Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 266
Filter
1.
Environ Toxicol Chem ; 43(10): 2222-2231, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39110011

ABSTRACT

Cyanobacterial harmful algal blooms can pose risks to ecosystems and human health worldwide due to their capacity to produce natural toxins. The potential dangers associated with numerous metabolites produced by cyanobacteria remain unknown. Only select classes of cyanopeptides have been extensively studied with the aim of yielding substantial evidence regarding their toxicity, resulting in their inclusion in risk management and water quality regulations. Information about exposure concentrations, co-occurrence, and toxic impacts of several cyanopeptides remains largely unexplored. We used liquid chromatography-mass spectrometry (LC-MS)-based metabolomic methods associated with chemometric tools (NP Analyst and Data Fusion-based Discovery), as well as an acute toxicity essay, in an innovative approach to evaluate the association of spectral signatures and biological activity from natural cyanobacterial biomass collected in a eutrophic reservoir in southeastern Brazil. Four classes of cyanopeptides were revealed through metabolomics: microcystins, microginins, aeruginosins, and cyanopeptolins. The bioinformatics tools showed high bioactivity correlation scores for compounds of the cyanopeptolin class (0.54), in addition to microcystins (0.54-0.58). These results emphasize the pressing need for a comprehensive evaluation of the (eco)toxicological risks associated with different cyanopeptides, considering their potential for exposure. Our study also demonstrated that the combined use of LC-MS/MS-based metabolomics and chemometric techniques for ecotoxicological research can offer a time-efficient strategy for mapping compounds with potential toxicological risk. Environ Toxicol Chem 2024;43:2222-2231. © 2024 SETAC.


Subject(s)
Biomass , Cyanobacteria , Metabolomics , Cyanobacteria/metabolism , Brazil , Microcystins/toxicity , Microcystins/metabolism , Microcystins/analysis , Chromatography, Liquid , Animals , Environmental Monitoring/methods
2.
Aquat Toxicol ; 273: 106983, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852545

ABSTRACT

The mass proliferation of cyanobacteria, episodes known as blooms, is a concern worldwide. One of the most critical aspects during these blooms is the production of toxic secondary metabolites that are not limited to the four cyanotoxins recognized by the World Health Organization. These metabolites comprise a wide range of structurally diverse compounds that possess bioactive functions. Potential human and ecosystem health risks posed by these metabolites and co-produced mixtures remain largely unknown. We studied acute lethal and sublethal effects measured as impaired mobility on the freshwater microcrustaceans Thamnocephalus platyurus for metabolite mixtures from two cyanobacterial strains, a microcystin (MC) producer and a non-MC producer. Both cyanobacterial extracts, from the MC-producer and non-MC-producer, caused acute toxicity with LC50 (24 h) values of 0.50 and 2.55 mgdw_biomass/mL, respectively, and decreased locomotor activity. Evaluating the contribution of different cyanopeptides revealed that the Micropeptin-K139-dominated fraction from the MC-producer extract contributed significantly to mortality and locomotor impairment of the microcrustaceans, with potential mixture effect with other cyanopeptolins present in this fraction. In the non-MC-producer extract, compounds present in the apolar fraction contributed mainly to mortality, locomotor impairment, and morphological changes in the antennae of the microcrustacean. No lethal or sublethal effects were observed in the fractions dominated by other cyanopetides (Cyanopeptolin 959, Nostoginin BN741). Our findings contribute to the growing body of research indicating that cyanobacterial metabolites beyond traditional cyanotoxins cause detrimental effects. This underscores the importance of toxicological assessments of such compounds, also at sublethal levels.


Subject(s)
Cyanobacteria , Microcystins , Water Pollutants, Chemical , Microcystins/toxicity , Animals , Cyanobacteria/chemistry , Water Pollutants, Chemical/toxicity , Fresh Water/chemistry , Behavior, Animal/drug effects , Anostraca/drug effects , Lethal Dose 50
3.
Environ Pollut ; 353: 124166, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754694

ABSTRACT

Potentially toxic cyanobacterial blooms (cyanoHABs) have become a problem in public water supply reservoirs. Temperature rise caused by climate change can increase the frequency and intensity of blooms, which may influence the cyanotoxins concentration in the environment. This study aimed to evaluate the effect of the temperature on the responses of a Neotropical catfish exposed to a neurotoxin-rich cyanobacterial crude extract (Raphidiopsis raciborskii T3). Juveniles of Rhamdia quelen were exposed to four treatments, based on study data: control at 25 °C (C25), control at 30 °C (C30), crude extract equivalent to 105 cells.mL-l of R. raciborskii at 25 °C (CE25) and 30 °C (CE30). After 96 h of exposure, the fish were anesthetized and blood was taken. After euthanasia, the gill, posterior kidney, brain, muscle, liver and gonad were sampled for hematological, biochemical, genotoxic and histopathological biomarker analysis. Liver was sampled for proteomic analysis for identification of proteins related to energy production. Water samples were collected at the beginning and the end of the experiment for neurotoxins quantification. Different parameters in both males and females were altered at CE25, evidencing the effects of neurotoxins in freshwater fish. At CE30, a water warming scenario, more effects were observed in females than at 25 °C, such as activation of saxitoxin metabolism pathway and genotoxicity. More damage to macromolecules was observed in females at the higher temperature, demonstrating that the increase in temperature can aggravate the toxicity of neurotoxins produced by R. raciborskii T3.


Subject(s)
Catfishes , Cyanobacteria , Animals , Catfishes/physiology , Temperature , Microcystins/toxicity , Female , Male , Cyanobacteria Toxins , Climate Change , Neurotoxins/toxicity , Bacterial Toxins/toxicity , Marine Toxins/toxicity
4.
Sci Total Environ ; 931: 172689, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38692315

ABSTRACT

Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a significant threat to communities globally, impacting ecosystems and public health. This study provides an in-depth review of the current state of cyanotoxins and the distribution of CyanoHABs species in Brazil, while also detailing the methods used for their detection. Four hundred and twenty-one incidents were analyzed from 1993 to 2021, compiling cyanotoxin records and toxic CyanoHABs occurrences. The investigation begins with the first detection of microcystins in 1994 and highlights pivotal moments, like the 1996 "Caruaru Syndrome" outbreak. This event encouraged research and updated cyanotoxin-monitoring guidelines. The Brazilian drought period of 2015-2016 exacerbated cyanobacterial growth and saxitoxin levels, coinciding with Zika-related microcephaly. This study delves into methods used for cyanotoxin analysis, including ELISA, bioassays, HPLC, and LC-MS. Additionally, we investigated the toxicity of 37 cyanobacterial strains isolated from various Brazilian environments. Extracts were tested against Artemia salina and analyzed by LC-MS. Results revealed toxicity in extracts from 49 % of cyanobacterial strains. LC-MS results were analyzed using GNPS MS/MS molecular networking for comparing experimental spectra with those of cyanotoxin standards against in-house databases and the existing literature. Our research underscores the variability in cyanotoxin production among species and over time, extending beyond microcystins. LC-MS results, interpreted through the GNPS platform, revealed six cyanotoxin groups in Brazilian strains. Yet, compounds present in 75 % of the toxic extracts remained unidentified. Further research is crucial for fully comprehending the impact of potentially harmful organisms on water quality and public health management strategies. The study highlights the urgent need for continuously monitoring cyanobacteria and the cyanotoxin inclusion of management in public health policies.


Subject(s)
Cyanobacteria , Environmental Monitoring , Harmful Algal Bloom , Microcystins , Brazil/epidemiology , Environmental Monitoring/methods , Microcystins/analysis , Bacterial Toxins/analysis , Marine Toxins/analysis
5.
Environ Pollut ; 351: 124051, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38688388

ABSTRACT

Microcystins (MCs) are a class of toxic secondary metabolites produced by some cyanobacteria strains that endanger aquatic and terrestrial organisms in various freshwater systems. Although patterns in MC occurrence are being recognized, divergences in the global data still hamper our ability to predict the toxicity of cyanobacterial blooms. This study aimed (i) to determine the dynamics of MCs and other cyanopeptides in a tropical reservoir, (ii) to investigate the correlation between peptides and potential cyanotoxin producers (iii) identifying the possible abiotic factors that influence the peptides. We analyzed, monthly, eight MC variants (MC-RR, -LA, -LF, -LR, -LW, -YR, [D-Asp3]-RR and [D-Asp3]-LR) and other peptides in 47 water samples collected monthly, all season long, from two sampling sites in a tropical eutrophic freshwater reservoir, in southeastern Brazil. The cyanopeptides were assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The biomass of potential cyanobacterial producers and water quality variables were measured. MCs were detected in both sampling sites year-round; the total MC concentration varied from 0.21 to 4.04 µg L-1, and three MC variants were identified and quantified (MC-RR, [D-Asp3]-RR, -LR). Additionally, we identified 28 compounds belonging to three other cyanopeptide classes: aeruginosin, microginin, and cyanopeptolin. As potential MC producers, Microcystis spp. and Dolichospermum circinalis were dominant during the study, representing up to 75% of the total phytoplankton. Correlational and redundancy analysis suggested positive effects of dissolved oxygen, nitrate, and total phosphorus on MC and microginins concentration, while water temperature appeared to favor aeruginosins. A comparison between our results and historical data showed a reduction in total phosphorus and cyanobacteria, suggesting increased water quality in the reservoir. However, the current MC concentrations indicate a rise in cyanobacterial toxicity over the last eight years. Moreover, our study underscores the pressing need to explore cyanopeptides other than MCs in tropical aquatic systems.


Subject(s)
Cyanobacteria , Environmental Monitoring , Microcystins , Water Quality , Brazil , Cyanobacteria/metabolism , Microcystins/analysis , Peptides/analysis , Fresh Water/chemistry , Eutrophication , Tandem Mass Spectrometry
6.
Environ Monit Assess ; 196(4): 408, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561517

ABSTRACT

Cyanobacteria inhabiting lotic environments have been poorly studied and characterized in Mexico, despite their potential risks from cyanotoxin production. This article aims to fill this knowledge gap by assessing the importance of benthic cyanobacteria as potential cyanotoxin producers in central Mexican rivers through: (i) the taxonomic identification of cyanobacteria found in these rivers, (ii) the environmental characterization of their habitats, and (iii) testing for the presence of toxin producing genes in the encountered taxa. Additionally, we introduce and discuss the use of the term "CyanoHAMs" for lotic water environments. Populations of cyanobacteria were collected from ten mountain rivers and identified using molecular techniques. Subsequently, these taxa were evaluated for genes producing anatoxins and microcystins via PCR. Through RDA analyses, the collected cyanobacteria were grouped into one of three categories based on their environmental preferences for the following: (1) waters with high ionic concentrations, (2) cold-temperate waters, or (3) waters with high nutrient enrichment. Populations from six locations were identified to genus level: Ancylothrix sp., Cyanoplacoma sp., and Oxynema sp. The latter was found to contain the gene that produces anatoxins and microcystins in siliceous rivers, while Oxynema tested positive for the gene that produces microcystins in calcareous rivers. Our results suggest that eutrophic environments are not necessarily required for toxin-producing cyanobacteria. Our records of Compactonostoc, Oxynema, and Ancylothrix represent the first for Mexico. Four taxa were identified to species level: Wilmottia aff. murrayi, Nostoc tlalocii, Nostoc montejanii, and Dichothrix aff. willei, with only the first testing positive using PCR for anatoxin and microcystin-producing genes in siliceous rivers. Due to the differences between benthic growths with respect to planktonic ones, we propose the adoption of the term Cyanobacterial Harmful Algal Mats (CyanoHAMs) as a more precise descriptor for future studies.


Subject(s)
Bacterial Toxins , Cyanobacteria , Tropanes , Microcystins/analysis , Harmful Algal Bloom , Mexico , Bacterial Toxins/genetics , Bacterial Toxins/analysis , Environmental Monitoring , Cyanobacteria/genetics , Cyanobacteria Toxins , Rivers/microbiology
7.
Sci Total Environ ; 928: 172500, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38631630

ABSTRACT

The physical and chemical properties of silver nanoparticles (AgNPs) have led to their increasing use in various fields such as medicine, food, and industry. Evidence has proven that AgNPs cause adverse effects in aquatic ecosystems, especially when the release of Ag is prolonged in time. Several studies have shown short-term adverse effects of AgNPs on freshwater phytoplankton, but few studies have analysed the impact of long-term exposures on these populations. Our studies were carried out to assess the effects of AgNPs on growth rate, photosynthesis activity, and reactive oxygen species (ROS) generation on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa, and additionally on microcystin (MC-LR) generation from these cyanobacteria. The tests were conducted both in single-species cultures and in phytoplanktonic communities exposed to 1 ngL-1 AgNPs for 28 days. The results showed that cell growth rate of both single-species cultures decreased significantly at the beginning and progressively reached control-like values at 28 days post-exposure. This effect was similar for the community-cultured cyanobacteria, but not for the green algae, which maintained a sustained decrease in growth rate. While gross photosynthesis (Pg) increased in both strains exposed in single cultures, dark respiration (R) and net photosynthesis (Pn) decreased in S. armatus and M. aeruginosa, respectively. These effects were mitigated when both strains were exposed under community culture conditions. Similarly, the ROS generation shown by both strains exposed in single-species cultures was mitigated when exposure occurred in community cultures. MC-LR production and release were significantly decreased in both single-species and community exposures. These results can supply helpful information to further investigate the potential risks of AgNPs and ultimately help policymakers make better-informed decisions about their utilization for environmental restoration.


Subject(s)
Fresh Water , Metal Nanoparticles , Microcystis , Phytoplankton , Scenedesmus , Silver , Water Pollutants, Chemical , Metal Nanoparticles/toxicity , Silver/toxicity , Phytoplankton/drug effects , Microcystis/drug effects , Scenedesmus/drug effects , Water Pollutants, Chemical/toxicity , Microcystins/toxicity , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism
8.
Mol Cell Endocrinol ; 586: 112203, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38490633

ABSTRACT

Microcystin (MC) is most common cyanobacterial toxin. Few studies have evaluated the MC effects on the hypothalamic-pituitary-gonadal (HPG) axis and metabolic function. In this study, we assessed whether MC exposure results in HPG axis and metabolic changes. Female rats were exposed to a single dose of MC at environmentally relevant levels (5, 20 and 40 µg/kg). After 24 h, we evaluated reproductive and metabolic parameters for 15 days. MC reduced the hypothalamic GnRH protein expression, increased the pituitary protein expression of GnRHr and IL-6. MC reduced LH levels and increased FSH levels. MC reduced the primary follicles, increased the corpora lutea, elevated levels of anti-Müllerian hormone (AMH) and progesterone, and decreased estrogen levels. MC increased ovarian VEGFr, LHr, AMH, ED1, IL-6 and Gp91-phox protein expression. MC increased uterine area and reduced endometrial gland number. A blunted estrogen-negative feedback was observed in MC rats after ovariectomy, with no changes in LH levels compared to intact MC rats. Therefore, these data suggest that a MC leads to abnormal HPG axis function in female rats.


Subject(s)
Hypothalamic-Pituitary-Gonadal Axis , Microcystins , Rats , Female , Animals , Microcystins/toxicity , Interleukin-6/metabolism , Ovary/metabolism , Estrogens , Gonadotropin-Releasing Hormone/metabolism
9.
Toxicol Appl Pharmacol ; 485: 116891, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485061

ABSTRACT

In the context of harmful algal blooms, fish can be exposed to the combined effects of more than one toxin. We studied the effects of consecutive exposure to Microcystin-LR (MCLR) in vivo and paralytic shellfish toxins (PST) ex vivo/in vitro (MCLR+PST) in the rainbow trout Oncorhynchus mykiss's middle intestine. We fed juvenile fish with MCLR incorporated in the feed every 12 h and euthanized them 48 h after the first feeding. Immediately, we removed the middle intestine to make ex vivo and in vitro preparations and exposed them to PST for one hour. We analyzed glutathione (GSH) and glutathione disulfide (GSSG) contents, glutathione S-transferase (GST), glutathione reductase (GR), catalase (CAT), and protein phosphatase 1 (PP1) activities in ex vivo intestinal strips; apical and basolateral ATP-biding cassette subfamily C (Abcc)-mediated transport in ex vivo everted and non- everted sacs; and reactive oxygen species (ROS) production in isolated enterocytes in vitro. MCLR+PST treatment decreased the GSH content, GSH/GSSG ratio, GST activity, and increased ROS production. GR activity remained unchanged, while CAT activity only increased in response to PST. MCLR inhibited PP1 activity and activated Abcc-mediated transport only at the basolateral side of the intestine. Our results show a combined effect of MCLR+PST on the oxidative balance in the O. mykiss middle intestine, which is not affected by the two toxins groups when applied individually. Basolateral Abcc transporters activation by MCLR treatment could lead to an increase in the absorption of toxicants (including MCLR) into the organism. Therefore, MCLR makes the O. mykiss middle intestine more sensitive to possibly co-occurring cyanotoxins like PST.


Subject(s)
Intestinal Mucosa , Marine Toxins , Microcystins , Oncorhynchus mykiss , Oxidative Stress , Reactive Oxygen Species , Animals , Microcystins/toxicity , Marine Toxins/toxicity , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Oxidative Stress/drug effects , Oncorhynchus mykiss/metabolism , Reactive Oxygen Species/metabolism , Glutathione/metabolism , Saxitoxin/toxicity
10.
Adv Exp Med Biol ; 1439: 21-49, 2023.
Article in English | MEDLINE | ID: mdl-37843804

ABSTRACT

The biological and chemical diversity of Cyanobacteria is remarkable. These ancient prokaryotes are widespread in nature and can be found in virtually every habitat on Earth where there is light and water. They are producers of an array of secondary metabolites with important ecological roles, toxic effects, and biotechnological applications. The investigation of cyanobacterial metabolites has benefited from advances in analytical tools and bioinformatics that are employed in metabolomic analyses. In this chapter, we review selected articles highlighting the use of targeted and untargeted metabolomics in the analyses of secondary metabolites produced by cyanobacteria. Here, cyanobacterial secondary metabolites have been didactically divided into toxins and natural products according to their relevance to toxicological studies and drug discovery, respectively. This review illustrates how metabolomics has improved the chemical analysis of cyanobacteria in terms of speed, sensitivity, selectivity, and/or coverage, allowing for broader and more complex scientific questions.


Subject(s)
Biological Products , Cyanobacteria , Cyanobacteria Toxins , Microcystins/analysis , Microcystins/metabolism , Microcystins/toxicity , Biological Products/metabolism , Cyanobacteria/metabolism , Ecosystem , Metabolomics
11.
Aquat Toxicol ; 263: 106689, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37713741

ABSTRACT

Cyanobacterial blooms affect aquatic ecosystems across the globe and one major concern relates to their toxins such as microcystins (MC). Yet, the ecotoxicological risks, particularly non-lethal effects, associated with other co-produced secondary metabolites remain mostly unknown. Here, we assessed survival, morphological alterations, swimming behaviour and cardiovascular functions of zebrafish (Danio rerio) upon exposure to cyanobacterial extracts of two Brazilian Microcystis strains. We verified that only MIRS-04 produced MCs and identified other co-produced cyanopeptides also for the MC non-producer NPCD-01 by LC-HRMS/MS analysis. Both cyanobacterial extracts, from the MC-producer and non-producer, caused acute toxicity in zebrafish with LC50 values of 0.49 and 0.98 mgdw_biomass/mL, respectively. After exposure to MC-producer extract, additional decreased locomotor activity was observed. The cyanopeptolin (micropeptin K139) contributed 52% of the overall mortality and caused oedemas of the pericardial region. Oedemas of the pericardial area and prevented hatching were also observed upon exposure to the fraction with high abundance of a microginin (Nostoginin BN741) in the extract of the MC non-producer. Our results further add to the yet sparse understanding of lethal and sublethal effects caused by cyanobacterial metabolites other than MCs and the need to better understand the underlying mechanisms of the toxicity. We emphasize the importance of considering mixture toxicity of co-produced metabolites in the ecotoxicological risk assessment of cyanobacterial bloom events, given the importance for predicting adverse outcomes in fish and other organisms.


Subject(s)
Cyanobacteria , Microcystis , Water Pollutants, Chemical , Animals , Microcystins/toxicity , Microcystins/metabolism , Zebrafish , Ecosystem , Larva , Water Pollutants, Chemical/toxicity , Cyanobacteria/chemistry , Microcystis/metabolism
12.
Reprod Toxicol ; 120: 108441, 2023 09.
Article in English | MEDLINE | ID: mdl-37473929

ABSTRACT

The ovaries play critical roles in regulating oocyte maturation and sex steroid hormone production and thus are critical for female reproduction. Ovarian function relies on hormone receptors and signaling pathways, making the ovaries potential targets for environmental factors, such as microcystins (MCs). MCs are a diverse group of cyanobacterial toxins generally found in eutrophic water or algal blooms. Here, we review relevant research on the associations between MC exposure and ovarian dysfunction, including their effects on ovarian morphology, folliculogenesis, steroid production, oxidative stress, endoplasmic reticulum stress, apoptosis, autophagy, and fertility. This review covers the most recent in vitro and in vivo studies in mammals. We also discuss important gaps in the literature. Overall, current evidence indicates that MC exposure causes impairments in ovarian function, but further studies are needed to elucidate the mechanisms through which MCs affect ovarian function and other female endocrine functions.


Subject(s)
Microcystins , Ovary , Animals , Female , Microcystins/toxicity , Marine Toxins , Mammals
13.
Environ Monit Assess ; 195(7): 852, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37326797

ABSTRACT

Increasing reports of cyanobacteria or cyanotoxins around the world expose a major threat for the environment, animal, and human health. Current water treatment processes are ineffective at eliminating cyanotoxins; hence, risk management relies mostly on early detection and on the development of specific regulatory frameworks. In developed countries, well-documented monitoring activities offer a good assessment of the cyanobacterial and/or cyanotoxin status and are used to prevent intoxications. In developing countries such as Peru, despite their potential threat to the environment and public health, cyanobacteria and cyanotoxins are still poorly studied. We found that the regulatory measures regarding cyanobacteria and/or cyanotoxin are almost non-existent. We also present and discuss some examples of recent monitoring efforts underwent by isolated local authorities and scientific reports that, whereas limited, may provide some important insights to be considered nationally. A revision of the available information of planktonic cyanobacteria or cyanotoxins in Peruvian freshwater lentic water bodies revealed a total of 50 documented reports of 15 different genera across 19 water bodies, including the reported highly toxic Dolichospermum and Microcystis. A unique case of microcystin-LR has been documented. We propose some recommendations to be implemented to improve potential toxic cyanobacteria risk management that include incorporating a widespread monitoring of cyanobacterial communities in lakes and reservoirs used for human consumption via specific guidelines. Aligning Peruvian regulations on cyanobacteria and cyanotoxins to international standards may also support law enforcement and ensure compliance.


Subject(s)
Cyanobacteria , Plankton , Humans , Animals , Peru , Prevalence , Environmental Monitoring , Microcystins/analysis , Cyanobacteria Toxins , Lakes , Policy Making
14.
Con-ciencia (La Paz) ; 11(1)jun. 2023.
Article in Spanish | LILACS | ID: biblio-1448049

ABSTRACT

Introducción: Las cianobacterias son microrganismos fotosintéticos, con capacidad de sintetizar una gran diversidad de metabolitos secundarios de interés para la industria, pero también han llamado la atención en las últimas décadas las toxinas denominas cianotoxinas, metabolitos que causan distintas alternaciones fisiológicas hasta llegar ocasionar la muerte de diferentes especies. Metodología: La determinación del estado de arte para el tema de cianobacterias se basó en una búsqueda bibliográfica en la base de datos especializada como Elservier, Springer, Google académico y MDPI basadas en palabras clave en español e inglés "microcistinas", "degradación de MC" y "cuantificación y detección de MC". Resultados: En la presente revisión considera dos áreas de caracterización de la microcistinas (MCs) las propiedades fisicoquímicas y propiedades biológicas, para entender su comportamiento e importancia tóxica en los sembradíos agrícolas y en la salud humana. Además de comprender alternativas para su degradación, por métodos fisicoquímicos como fotocatálisis y la gradación biológica por bacterias. Finalmente se mencionará algunos métodos actuales y en desarrollo, para la detección y cuantificación de estas MCs en ambientes acuáticos. Conclusiones: Las MCs tienen el potencial contaminar fuentes de agua como ríos y lagunas, causando daños a la salud humana y a las plantas agrícolas, tienen la capacidad de tolerar distintos cambios drásticos en factores fisicoquímicos y biológicos. Entre las alternativas reportadas la degradación bacteriana promete ser la más confiable. Finalmente, entre los distintos métodos para la detección de MCs, entre los métodos más aplicados son los inmunoensayos, debido a su versatilidad y estabilidad del método.


Introduction: Cyanobacteria are photosynthetic microorganisms, with the capacity to synthesize a great diversity of secondary metabolites of interest to the industry, but toxins called cyanotoxins have also attracted attention in recent decades, metabolites that cause different physiological alterations until they cause the death of different species. Methodology: The determination of the state of the art for the subject of cyanobacteria was based on a bibliographic search in specialized databases such as Elservier, Springer, Google Scholar and MDPI based on keywords in Spanish and English "microcystins", "MC degradation " and "quantification and detection of MC". Results: In the present review, two areas of characterization of microcystins are considered: the physicochemical properties and biological properties of microcystins (MC), to understand their behavior and toxic importance in agricultural crops and in human health.In addition to understanding alternatives for their degradation, by physicochemical methods such as photocatalysis and biological grading by bacteria.Finally, some current and developing methods will be mentioned for the detection and quantification of these MCs in aquatic environments. Conclusions: MCs have the potential to contaminate water sources such as rivers and lagoon, causing damage to human health and agricultural plants, they have the ability to tolerate different drastic changes in physicochemical and biological factors. Among the reported alternatives, bacterial degradation promises to be the most reliable. Finally, among the different methods for the detection of MCs, among the most applied methods are immunoassays, due to their versatility and stability of the method.


Subject(s)
Microcystins
15.
Harmful Algae ; 123: 102403, 2023 03.
Article in English | MEDLINE | ID: mdl-36894214

ABSTRACT

It is widely known that the environmental conditions caused by the construction of reservoirs favor the proliferation of toxic cyanobacteria and the formation of blooms due to the high residence time of the water, low turbidity, temperature regimes, among others. Microcystin-producing cyanobacteria such as those from the Microcystis aeruginosa complex (MAC) are the most frequently found organisms in reservoirs worldwide, being the role of the environment on microcystin production poorly understood. Here, we addressed the community dynamics and potential toxicity of MAC cyanobacteria in a subtropical reservoir (Salto Grande) located in the low Uruguay river. Samples were taken from five different sites (upstream, inside the reservoir and downstream) during contrasting seasons (summer and winter) to analyze: (i) the MAC community structure by amplicon sequencing of the phycocyanin gene spacer, (ii) the genotype diversity of microcystin-producing MAC by high resolution melting analysis of the mcyJ gene, and (iii) the abundance and mcy transcription activity of the microcystin-producing (toxic) fraction. We found that MAC diversity decreased from summer to winter but, despite the observed changes in MAC community structure, the abundance of toxic organisms and the transcription of mcy genes were always higher inside the reservoir, regardless of the season. Two different genotypes of toxic MAC were detected inside the reservoir, one associated with low water temperature (15 °C) and one thriving at high water temperature (31 °C). These findings indicate that the environmental conditions inside the reservoir reduce community diversity while promoting the proliferation of toxic genotypes that actively transcribe mcy genes, whose relative abundance will depend on the water temperature.


Subject(s)
Cyanobacteria , Microcystis , Microcystis/genetics , Microcystins/analysis , Uruguay , Water
16.
Toxins (Basel) ; 15(2)2023 01 17.
Article in English | MEDLINE | ID: mdl-36828400

ABSTRACT

The development of simple, reliable, and cost-effective methods is critically important to study the spatial and temporal variation of microcystins (MCs) in the food chain. Nanobodies (Nbs), antigen binding fragments from camelid antibodies, present valuable features for analytical applications. Their small antigen binding site offers a focused recognition of small analytes, reducing spurious cross-reactivity and matrix effects. A high affinity and broad cross-reactivity anti-MCs-Nb, from a llama antibody library, was validated in enzyme linked immunosorbent assay (ELISA), and bound to magnetic particles with an internal standard for pre-concentration in quantitative-matrix-assisted laser desorption ionization-time of flight mass spectrometry (Nb-QMALDI MS). Both methods are easy and fast; ELISA provides a global result, while Nb-QMALDI MS allows for the quantification of individual congeners and showed excellent performance in the fish muscle extracts. The ELISA assay range was 1.8-29 ng/g and for Nb-QMALDI, it was 0.29-29 ng/g fish ww. Fifty-five fish from a MC-containing dam were analyzed by both methods. The correlation ELISA/sum of the MC congeners by Nb-QMALDI-MS was very high (r Spearman = 0.9645, p < 0.0001). Using ROC curves, ELISA cut-off limits were defined to accurately predict the sum of MCs by Nb-QMALDI-MS (100% sensitivity; ≥89% specificity). Both methods were shown to be simple and efficient for screening MCs in fish muscle to prioritize samples for confirmatory methods.


Subject(s)
Microcystins , Single-Domain Antibodies , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Microcystins/analysis , Enzyme-Linked Immunosorbent Assay
17.
J Contam Hydrol ; 255: 104164, 2023 04.
Article in English | MEDLINE | ID: mdl-36848739

ABSTRACT

We investigated the relationship between some water quality parameters and microcystin, chlorophyll-a, and cyanobacteria in different conditions of water temperature. We also proposed to predict chlorophyll-a concentration in the Billings Reservoir using three machine learning techniques. Our results indicate that in the condition of higher water temperatures with high density of cyanobacteria, microcystin concentration can increase severely (>102 µg/L). Besides the magnitude observed in higher concentrations, in water temperatures above 25.3 °C (classified as high extreme event), higher frequencies of inadequate values of microcystin (87.5%), chlorophyll-a (70%), and cyanobacteria (82.5%) compared to cooler temperatures (<19.6 °C) were observed. The prediction of chlorophyll-a in Billings Reservoir presented good results (0.76 ≤ R2 ≤ 0.82; 0.17 ≤ RMSE≤0.20) using water temperature, total phosphorus, and cyanobacteria as predictors, with the best result using Support Vector Machine.


Subject(s)
Cyanobacteria , Microcystins , Temperature , Brazil , Chlorophyll
18.
Toxins (Basel) ; 15(1)2023 01 06.
Article in English | MEDLINE | ID: mdl-36668871

ABSTRACT

The Joanes I Reservoir is responsible for 40% of the drinking water supply of the Metropolitan Region of Salvador, Bahia, Brazil. For water sources such as this, there is concern regarding the proliferation of potentially toxin-producing cyanobacteria, which can cause environmental and public health impacts. To evaluate the presence of cyanobacteria and their cyanotoxins in the water of this reservoir, the cyanobacteria were identified by microscopy; the presence of the genes of the cyanotoxin-producing cyanobacteria was detected by molecular methods (polymerase chain reaction (PCR)/sequencing); and the presence of toxins was determined by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The water samples were collected at four sampling points in the Joanes I Reservoir in a monitoring campaign conducted during the occurrence of phytoplankton blooms, and the water quality parameters were also analysed. Ten cyanobacteria species/genera were identified at the monitoring sites, including five potentially cyanotoxin-producing species, such as Cylindrospermopsis raciborskii, Cylindrospermopsis cf. acuminato-crispa, Aphanocapsa sp., Phormidium sp., and Pseudanabaena sp. A positive result for the presence of the cylindrospermopsin toxin was confirmed at two sampling points by LC-MS/MS, which indicated that the populations are actively producing toxins. The analysis of the PCR products using the HEPF/HEPR primer pair for the detection of the microcystin biosynthesis gene mcyE was positive for the analysed samples. The results of this study point to the worrisome condition of this reservoir, from which water is collected for public supply, and indicate the importance of the joint use of different methods for the analysis of cyanobacteria and their toxins in reservoir monitoring.


Subject(s)
Bacterial Toxins , Cyanobacteria , Brazil , Bacterial Toxins/genetics , Bacterial Toxins/analysis , Chromatography, Liquid , Tandem Mass Spectrometry , Cyanobacteria/genetics , Microcystins/genetics , Microcystins/analysis , Environmental Monitoring/methods
19.
Analyst ; 148(2): 305-315, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36541436

ABSTRACT

Microcystins (MCs) are highly toxic peptides produced by cyanobacteria during algal blooms. Microcystin-leucine-arginine (MC-LR) is the most toxic and common MC variant with major effects on human and animal health upon exposure. MC-LR detection has become critical to ensure water safety, therefore robust and reliable analytical methods are needed. This work reports the development of a simple and optimized Molecularly Imprinted Nanoparticle-Based Assay (MINA) for MC-LR detection in water. Molecularly Imprinted Nanoparticles (MINs) were prepared by solid-phase polymerization on glass beads conjugated to MC-LR through (3-aminopropyl) triethoxysilane (APTES) via amide bonding. APTES-modified glass beads were obtained under optimized conditions to maximize the density of surface amino groups available for MC-LR conjugation. Two quinary mixtures of acrylic monomers differing in charge, polarity, and functionality were selected from molecular docking calculations and used to obtain MINs for MC-LR recognition using N,N'-methylene-bis-acrylamide (BIS) as the crosslinking agent. MINs were immobilized by physical adsorption onto 96-well polystyrene microplate and evaluated as per their rebinding capacity toward the analyte by using a covalent conjugate between MC-LR and the enzyme horseradish peroxidase (HRP). Experimental conditions for the MINs immobilization protocol, HRP-MC-LR concentration, and composition of the blocking solution were set to maximize the colorimetric response of the MINs compared to non-treated wells. Optimized conditions were then applied to conduct competitive MINAs with the HRP-MC-LR conjugate and the free analyte, which confirmed the preferential binding of MC-LR to the immobilized MINs for analyte concentrations ranging from 1 × 10-5 nmol L-1 to 100 nmol L-1. The best competitive MINA showed a limit of detection of 2.49 × 10-4 nmol L-1 and coefficients of variation less than 10% (n = 6), which are auspicious for the use of MINs as analytical tools for MC-LR detection below the permissible limits issued by WHO for safe water consumption (1.00 nmol L-1). This assay also proved to be selective to the analyte in cross-reactivity studies with two analogous microcystins (MC-RR and MC-YR). Analyses of lagoon and drinking water samples enriched with MC-LR revealed strong matrix effects that reduce the MINA response to the analyte, thus suggesting the need for sample pretreatment methods in future development in this subject.


Subject(s)
Drinking Water , Microcystins , Drinking Water/analysis , Marine Toxins , Microcystins/analysis , Molecular Docking Simulation
20.
Environ Sci Pollut Res Int ; 30(6): 16003-16016, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36178647

ABSTRACT

Toxic cyanobacterial blooms in aquatic ecosystems are associated to both public health and environmental concerns worldwide. Depending on the treatment technologies used, the removal capacity of cyanotoxins by drinking water treatment plants (DWTPs) is not sufficient to reach safe levels in drinking water. Likewise, controlling these blooms with algaecide may impair the efficiency of DWTPs due to the possible lysis of cyanobacterial cells and consequent release of cyanotoxins. We investigated the effects of three commercial algaecides (cationic polymer, copper sulfate, and hydrogen peroxide) on the growth parameters of the cyanobacterium Microcystis aeruginosa and the release of microcystin-LR (MC-LR). The potential interference of each algaecide on the MC-LR removal by adsorption on activated carbon (AC) was also tested through adsorption isotherms and kinetics experiments. Most algaecides significantly decreased the cell density and biovolume of M. aeruginosa, as well as increased the release of MC-LR. Interestingly, the presence of the algaecides in binary mixtures with MC-LR affected the adsorption of the cyanotoxin. Relevant adsorption parameters (e.g., maximum adsorption capacity, adsorption intensity, and affinity between MC-LR and AC) were altered when the algaecides were present, especially in the case of the cationic polymer. Also, the algaecides influenced the kinetics (e.g., by shifting the initial adsorption and the desorption constant), which may directly affect the design and operation of DWTPs. Our study indicated that algaecides can significantly impact the fate and the removal of MC-LR in DWTPs when the adsorption process is employed, with important implications for the management and performance of such facilities.


Subject(s)
Cyanobacteria , Drinking Water , Herbicides , Microcystis , Herbicides/toxicity , Charcoal/pharmacology , Ecosystem , Microcystins , Cyanobacteria Toxins , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL