Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.122
Filter
1.
AAPS PharmSciTech ; 25(6): 152, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954218

ABSTRACT

Bedaquiline (BQ) solid lipid nanoparticles (SLNs), which have previously been formulated for parenteral administration, have a risk of patient non-compliance in treating tuberculosis. This research presents a strategy to develop BQ SLNs for oral delivery to improve patient adherence, The upper and lower levels for the formulation excipients were generated from screening experiments. Using 4 input factors (BQ, lecithin, Tween 80, and PEG), a full factorial design from 3 × 2x2 × 2 experiments was randomly arranged to investigate 3 response variables: Particle size distribution (PSD), polydispersity index (PdI), and zeta potential (ZP). High shear homogenization was used to mix the solvent and aqueous phases, with 15% sucrose as a cryoprotectant. The response variables were assessed using a zeta sizer while TEM micrographs confirmed the PSD data. Solid-state assessments were conducted using powdered X-ray diffraction and scanning electron microscopy (SEM) imaging. A comparative invitro assessment was used to determine drug release from an equivalent dose of BQ free base powder and BQ-SLN, both packed in hard gelatin capsules. The sonicated formulations obtained significant effects for PSD, PdI, and ZP. The p-values (0.0001 for PdI, 0.0091 for PSD) for BQ as an independent variable in the sonicated formulation were notably higher than those in the unsonicated formulation (0.1336 for PdI, 0.0117 for PSD). The SEM images were between 100 - 400 nm and delineated nanocrystals of BQ embedded in the lipid matrix. The SLN formulation provides higher drug levels over the drug's free base; a similarity factor (f2 = 18.3) was estimated from the dissolution profiles.


Subject(s)
Chemistry, Pharmaceutical , Diarylquinolines , Lipids , Nanoparticles , Particle Size , Diarylquinolines/chemistry , Diarylquinolines/administration & dosage , Nanoparticles/chemistry , Lipids/chemistry , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Drug Liberation , Antitubercular Agents/administration & dosage , Antitubercular Agents/chemistry , Drug Compounding/methods , X-Ray Diffraction/methods , Microscopy, Electron, Scanning/methods , Drug Carriers/chemistry , Administration, Oral , Liposomes
2.
Blood Coagul Fibrinolysis ; 35(5): 256-264, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38973517

ABSTRACT

Normally, von Willebrand factor (VWF) remains inactive unless its A1A2 domains undergo a shear stress-triggered conformational change. We demonstrated the capacity of a recombinant A2 domain of VWF to bind and to affect fibrin formation, altering the fibrin clot structure. The data indicated that VWF contains an additional binding site for fibrin in the A2 domain that plays a role in the incorporation of VWF to the polymerizing fibrin. This study is to examine the hypothesis that active plasma VWF directly influence fibrin polymerization and the structure of fibrin clots. The study used healthy and type 3 von Willebrand disease (VWD) plasma, purified plasma VWF, fibrin polymerization assays, confocal microscopy and scanning electron microscopy. The exposed A2 domain in active VWF harbors additional binding sites for fibrinogen, and significantly potentiates fibrin formation (P < 0.02). Antibody against the A2 domain of VWF significantly decreased the initial rate of change of fibrin formation (P < 0.002). Clot analyses revealed a significant difference in porosity between normal and type 3 VWD plasma (P < 0.008), further supported by scanning electron microscopy, which demonstrated thicker fibrin fibers in the presence of plasma VWF (P < 0.0003). Confocal immunofluorescence microscopy showed punctate VWF staining along fibrin fibrils, providing visual evidence of the integration of plasma VWF into the fibrin matrix. The study with type 3 VWD plasma supports the hypothesis that plasma VWF directly influences fibrin polymerization and clot structure. In addition, a conformational change in the A1A2 domains exposes a hidden fibrin(ogen) binding site, indicating that plasma VWF determines the fibrin clot structure.


Subject(s)
Fibrin , von Willebrand Factor , von Willebrand Factor/metabolism , Humans , Fibrin/metabolism , Fibrin/ultrastructure , von Willebrand Disease, Type 3/blood , Binding Sites , Microscopy, Electron, Scanning/methods
3.
STAR Protoc ; 5(2): 103104, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38861383

ABSTRACT

Approaches for detecting micro(nano)plastics (MNPs) released from intravenous infusion products (IVIPs) are vital for evaluating the safety of both IVIPs and their derived MNPs on human health, yet current understanding is limited. Here, we present a protocol for detecting polyvinyl chloride (PVC) MNPs by combining Raman spectroscopy, scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS), and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). We describe steps for collecting, pretreating, and measuring PVC MNPs released from IVIPs. For complete details on the use and execution of this protocol, please refer to Li et al.1.


Subject(s)
Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Infusions, Intravenous , Gas Chromatography-Mass Spectrometry/methods , Polyvinyl Chloride/chemistry , Humans , Microscopy, Electron, Scanning/methods , Spectrometry, X-Ray Emission/methods , Plastics/chemistry
4.
AAPS PharmSciTech ; 25(5): 127, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844724

ABSTRACT

The success of obtaining solid dispersions for solubility improvement invariably depends on the miscibility of the drug and polymeric carriers. This study aimed to categorize and select polymeric carriers via the classical group contribution method using the multivariate analysis of the calculated solubility parameter of RX-HCl. The total, partial, and derivate parameters for RX-HCl were calculated. The data were compared with the results of excipients (N = 36), and a hierarchical clustering analysis was further performed. Solid dispersions of selected polymers in different drug loads were produced using solvent casting and characterized via X-ray diffraction, infrared spectroscopy and scanning electron microscopy. RX-HCl presented a Hansen solubility parameter (HSP) of 23.52 MPa1/2. The exploratory analysis of HSP and relative energy difference (RED) elicited a classification for miscible (n = 11), partially miscible (n = 15), and immiscible (n = 10) combinations. The experimental validation followed by a principal component regression exhibited a significant correlation between the crystallinity reduction and calculated parameters, whereas the spectroscopic evaluation highlighted the hydrogen-bonding contribution towards amorphization. The systematic approach presented a high discrimination ability, contributing to optimal excipient selection for the obtention of solid solutions of RX-HCl.


Subject(s)
Chemistry, Pharmaceutical , Excipients , Polymers , Raloxifene Hydrochloride , Solubility , X-Ray Diffraction , Polymers/chemistry , Excipients/chemistry , Raloxifene Hydrochloride/chemistry , Multivariate Analysis , X-Ray Diffraction/methods , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Compounding/methods , Microscopy, Electron, Scanning/methods , Hydrogen Bonding , Crystallization/methods
5.
Sci Rep ; 14(1): 12998, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844535

ABSTRACT

The challenge of in-situ handling and high-resolution low-dose imaging of intact, sensitive and wet samples in their native state at nanometer scale, including live samples is met by Advanced Environmental Scanning Electron Microscopy (A-ESEM). This new generation of ESEM utilises machine learning-based optimization of thermodynamic conditions with respect to sample specifics to employ a low temperature method and an ionization secondary electron detector with an electrostatic separator. A modified electron microscope was used, equipped with temperature, humidity and gas pressure sensors for in-situ and real-time monitoring of the sample. A transparent ultra-thin film of ionic liquid is used to increase thermal and electrical conductivity of the samples and to minimize sample damage by free radicals. To validate the power of the new method, we analyze condensed mitotic metaphase chromosomes to reveal new structural features of their perichromosomal layer, and the organization of chromatin fibers, not observed before by any microscopic technique. The ability to resolve nano-structural details of chromosomes using A-ESEM is validated by measuring gold nanoparticles with achievable resolution in the lower nanometre units.


Subject(s)
Microscopy, Electron, Scanning , Microscopy, Electron, Scanning/methods , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Mitosis , Chromosomes/ultrastructure
6.
Sci Rep ; 14(1): 14318, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906910

ABSTRACT

Hemozoin is a natural biomarker formed during the hemoglobin metabolism of Plasmodium parasites, the causative agents of malaria. The rotating-crystal magneto-optical detection (RMOD) has been developed for its rapid and sensitive detection both in cell cultures and patient samples. In the current article we demonstrate that, besides quantifying the overall concentration of hemozoin produced by the parasites, RMOD can also track the size distribution of the hemozoin crystals. We establish the relations between the magneto-optical signal, the mean parasite age and the median crystal size throughout one erythrocytic cycle of Plasmodium falciparum parasites, where the latter two are determined by optical and scanning electron microscopy, respectively. The significant correlation between the magneto-optical signal and the stage distribution of the parasites indicates that the RMOD method can be utilized for species-specific malaria diagnosis and for the quick assessment of drug efficacy.


Subject(s)
Hemeproteins , Plasmodium falciparum , Hemeproteins/metabolism , Hemeproteins/chemistry , Plasmodium falciparum/growth & development , Humans , Erythrocytes/parasitology , Malaria, Falciparum/parasitology , Malaria, Falciparum/diagnosis , Microscopy, Electron, Scanning/methods
7.
Med Sci Monit ; 30: e944502, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857196

ABSTRACT

BACKGROUND Before insertion, chairside adjustment kits are heat sterilized for positioning and polishing dental restorations. This study aimed to evaluate the effects of 2 steam sterilization cycles on the efficacy of polishing highly translucent monolithic zirconia (HTMLZ) dental restoration material. MATERIAL AND METHODS 100 HTMLZ disc-shaped specimens were adjusted (grinding, finishing, polishing) with EVE Diacera kit. Two steam sterilization techniques [standard (Gp S), immediate/flash (Gp (F)] of CAK were further subgrouped based on number of sterilization cycles [cycle 1 (control), cycle 5, 10, 15, and 20 (experimental)] (n=10 each). Each subgroup accordingly was evaluated for average surface roughness (Ra) and root mean square roughness (Rq) using a profilometer. Mean and standard deviation of 5 subgroups were statistically analyzed using one-way ANOVA/post hoc Tukey's test. Scanning electron microscopy complemented Ra, Rq measurements. Statistical differences of P≤0.05 were considered significant. RESULTS HTMLZ specimens in both groups showed increased (Ra/Rq) values after repeated sterilization of EVE Diacera kit, with Gp F showing lesser increase than Gp S (20 cycles). Gp F at 10 cycles and Gp S at 15 cycles showed clinically unacceptable roughness threshold (0.25 µm). Differences between subgroups for Ra and Rq values were significant (P≤0.05) with less differences within groups observed in early cycles (1, 10). Results validate the manufacturer's recommendations of using flash sterilization/10 cycles for EVE Diacera kit. CONCLUSIONS Repeated sterilization reduces efficacy of chairside adjustment kit to produce smooth surfaces on HTMLZ. This study recommends flash sterilization to a maximum of 10 times to get the clinically acceptable results of Ra and Rq.


Subject(s)
Dental Materials , Dental Polishing , Steam , Sterilization , Surface Properties , Zirconium , Sterilization/methods , Humans , Dental Polishing/methods , Materials Testing/methods , Dental Restoration, Permanent/methods , Microscopy, Electron, Scanning/methods
8.
Drug Dev Ind Pharm ; 50(6): 537-549, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38771120

ABSTRACT

OBJECTIVE AND SIGNIFICANCE: Reducing the dimensions, when other additives are present, shows potential as a method to improve the dissolution and solubility of biopharmaceutical classification system class II drugs that have poor solubility. In this investigation, the process involved grinding naproxen with nicotinamide with the aim of improving solubility and the rate of dissolution. METHODS: Naproxen was subjected to co-milling with urea, dimethylurea, and nicotinamide using a planetary ball mill for a duration of 90 min, maintaining a 1:1 molar ratio for the excipients (screening studies). The co-milled combinations, naproxen in its pure milled form, and a physical mixture were subjected to analysis using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), and solubility assessment. The mixture displaying the highest solubility (naproxen-nicotinamide) was chosen for further investigation, involving testing for intrinsic dissolution rate (IDR) and Fourier-transform infrared spectroscopy (FTIR) after co-milling for both 90 and 480 min. RESULTS AND CONCLUSION: The co-milled combination, denoted as S-3b and consisting of the most substantial ratio of nicotinamide to naproxen at 1:3, subjected to 480 min of milling, exhibited a remarkable 45-fold increase in solubility and a 9-fold increase in IDR. XRPD analysis of the co-milled samples demonstrated no amorphization, while SEM images portrayed the aggregates of naproxen with nicotinamide. FTIR outcomes negate the presence of any chemical interactions between the components. The co-milled sample exhibiting the highest solubility and IDR was used to create a tablet, which was then subjected to comprehensive evaluation for standard attributes. The results revealed improved compressibility and dissolution properties.


Subject(s)
Naproxen , Niacinamide , Solubility , Tablets , X-Ray Diffraction , Naproxen/chemistry , Niacinamide/chemistry , X-Ray Diffraction/methods , Excipients/chemistry , Chemistry, Pharmaceutical/methods , Spectroscopy, Fourier Transform Infrared/methods , Drug Compounding/methods , Microscopy, Electron, Scanning/methods
9.
Microsc Microanal ; 30(3): 564-573, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38701197

ABSTRACT

Scanning electron microscopy (SEM) can reveal the ultrastructure of bacterial spores, including morphology, surface features, texture, spore damage, germination, and appendages. Understanding these features can provide a basis for adherence, how physical and environmental stressors affect spore viability, integrity, and functionality, as well as the distribution and function of surface appendages. However, the spore sample preparation method can significantly impact the SEM images' appearance, resolution, and overall quality. In this study, we compare different spore preparation methods to identify optimal approaches for preparation time, spore appearance and resolved features, including the exosporium and spore pili, for SEM imaging. We use Bacillus paranthracis as model species and evaluate the efficacy of preparation protocols using different fixation and drying methods, as well as imaging under room- and cryogenic temperatures. We compare and assess method complexity to the visibility of the spore exosporium and spore appendages across different methods. Additionally, we use Haralick texture features to quantify the differences in spore surface appearance and determine the most suitable method for preserving spore structures and surface features during SEM evaluation. The findings from this study will help establish protocols for preparing bacterial spores for SEM and facilitating accurate and reliable analysis of spores' characteristics.


Subject(s)
Bacillus , Microscopy, Electron, Scanning , Spores, Bacterial , Spores, Bacterial/ultrastructure , Microscopy, Electron, Scanning/methods , Bacillus/ultrastructure , Specimen Handling/methods
10.
Anal Methods ; 16(23): 3732-3744, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38808623

ABSTRACT

The integration of spectroscopic techniques with chemometrics offers a means to monitor quality changes in dairy products throughout processing and storage. This study employed Attenuated Total Reflectance-Mid-Infrared Spectroscopy (ATR-MIR) coupled with Independent Components Analysis (ICA), and 3D Front-Face Fluorescence Spectroscopy (FFFS) paired with Common Components and Specific Weight Analysis (CCSWA). The research focused on Cheddar cheeses aged for 1, 2, 3, and 5 years, alongside Comté cheeses aged for 6, 9, and 12 months. The adopted approach offered valuable insights into the intricate cheese aging process within the food matrix. The ICA proportions and CCSWA scores highlighted the significant impact of biochemical transformations during maturation on the aging process. The extracted independent components (ICs) revealed variations in the vibration modes of amides, lipids, amino acids, and organic acids, facilitating the distinction between different cheese age categories. Additionally, CCSWA outcomes identified age-related differences through shifts in tryptophan fluorescence characteristics as the cheeses aged. These results were consistent with the observed alterations in the microstructure of cheese samples over time, corroborated by Scanning Electron Microscopy (SEM) imagery. The introduced multimodal methodology serves as a significant asset for determining the ripening stage of various types of cheese, offering a detailed perspective of cheese maturation beneficial to the dairy industry and researchers.


Subject(s)
Cheese , Microscopy, Electron, Scanning , Spectrometry, Fluorescence , Cheese/analysis , Microscopy, Electron, Scanning/methods , Spectrometry, Fluorescence/methods , Chemometrics/methods , Food Handling/methods
11.
Micron ; 183: 103647, 2024 08.
Article in English | MEDLINE | ID: mdl-38759451

ABSTRACT

Pollen morphology and nutlet structures of some Prunella L. taxa were examined in detail by light microscopy (LM) and scanning electron (SEM) microscopy. Pollen grains of Prunella vary in size from small to large (Polar axis (P) = 22.25-66.04 µm, Equatorial diameter (E) = 17.56-75.64 µm). The shape of pollen grains are suboblate to prolate (P/E = 0.78-1.75) and the aperture structure is hexacolpate with granular membranes in apocolpium. Examinations of exine ornamentation show that pollen grains were recognized as bireticulate ornamentation with varying characteristics of the primary muri and secondary reticulum and four subtypes were identified. Nutlet measurements of four taxa were taken and their surfaces were examined by using SEM. While pollen ornamentations are represented by different characters among taxa, it has been concluded that nutlet surfaces do not have distinctive characters among investigated taxa. Pollen morphology of 7 taxa of Prunella has been investigated in detail for the first time.


Subject(s)
Microscopy, Electron, Scanning , Pollen , Pollen/ultrastructure , Microscopy, Electron, Scanning/methods , Microscopy/methods , Prunella/ultrastructure , Prunella/anatomy & histology
12.
Biomacromolecules ; 25(6): 3302-3311, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38717957

ABSTRACT

This study aimed to visualize the microstructures of starch hydrogels using synchrotron-based X-ray micro-computed tomography (µCT). Waxy maize starch (WMS, 3.3% amylose, db), pea starch (PS, 40.3% amylose), and high-amylose maize starch (HMS, 63.6% amylose) were cooked at 95 and 140 °C to prepare starch hydrogels. WMS and HMS failed to form a gel after 95 °C cooking and storage, while PS developed a firm gel. At 140 °C cooking, HMS of a high amylose nature was fully gelatinized and generated a rigid gel with the highest strength. Both scanning electron microscopy (SEM) and µCT revealed the unique structural features of various starch hydrogels/pastes prepared at different temperatures, which were greatly affected by the degree of swelling and dispersity of the starches. As a nondestructive method, µCT showed certain advantages over SEM, including minimal shrinkage of the hydrogels, relatively simple sample preparation, and allowing for three-dimensional reconstruction of the hydrogel microstructure. This study indicated that synchrotron-based µCT could be a useful technique in visualizing biopolymer-based hydrogels.


Subject(s)
Hydrogels , Starch , Synchrotrons , X-Ray Microtomography , Zea mays , Hydrogels/chemistry , X-Ray Microtomography/methods , Starch/chemistry , Zea mays/chemistry , Amylose/chemistry , Microscopy, Electron, Scanning/methods
13.
J Cell Sci ; 137(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38804679

ABSTRACT

The definitive demonstration of protein localization on primary cilia has been a challenge for cilia biologists. Primary cilia are solitary thread-like projections that have a specialized protein composition, but as the ciliary structure overlays the cell membrane and other cell parts, the identity of ciliary proteins are difficult to ascertain by conventional imaging approaches like immunofluorescence microscopy. Surface scanning electron microscopy combined with immunolabeling (immuno-SEM) bypasses some of these indeterminacies by unambiguously showing protein expression in the context of the three-dimensional ultrastructure of the cilium. Here, we apply immuno-SEM to specifically identify proteins on the primary cilia of mouse and human pancreatic islets, including post-translationally modified tubulin, intraflagellar transport (IFT)88, the small GTPase Arl13b, as well as subunits of axonemal dynein. Key parameters in sample preparation, immunolabeling and imaging acquisition are discussed to facilitate similar studies by others in the cilia research community.


Subject(s)
Cilia , Islets of Langerhans , Cilia/ultrastructure , Cilia/metabolism , Animals , Humans , Mice , Islets of Langerhans/ultrastructure , Islets of Langerhans/metabolism , Microscopy, Electron, Scanning/methods
14.
J Food Sci ; 89(6): 3687-3699, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767926

ABSTRACT

The vibrating superfine mill (VSM) is a machine that belongs to the micronization technique. In this study, VSM was employed to produce micronized tapioca starch by varying micronization times (15, 30, 45, and 60 min). The structural and physicochemical properties of the micronized starch were then examined. Scanning electron microscopy studies revealed that micronized starch was partially gelatinized, and the granule size dramatically increased when micronization time increased. X-ray diffraction patterns showed that the relative crystallinity was decreased from 24.67% (native) to 4.13% after micronization treatment for 15 min and slightly decreased after that. The solubility of micronized starch significantly increased as the micronization time increased, which was associated with the destruction of the starch crystalline structure. Differential scanning calorimetry investigations confirmed that micronized starch was "partly gelatinized," and the degree of gelatinization increased to 81.27% when the micronization time was 60 min. The weight-average molar mass was reduced by 15.0% (15 min), 30.9% (30 min), 55.7% (45 min), and 70.5% (60 min), respectively, indicating that the molecular structure was seriously degraded. The results demonstrated that the physicochemical changes of micronized starch granules were related to the destruction of the starch structure. These observations would provide details on micronized starch and its potential applications. PRACTICAL APPLICATION: These observations would provide details on micronized starch and its potential applications. Moreover, we believe that when the structures of starches were known, it is probable that the effect of VSM on the structural and physicochemical properties change of other starches might be predicted by adjusting the processing time.


Subject(s)
Calorimetry, Differential Scanning , Manihot , Microscopy, Electron, Scanning , Solubility , Starch , X-Ray Diffraction , Starch/chemistry , Manihot/chemistry , Microscopy, Electron, Scanning/methods , Gelatin/chemistry , Particle Size , Food Handling/methods , Chemical Phenomena
15.
Eur J Pharm Biopharm ; 200: 114314, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740224

ABSTRACT

The present work focuses on the production of electrospun membranes based on Poly(ε-caprolactone) (PCL) and Polyvinylpyrrolidone (PVP) for the topical release of Quercetin (Q). Membranes were prepared at 0.5, 1.0, 3.0, 7.0 and 15 % wt of Quercetin and studied from a morphological, physical, and biological point of view. The scanning electron microscopy (SEM) evidences micrometric dimensions of the fibres with a good dispersion of the functional molecule. The retention degree of liquids was evaluated by testing four different liquid media while the radical scavenging activity of Quercetin-loaded membranes was evaluated through DPPH analysis. The release kinetics of Quercetin highlights the presence of an initial burst followed by slower release up to attaining an equilibrium state, after roughly 50 h, showing the possibility of a fine-tuning of drug release. Diffusion coefficients were then evaluated by using Fick's law. Finally, to verify the actual biocompatibility of the systems produced and the possible application in the repair of tissue injury, the biological activity of Quercetin released from drug-loaded membranes was analysed in an immortalized human keratinocyte cell line HaCaT by a wound healing assay. So, the reported preliminary data confirm the possibility of applying the electrospun Quercetin-loaded PCL-PVP membranes for wound healing applications.


Subject(s)
Drug Delivery Systems , Drug Liberation , Polyesters , Povidone , Quercetin , Wound Healing , Quercetin/administration & dosage , Quercetin/chemistry , Quercetin/pharmacology , Povidone/chemistry , Polyesters/chemistry , Humans , Wound Healing/drug effects , Drug Delivery Systems/methods , Membranes, Artificial , Microscopy, Electron, Scanning/methods , HaCaT Cells , Antioxidants/pharmacology , Antioxidants/administration & dosage , Antioxidants/chemistry , Drug Carriers/chemistry , Cell Line
16.
Ophthalmic Res ; 67(1): 292-300, 2024.
Article in English | MEDLINE | ID: mdl-38718759

ABSTRACT

INTRODUCTION: Cataract extraction is the most frequently performed ophthalmological procedure worldwide. Posterior capsule opacification remains the most common consequence after cataract surgery and can lead to deterioration of the visual performance with cloudy, blurred vision and halo, glare effects. Neodymium-doped yttrium aluminum garnet (Nd:YAG) laser capsulotomy is the gold standard treatment and a very effective, safe and fast procedure in removing the cloudy posterior capsule. Damaging the intraocular lens (IOL) during the treatment may occur due to wrong focus of the laser beam. These YAG-pits may lead to a permanent impairment of the visual quality. METHODS: In an experimental study, we intentionally induced YAG pits in hydrophilic and hydrophobic acrylic IOLs using a photodisruption laser with 2.6 mJ. This experimental study established a novel 3D imaging method using correlative X-ray and scanning electron microscopy (SEM) to characterize these damages. By integrating the information obtained from both X-ray microscopy and SEM, a comprehensive picture of the materials structure and performance could be established. RESULTS: It could be revealed that although the exact same energies were used to all samples, the observed defects in the tested lenses showed severe differences in shape and depth. While YAG pits in hydrophilic samples range from 100 to 180 µm depth with a round shape tip, very sharp tipped defects up to 250 µm in depth were found in hydrophobic samples. In all samples, particles/fragments of the IOL material were found on the surface that were blasted out as a result of the laser shelling. CONCLUSION: Defects in hydrophilic and hydrophobic acrylic materials differ. Material particles can detach from the IOL and were found on the surface of the samples. The results of the laboratory study illustrate the importance of a precise and careful approach to Nd:YAG capsulotomy in order to avoid permanent damage to the IOL. The use of an appropriate contact glass and posterior offset setting to increase safety should be carried out routinely.


Subject(s)
Lasers, Solid-State , Lenses, Intraocular , Lasers, Solid-State/therapeutic use , Imaging, Three-Dimensional , Microscopy, Electron, Scanning/methods , Humans
17.
Curr Protoc ; 4(5): e1034, 2024 May.
Article in English | MEDLINE | ID: mdl-38717581

ABSTRACT

Scanning electron microscopy (SEM) remains distinct in its ability to allow topographical visualization of structures. Key elements to consider for successful examination of biological specimens include appropriate preparative and imaging techniques. Chemical processing induces structural artifacts during specimen preparation, and several factors need to be considered when selecting fixation protocols to reduce these effects while retaining structures of interest. Particular care for proper dehydration of specimens is essential to minimize shrinkage and is necessary for placement under the high-vacuum environment required for routine operation of standard SEMs. Choice of substrate for mounting and coating specimens can reduce artifacts known as charging, and a basic understanding of microscope settings can optimize parameters to achieve desired results. This article describes fundamental techniques and tips for routine specimen preparation for a variety of biological specimens, preservation of labile or fragile structures, immune-labeling strategies, and microscope imaging parameters for optimal examination by SEM. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Chemical preparative techniques for preservation of biological specimens for examination by SEM Alternate Protocol 1: Practical considerations for the preparation of soft tissues Alternate Protocol 2: Removal of debris from the exoskeleton of invertebrates Alternate Protocol 3: Fixation of colonies grown on agar plates Alternate Protocol 4: Stabilization of polysaccharide structures with alcian blue and lysine Alternate Protocol 5: Preparation of non-adherent particulates in solution for SEM Support Protocol 1: Application of thin layer of adhesive on substrate to improve adherence Support Protocol 2: Poly-L-lysine coating specimen substrates for improved adherence Support Protocol 3: Microwave processing of biological specimens for examination by SEM Basic Protocol 2: Critical point drying of specimens Alternate Protocol 6: Chemical alternative to critical point drying Basic Protocol 3: Sputter coating Alternate Protocol 7: Improved bulk conductivity through "OTOTO" Basic Protocol 4: Immune-labeling strategies Alternate Protocol 8: Immune-labeling internal antigens with small gold probes Alternate protocol 9: Quantum dot or fluoronanogold preparations for correlative techniques Basic Protocol 5: Exposure of internal structures by mechanical fracturing Basic Protocol 6: Exposure of internal structures of tissues by fracturing with liquid nitrogen Basic Protocol 7: Anaglyph production from stereo pairs to produce 3D images.


Subject(s)
Microscopy, Electron, Scanning , Specimen Handling , Microscopy, Electron, Scanning/methods , Specimen Handling/methods , Animals
18.
Methods Cell Biol ; 187: 139-174, 2024.
Article in English | MEDLINE | ID: mdl-38705623

ABSTRACT

Array tomography (AT) allows one to localize sub-cellular components within the structural context of cells in 3D through the imaging of serial sections. Using this technique, the z-resolution can be improved physically by cutting ultra-thin sections. Nevertheless, conventional immunofluorescence staining of those sections is time consuming and requires relatively large amounts of costly antibody solutions. Moreover, epitopes are only readily accessible at the section's surface, leaving the volume of the serial sections unlabeled. Localization of receptors at neuronal synapses in 3D in their native cellular ultrastructural context is important for understanding signaling processes. Here, we present in vivo labeling of receptors via fluorophore-coupled tags in combination with super-resolution AT. We present two workflows where we label receptors at the plasma membrane: first, in vivo labeling via microinjection with a setup consisting of readily available components and self-manufactured microscope table equipment and second, live receptor labeling by using a cell-permeable tag. To take advantage of a near-to-native preservation of tissues for subsequent scanning electron microscopy (SEM), we also apply high-pressure freezing and freeze substitution. The advantages and disadvantages of our workflows are discussed.


Subject(s)
Synapses , Tomography , Animals , Synapses/metabolism , Synapses/ultrastructure , Tomography/methods , Imaging, Three-Dimensional/methods , Staining and Labeling/methods , Mice , Microscopy, Electron, Scanning/methods , Fluorescent Dyes/chemistry , Microinjections/methods , Neurons/metabolism , Rats
19.
Methods Mol Biol ; 2775: 141-153, 2024.
Article in English | MEDLINE | ID: mdl-38758316

ABSTRACT

This chapter describes methodological details for preparing specimens of Cryptococcus neoformans (although it can be applied to any species of the genus) and their subsequent analysis by scanning and transmission electron microscopy. Adaptations to conventional protocols for better preservation of the sample, as well as to avoid artifacts, are presented. The protocols may be used to examine both the surface ultrastructure and the interior of this pathogenic fungus in detail.


Subject(s)
Artifacts , Cryptococcus neoformans , Cryptococcus neoformans/ultrastructure , Microscopy, Electron, Transmission/methods , Microscopy, Electron, Scanning/methods , Specimen Handling/methods
20.
J Food Sci ; 89(5): 2843-2856, 2024 May.
Article in English | MEDLINE | ID: mdl-38591333

ABSTRACT

The effects of different types of acid coagulants and nano fish bone (NFB) additives on the characteristics of tofu were investigated using texture analyzers, SEM, FT-IR, and other techniques. The breaking force and penetration distance, in descending order, were found in the tofu induced by glucono-d-lactone (GDL) (180.27 g and 0.75 cm), citric acid (152.90 g and 0.74 cm), lactic acid (123.33 g and 0.73 cm), and acetic acid (69.84 g and 0.58 cm), respectively. The syneresis of these tofu samples was in the reverse order (35.00, 35.66, 39.66, and 44.50%). Lightness and whiteness were not significantly different among the different samples. Regardless of the acid type, the soluble calcium content in the soybean milk was significantly increased after adding NFB. As a result, the breaking force and penetration distance of all tofu samples increased significantly, but the syneresis decreased. Compared with tofu coagulated by other acids, GDL tofu formed a more uniform and dense gel network maintained by the highest intermolecular forces (especially hydrophobic interactions). Regarding the secondary structure, the lowest percentage of α-helix (22.72%) and, correspondingly, the highest ß-sheet (48.32%) and random coil (18.81%) were noticed in the GDL tofu. The effects of NFB on the tofu characteristics can be explained by the changes in the gel network, intermolecular forces, and secondary structure, which were in line with the acid type. The characteristics of acid-induced tofu can be most synergistically improved by coagulation with GDL and NFB.


Subject(s)
Gels , Gels/chemistry , Animals , Glycine max/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Acetic Acid/chemistry , Fishes , Citric Acid/chemistry , Gluconates/chemistry , Lactic Acid/chemistry , Hydrophobic and Hydrophilic Interactions , Food Handling/methods , Microscopy, Electron, Scanning/methods , Lactones
SELECTION OF CITATIONS
SEARCH DETAIL
...