactobacillus acidophilus/metabolism , Lactobacillus acidophilus/growth & development , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics
9.
Food Microbiol ; 122: 104528, 2024 Sep.
Article En | MEDLINE | ID: mdl-38839212

Human milk is considered the most suitable source of nutrition for infants. Donor human milk from human milk banks (HMB) is recommended as the best alternative for infants whose mothers' own milk is unavailable. Microbiological screening of milk donated to HMB is important to ensure the quality and safety of the pasteurised human milk. This article describes the microbiological status of human milk donated to the Regional Human Milk Bank in Torun, Poland. Statistical data regarding the microbiological analysis of milk from 292 donors were collected in the years 2013-2021. Total of 538 milk samples were tested. Only in 6% of human milk samples the bacteria level was above the required standard and/or the milk had potentially pathogenic bacteria. The main core of donors' breastmilk bacteria represents the skin microbiota, and the composition of the microbiota is strictly related to the surrounding environment. The most abundant genera detected in milk samples were the Staphylococcus group. Prolonged hospitalisation of infants' mothers and/or offsprings is associated with potentially pathogenic bacteria colonization in milk. The use of the modern identification method MALDI-TOF resulted in more accurate results compared to the biochemical methods. Our analysis indicates that most of the tested milk samples (94%), both expressing at home and in hospital environments, meet the criteria for admission to the human milk bank. Effective techniques for identifying microorganisms ensure that donor milk from human milk banks meets the guidelines set for these units.


Bacteria , Milk Banks , Milk, Human , Humans , Milk, Human/microbiology , Poland , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Female , Adult , Microbiota , Infant , Young Adult
10.
Food Microbiol ; 122: 104558, 2024 Sep.
Article En | MEDLINE | ID: mdl-38839222

In this study, we investigated the microbiota of 72 Italian ham samples collected after 12 months of seasoning. The hams were elaborated from pigs fed different rearing methods, including the traditional restricted medium protein diet chosen as control (C group); restrictive low protein diet (LP group); two ad libitum high-protein diet groups (HP9M group: slaughter at 9 months of age; HP170 group: slaughter at 170 kg). A multi-amplicon 16S metabarcoding approach was used, and a total of 2845 Amplicon Sequence Variants were obtained from the 72 ham samples. Main phyla included: Firmicutes (90.8%), Actinobacteria (6.2%), Proteobacteria (2.7%), and Bacteroidota (0.12%). The most common genera were Staphylococcus, Tetragenococcus, and Brevibacterium. Shannon index for α-diversity was found statistically significant, notably for the HP9M group, indicating higher diversity compared to C. PERMANOVA test on ß-diversity showed significant differences in rearing methods between HP170 and C, HP170 and LP, and HP9M vs. C. All three rearing methods revealed associations with characteristic communities: the HP9M group had the highest number of associations, many of which were due to spoilage bacteria, whereas the LP group had the highest number of seasoning-favourable genera.


Bacteria , Microbiota , RNA, Ribosomal, 16S , Animals , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Swine , Meat Products/microbiology , Meat Products/analysis , Animal Feed/analysis , Food Microbiology , Italy
11.
Food Microbiol ; 122: 104569, 2024 Sep.
Article En | MEDLINE | ID: mdl-38839228

Huangjiu is a spontaneously fermented alcoholic beverage, that undergoes intricate microbial compositional changes. This study aimed to unravel the flavor and quality formation mechanisms based on the microbial metabolism of Huangjiu. Here, metagenome techniques, chemometrics analysis, and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics combined with microbial metabolic network were employed to investigate the distinctions and relationship between the microbial profiles and the quality characteristics, flavor metabolites, functional metabolic patterns of Huangjiu across three regions. Significant variations (P < 0.05) were observed in metabolic rate of physicochemical parameters and biogenic amine concentration among three regions. 8 aroma compounds (phenethyl acetate, phenylethyl alcohol, isobutyl alcohol, ethyl octanoate, ethyl acetate, ethyl hexanoate, isoamyl alcohol, and diethyl succinate) out of 448 volatile compounds were identified as the regional chemical markers. 25 dominant microbial genera were observed through metagenomic analysis, and 13 species were confirmed as microbial markers in three regions. A metabolic network analysis revealed that Saccharomycetales (Saccharomyces), Lactobacillales (Lactobacillus, Weissella, and Leuconostoc), and Eurotiales (Aspergillus) were the predominant populations responsible for substrate, flavor (mainly esters and phenylethyl alcohol) metabolism, Lactobacillales and Enterobacterales were closely linked with biogenic amine. These findings provide scientific evidence for regional microbial contributions to geographical characteristics of Huangjiu, and perspectives for optimizing microbial function to promote Huangjiu quality.


Bacteria , Fermentation , Gas Chromatography-Mass Spectrometry , Metabolic Networks and Pathways , Metagenomics , Oryza , Volatile Organic Compounds , Wine , Wine/analysis , Wine/microbiology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Oryza/microbiology , Oryza/chemistry , Oryza/metabolism , China , Taste , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Metabolomics/methods , Odorants/analysis , Microbiota , Solid Phase Microextraction , Biogenic Amines/analysis , Biogenic Amines/metabolism , East Asian People
12.
Food Microbiol ; 122: 104553, 2024 Sep.
Article En | MEDLINE | ID: mdl-38839233

Biofilms formed by spoilage and pathogenic bacteria increase microbial persistence, causing an adverse influence on the quality of seafood. The mono-species biofilms are widely reported, however, the contamination of multi-species biofilms and their matrix in food environments are still not fully understood. Here, we assessed the contamination of multi-species biofilms in three seafood processing environments with different hygiene levels by detecting bacterial number and three biofilm matrix components (carbohydrates, extracellular DNA (eDNA), and proteins). Samples comprising seven food matrix surfaces and eight food processing equipment surfaces were collected from two seafood processing plants (XY and XC) and one seafood market (CC). The results showed that the bacterial counts ranged from 1.89 to 4.91 CFU/cm2 and 5.68 to 9.15 BCE/cm2 in these surfaces by cultivation and real-time PCR, respectively. Six biofilm hotspots were identified, including four in CC and two in XY. Among the three processing environments, the amplicon sequence variants (ASVs) of Proteobacteria, Bacteroidetes, and Actinobacteria decreased with improved processing hygiene, while Firmicutes showed a decrease in the four most abundant phyla. The most prevalent bacteria belonged to genera Psychrobacter, Acinetobacter, and Pseudomonas, demonstrating the significant differences and alteration in bacterial community composition during different environments. From the biofilm hotspots, 15 isolates with strong biofilm forming ability were identified, including 7 Pseudomonas, 7 Acinetobacter, and 1 Psychrobacter. The Pseudomonas isolates exhibited the highest production of EPS components and three strong motilities, whose characteristics were positively correlated. Thus, this study verified the presence of multi-species biofilms in seafood processing environments, offering preliminary insights into the diversity of microbial communities during processing. It highlights potential contamination sources and emphasizes the importance of understanding biofilms composition to control biofilms formation in seafood processing environments.


Bacteria , Biofilms , Food Handling , Food Microbiology , Microbiota , Seafood , Biofilms/growth & development , Seafood/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/growth & development , Hygiene , Food Contamination/analysis
13.
Environ Microbiol Rep ; 16(3): e13302, 2024 Jun.
Article En | MEDLINE | ID: mdl-38852938

Boreal freshwaters go through four seasons, however, studies about the decomposition of terrestrial and plastic compounds often focus only on summer. We compared microbial decomposition of 13C-polyethylene, 13C-polystyrene, and 13C-plant litter (Typha latifolia) by determining the biochemical fate of the substrate carbon and identified the microbial decomposer taxa in humic lake waters in four seasons. For the first time, the annual decomposition rate including separated seasonal variation was calculated for microplastics and plant litter in the freshwater system. Polyethylene decomposition was not detected, whereas polystyrene and plant litter were degraded in all seasons. In winter, decomposition rates of polystyrene and plant litter were fivefold and fourfold slower than in summer, respectively. Carbon from each substrate was mainly respired in all seasons. Plant litter was utilized efficiently by various microbial groups, whereas polystyrene decomposition was limited to Alpha- and Gammaproteobacteria. The decomposition was not restricted only to the growth season, highlighting that the decomposition of both labile organic matter and extremely recalcitrant microplastics continues throughout the seasons.


Biodegradation, Environmental , Lakes , Microbiota , Seasons , Lakes/microbiology , Lakes/chemistry , Plastics/metabolism , Plastics/chemistry , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Humic Substances/analysis , Typhaceae/microbiology , Typhaceae/metabolism , Typhaceae/chemistry , Microplastics/metabolism , Polyethylene/metabolism , Polyethylene/chemistry , Carbon/metabolism , Polystyrenes/chemistry , Polystyrenes/metabolism
14.
Environ Microbiol Rep ; 16(3): e13279, 2024 Jun.
Article En | MEDLINE | ID: mdl-38855918

Microbial symbionts play crucial roles in insect biology, yet their diversity, distribution, and temporal dynamics across host populations remain poorly understood. In this study, we investigated the spatio-temporal distribution of bacterial symbionts within the widely distributed and economically significant leafhopper genus Macrosteles, with a focus on Macrosteles laevis. Using host and symbiont marker gene amplicon sequencing, we explored the intricate relationships between these insects and their microbial partners. Our analysis of the cytochrome oxidase subunit I (COI) gene data revealed several intriguing findings. First, there was no strong genetic differentiation across M. laevis populations, suggesting gene flow among them. Second, we observed significant levels of heteroplasmy, indicating the presence of multiple mitochondrial haplotypes within individuals. Third, parasitoid infections were prevalent, highlighting the complex ecological interactions involving leafhoppers. The 16S rRNA data confirmed the universal presence of ancient nutritional endosymbionts-Sulcia and Nasuia-in M. laevis. Additionally, we found a high prevalence of Arsenophonus, another common symbiont. Interestingly, unlike most previously studied species, M. laevis exhibited only occasional cases of infection with known facultative endosymbionts and other bacteria. Notably, there was no significant variation in symbiont prevalence across different populations or among sampling years within the same population. Comparatively, facultative endosymbionts such as Rickettsia, Wolbachia, Cardinium and Lariskella were more common in other Macrosteles species. These findings underscore the importance of considering both host and symbiont dynamics when studying microbial associations. By simultaneously characterizing host and symbiont marker gene amplicons in large insect collections, we gain valuable insights into the intricate interplay between insects and their microbial partners. Understanding these dynamics contributes to our broader comprehension of host-microbe interactions in natural ecosystems.


Bacteria , Hemiptera , Microbiota , RNA, Ribosomal, 16S , Symbiosis , Animals , Hemiptera/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny , Electron Transport Complex IV/genetics
15.
PLoS One ; 19(6): e0304959, 2024.
Article En | MEDLINE | ID: mdl-38857239

Amblyomma americanum, a known vector of multiple tick-borne pathogens, has expanded its geographic distribution across the United States in the past decades. Tick microbiomes may play a role shaping their host's life history and vectorial capacity. Bacterial communities associated with A. americanum may reflect, or enable, geographic expansion and studying the microbiota will improve understanding of tick-borne disease ecology. We examined the microbiota structure of 189 adult ticks collected in four regions encompassing their historical and current geographic distribution. Both geographic region of origin and sex were significant predictors of alpha diversity. As in other tick models, within-sample diversity was low and uneven given the presence of dominant endosymbionts. Beta diversity analyses revealed that bacterial profiles of ticks of both sexes collected in the West were significantly different from those of the Historic range. Biomarkers were identified for all regions except the historical range. In addition, Bray-Curtis dissimilarities overall increased with distance between sites. Relative quantification of ecological processes showed that, for females and males, respectively, drift and dispersal limitation were the primary drivers of community assembly. Collectively, our findings highlight how microbiota structural variance discriminates the western-expanded populations of A. americanum ticks from the Historical range. Spatial autocorrelation, and particularly the detection of non-selective ecological processes, are indicative of geographic isolation. We also found that prevalence of Ehrlichia chaffeensis, E. ewingii, and Anaplasma phagocytophilum ranged from 3.40-5.11% and did not significantly differ by region. Rickettsia rickettsii was absent from our samples. Our conclusions demonstrate the value of synergistic analysis of biogeographic and microbial ecology data in investigating range expansion in A. americanum and potentially other tick vectors as well.


Amblyomma , Microbiota , Animals , Female , Male , Amblyomma/microbiology , United States , Ixodidae/microbiology
17.
J Obstet Gynaecol ; 44(1): 2361847, 2024 Dec.
Article En | MEDLINE | ID: mdl-38861397

OBJECTIVE: The vaginal flora has been reported to be associated with human papillomavirus (HPV) infection. The purpose of this study was to investigate the characteristics of the cervical microbiota in patients with HPV infection and to analyse the changes in the vaginal flora and enzyme profiles in females with HPV infection. METHODS: We conducted a cross-sectional study involving 206 participants who underwent HPV genotyping, sexually transmitted diseases pathogen testing, cytology examination, and microbiome analysis. Additionally, we collected 115 HPV-negative samples and 48 HPV-positive samples for 16S rRNA amplicon sequencing. The vaginal microbial communities of both groups were analysed for diversity and differences to explore their association with HPV infection. RESULTS: The abundance of Lactobacillus was found to be reduced, while Gardnerella vaginalis was significantly more prevalent in the HPV + group. In terms of alpha diversity indices, the Shannon index (P = .0036) and Simpson index (P = .02) were higher in the HPV + group compared to the HPV - group, indicating greater community diversity in the HPV + group. Among the 10 sexually transmitted diseases pathogens analysed, Uup3 and Uup6 were significantly associated with HPV infection. Statistically significant differences were observed in Nugent scores and bacterial vaginosis between the two groups (P < .05). In functional analysis, 11 proteins and 13 enzymes were found to be significantly altered in the HPV + group. CONCLUSION: Our study demonstrates that disruptions in the vaginal flora are associated with HPV infection. Reduced levels of Lactobacillus, increased prevalence of Gardnerella, and abnormal enzyme profiles are closely linked to HPV infection.


The purpose of this study was to investigate the characteristics of the cervical microbiota in patients with human papillomavirus infection and to analyse the changes in the vaginal flora and enzyme profiles in females with human papillomavirus infection. We conducted a cross-sectional study involving 206 participants who underwent human papillomavirus genotyping, sexually transmitted diseases pathogen testing, cytology examination, and microbiome analysis. Additionally, we collected 115 HPV-negative samples and 48 HPV-positive samples for 16S rRNA amplicon sequencing. The abundance of Lactobacillus was found to be reduced, while Gardnerella vaginalis was significantly more prevalent in the HPV + group. In functional analysis, 11 proteins and 13 enzymes were found to be significantly altered in the HPV + group. Our study demonstrates that disruptions in the vaginal flora are associated with HPV infection. Reduced levels of Lactobacillus, increased prevalence of Gardnerella, and abnormal enzyme profiles are closely linked to HPV infection.


Gardnerella vaginalis , Lactobacillus , Microbiota , Papillomavirus Infections , Vagina , Humans , Female , Papillomavirus Infections/virology , Cross-Sectional Studies , Vagina/microbiology , Vagina/virology , Adult , Lactobacillus/isolation & purification , Gardnerella vaginalis/isolation & purification , Vaginosis, Bacterial/microbiology , Vaginosis, Bacterial/epidemiology , Middle Aged , RNA, Ribosomal, 16S/analysis , Papillomaviridae/isolation & purification , Papillomaviridae/genetics , Young Adult , Cervix Uteri/microbiology , Cervix Uteri/virology
18.
Appl Microbiol Biotechnol ; 108(1): 367, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38850297

Recent microbiome research has incorporated a higher number of samples through more participants in a study, longitudinal studies, and metanalysis between studies. Physical limitations in a sequencing machine can result in samples spread across sequencing runs. Here we present the results of sequencing nearly 1000 16S rRNA gene sequences in fecal (stabilized and swab) and oral (swab) samples from multiple human microbiome studies and positive controls that were conducted with identical standard operating procedures. Sequencing was performed in the same center across 18 different runs. The simplified mock community showed limitations in accuracy, while precision (e.g., technical variation) was robust for the mock community and actual human positive control samples. Technical variation was the lowest for stabilized fecal samples, followed by fecal swab samples, and then oral swab samples. The order of technical variation stability was inverse of DNA concentrations (e.g., highest in stabilized fecal samples), highlighting the importance of DNA concentration in reproducibility and urging caution when analyzing low biomass samples. Coefficients of variation at the genus level also followed the same trend for lower variation with higher DNA concentrations. Technical variation across both sample types and the two human sampling locations was significantly less than the observed biological variation. Overall, this research providing comparisons between technical and biological variation, highlights the importance of using positive controls, and provides semi-quantified data to better understand variation introduced by sequencing runs. KEY POINTS: • Mock community and positive control accuracy were lower than precision. • Samples with lower DNA concentration had increased technical variation across sequencing runs. • Biological variation was significantly higher than technical variation due to sequencing runs.


DNA, Bacterial , Feces , Microbiota , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Humans , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Microbiota/genetics , Sequence Analysis, DNA/methods , DNA, Bacterial/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Reproducibility of Results , Mouth/microbiology , High-Throughput Nucleotide Sequencing/methods
19.
BMC Microbiol ; 24(1): 204, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38851673

BACKGROUND: The Gastrodia elata Bl. is an orchid, and its growth demands the presence of Armillaria species. The strong competitiveness of Armillaria species has always been a concern of major threat to other soil organisms, thus disrupting the equilibrium of soil biodiversity. Introducing other species to where G. elata was cultivated, could possibly alleviate the problems associated with the disequilibrium of soil microenvironment; however, their impacts on the soil microbial communities and the underlying mechanisms remain unclear. To reveal the changes of microbial groups associated with soil chemical properties responding to different cultivation species, the chemical property measurements coupled with the next-generation pyrosequencing analyses were applied with soil samples collected from fallow land, cultivation of G. elata and Phallus impudicus, respectively. RESULTS: The cultivation of G. elata induced significant increases (p < 0.05) in soil pH and NO3-N content compared with fallow land, whereas subsequent cultivation of P. impudicus reversed these G. elata-induced increases and was also found to significantly increase (p < 0.05) the content of soil NH4+-N and AP. The alpha diversities of soil microbial communities were significantly increased (p < 0.01) by cultivation of G. elata and P. impudicus as indicated with Chao1 estimator and Shannon index. The structure and composition of soil microbial communities differed responding to different cultivation species. In particular, the relative abundances of Bacillus, norank_o_Gaiellales, Mortierella and unclassified_k_Fungi were significantly increased (p < 0.05), while the abundances of potentially beneficial genera such as Acidibacter, Acidothermus, Cryptococcus, and Penicillium etc., were significantly decreased (p < 0.05) by cultivation of G. elata. It's interesting to find that cultivation of P. impudicus increased the abundances of these genera that G. elata decreased before, which contributed to the difference of composition and structure. The results of CCA and heatmap indicated that the changes of soil microbial communities had strong correlations with soil nutrients. Specifically, among 28 genera presented, 50% and 42.9% demonstrated significant correlations with soil pH and NO3-N in response to cultivation of G. elata and P. impudicus. CONCLUSIONS: Our findings suggested that the cultivation of P. impudicus might have potential benefits as result of affecting soil microorganisms coupled with changes in soil nutrient profile.


Bacteria , Biodiversity , Gastrodia , Microbiota , Soil Microbiology , Soil , Soil/chemistry , Gastrodia/microbiology , Gastrodia/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Microbiota/genetics , Hydrogen-Ion Concentration , Nitrogen/analysis , Nitrogen/metabolism , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Armillaria/genetics , RNA, Ribosomal, 16S/genetics
20.
Commun Biol ; 7(1): 706, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38851788

When antimicrobial resistant bacteria (ARB) and genes (ARGs) reach novel habitats, they can become part of the habitat's microbiome in the long term if they are able to overcome the habitat's biotic resilience towards immigration. This process should become more difficult with increasing biodiversity, as exploitable niches in a given habitat are reduced for immigrants when more diverse competitors are present. Consequently, microbial diversity could provide a natural barrier towards antimicrobial resistance by reducing the persistence time of immigrating ARB and ARG. To test this hypothesis, a pan-European sampling campaign was performed for structured forest soil and dynamic riverbed environments of low anthropogenic impact. In soils, higher diversity, evenness and richness were significantly negatively correlated with relative abundance of >85% of ARGs. Furthermore, the number of detected ARGs per sample were inversely correlated with diversity. However, no such effects were present in the more dynamic riverbeds. Hence, microbiome diversity can serve as a barrier towards antimicrobial resistance dissemination in stationary, structured environments, where long-term, diversity-based resilience against immigration can evolve.


Biodiversity , Drug Resistance, Bacterial , Microbiota , Soil Microbiology , Microbiota/genetics , Drug Resistance, Bacterial/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Genes, Bacterial , Rivers/microbiology , Anti-Bacterial Agents/pharmacology , Ecosystem
...