Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.854
Filter
1.
Arch Microbiol ; 206(7): 335, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953983

ABSTRACT

Salmonella is considered as one of the most common zoonotic /foodborne pathogens in the world. The application of bacteriophages as novel antibacterial agents in food substrates has become an emerging strategy. Bacteriophages have the potential to control Salmonella contamination.We have isolated and characterized a broad-spectrum Salmonella phage, SP154, which can lyse 9 serotypes, including S. Enteritidis, S. Typhimurium, S. Pullorum, S. Arizonae, S. Dublin, S. Cholerasuis, S. Chester, S. 1, 4, [5], 12: i: -, and S. Derby, accounting for 81.9% of 144 isolates. SP154 showed a short latent period (40 min) and a high burst size (with the first rapid burst size at 107 PFUs/cell and the second rapid burst size at approximately 40 PFUs/cell). Furthermore, SP154 activity has higher survival rates across various environmental conditions, including pH 4.0-12.0 and temperatures ranging from 4 to 50 °C for 60 min, making it suitable for diverse food processing and storage applications. Significant reductions in live Salmonella were observed in different foods matrices such as milk and chicken meat, with a decrease of up to 1.9 log10 CFU/mL in milk contamination and a 1 log10 CFU/mL reduction in chicken meat. Whole genome sequencing analysis revealed that SP154 belongs to the genus Ithacavirus, subfamily Humphriesvirinae, within the family Schitoviridae. Phylogenetic analysis based on the terminase large subunit supported this classification, although an alternate tree using the tail spike protein gene suggested affiliation with the genus Kuttervirus, underscoring the limitations of relying on a single gene for phylogenetic inference. Importantly, no virulence or antibiotic resistance genes were detected in SP154. Our research highlights the potential of using SP154 for biocontrol of Salmonella in the food industry.


Subject(s)
Food Microbiology , Genome, Viral , Salmonella Phages , Salmonella , Whole Genome Sequencing , Salmonella Phages/genetics , Salmonella Phages/isolation & purification , Salmonella Phages/classification , Salmonella Phages/physiology , Animals , Salmonella/virology , Salmonella/genetics , Salmonella/classification , Salmonella/isolation & purification , Chickens , Milk/microbiology , Milk/virology , Meat/microbiology , Meat/virology , Phylogeny
2.
Mikrochim Acta ; 191(8): 441, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38954045

ABSTRACT

A ratiometric SERS aptasensor based on catalytic hairpin self-assembly (CHA) mediated cyclic signal amplification strategy was developed for the rapid and reliable determination of Escherichia coli O157:H7. The recognition probe was synthesized by modifying magnetic beads with blocked aptamers, and the SERS probe was constructed by functionalizing gold nanoparticles (Au NPs) with hairpin structured DNA and 4-mercaptobenzonitrile (4-MBN). The recognition probe captured E. coli O157:H7 specifically and released the blocker DNA, which activated the CHA reaction on the SERS probe and turned on the SERS signal of 6-carboxyl-x-rhodamine (ROX). Meanwhile, 4-MBN was used as an internal reference to calibrate the matrix interference. Thus, sensitive and reliable determination and quantification of E. coli O157:H7 was established using the ratio of the SERS signal intensities of ROX to 4-MBN. This aptasensor enabled detection of 2.44 × 102 CFU/mL of E. coli O157:H7 in approximately 3 h without pre-culture and DNA extraction. In addition, good reliability and excellent reproducibility were observed for the determination of E. coli O157:H7 in spiked water and milk samples. This study offered a new solution for the design of rapid, sensitive, and reliable SERS aptasensors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Escherichia coli O157 , Gold , Limit of Detection , Metal Nanoparticles , Milk , Spectrum Analysis, Raman , Escherichia coli O157/isolation & purification , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Milk/microbiology , Milk/chemistry , Spectrum Analysis, Raman/methods , Biosensing Techniques/methods , Animals , Catalysis , Inverted Repeat Sequences , Food Contamination/analysis , Water Microbiology , Reproducibility of Results
3.
BMC Microbiol ; 24(1): 251, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977975

ABSTRACT

OBJECTIVES: To study the effect of agitation and temperature on biofilm formation (cell aggregates embedded within a self-produced matrix) by pathogenic bacteria isolated from Raw cow milk (RCM). METHODS: A 40 RCM samples were gathered from eight dairy farms in Riyadh, Saudi Arabia. After bacterial culturing and isolation, gram staining was performed, and all pathogenic, identified using standard criteria established by Food Standards Australia New Zealand (FSANZ), and non-pathogenic bacteria were identified using VITEK-2 and biochemical assays. To evaluate the effects of temperature and agitation on biofilm formation, isolated pathogenic bacteria were incubated for 24 h under the following conditions: 4 °C with no agitation (0 rpm), 15 °C with no agitation, 30 °C with no agitation, 30 °C with 60 rpm agitation, and 30 °C with 120 rpm agitation. Then, biofilms were measured using a crystal violet assay. RESULTS: Of the eight farm sites, three exhibited non-pathogenic bacterial contamination in their raw milk samples. Of the total of 40 raw milk samples, 15/40 (37.5%; from five farms) were contaminated with pathogenic bacteria. Overall, 346 bacteria were isolated from the 40 samples, with 329/346 (95.1%) considered as non-pathogenic and 17/346 (4.9%) as pathogenic. Most of the isolated pathogenic bacteria exhibited a significant (p < 0.01) increase in biofilm formation when grown at 30 °C compared to 4 °C and when grown with 120 rpm agitation compared to 0 rpm. CONCLUSION: Herein, we highlight the practices of consumers in terms of transporting and storing (temperature and agitation) can significantly impact on the growth of pathogens and biofilm formation in RCM.


Subject(s)
Bacteria , Biofilms , Milk , Temperature , Animals , Biofilms/growth & development , Milk/microbiology , Cattle , Bacteria/isolation & purification , Bacteria/classification , Bacteria/growth & development , Saudi Arabia , Food Microbiology , Bacterial Physiological Phenomena
4.
Appl Microbiol Biotechnol ; 108(1): 411, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980443

ABSTRACT

This study investigates the dynamic changes in milk nutritional composition and microbial communities in Tibetan sheep and goats during the first 56 days of lactation. Milk samples were systematically collected at five time points (D0, D7, D14, D28, D56) post-delivery. In Tibetan sheep, milk fat, protein, and casein contents were highest on D0, gradually decreased, and stabilized after D14, while lactose and galactose levels showed the opposite trend. Goat milk exhibited similar initial peaks, with significant changes particularly between D0, D7, D14, and D56. 16S rRNA gene sequencing revealed increasing microbial diversity in both species over the lactation period. Principal coordinates analysis identified distinct microbial clusters corresponding to early (D0-D7), transitional (D14-D28), and mature (D56) stages. Core phyla, including Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, dominated the milk microbiota, with significant temporal shifts. Core microbes like Lactobacillus, Leuconostoc, and Streptococcus were common in both species, with species-specific taxa observed (e.g., Pediococcus in sheep, Shewanella in goats). Furthermore, we observed a highly shared core microbiota in sheep and goat milk, including Lactobacillus, Leuconostoc, and Streptococcus. Spearman correlation analysis highlighted significant relationships between specific microbial genera and milk nutrients. For instance, Lactobacillus positively correlated with total solids, non-fat milk solids, protein, and casein, while Mannheimia negatively correlated with protein content. This study underscores the complex interplay between milk composition and microbial dynamics in Tibetan sheep and goats, informing strategies for livestock management and nutritional enhancement. KEY POINTS: • The milk can be classified into three types based on the microbiota composition • The changes of milk microbiota are closely related to the variations in nutrition • Filter out microbiota with species specificity and age specificity in the milk.


Subject(s)
Goats , Microbiota , Milk , RNA, Ribosomal, 16S , Animals , Goats/microbiology , Milk/microbiology , Milk/chemistry , Sheep/microbiology , RNA, Ribosomal, 16S/genetics , Tibet , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Female , Lactation , Caseins , Milk Proteins/analysis
5.
BMC Vet Res ; 20(1): 297, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971767

ABSTRACT

BACKGROUND: Listeriosis is a global health threat to both animals and humans, especially in developing countries. This study was designed to isolate Listeria monocytogenes from faeces; environmental samples; and cow, sheep and goat milk, as well as human stool, to study its molecular characteristics and antibiotic sensitivity in the New Valley and Beheira Governorates, Egypt. The isolation and identification of L. monocytogenes were carried out using traditional culture and biochemical methods, followed by antibiography, genus confirmation of some isolates and detection and sequencing of InlB genes via PCR. RESULTS: Out of 2097 examined samples, the prevalence of L. monocytogenes was 13.4% in animals; the prevalence was 9.2%, 2.4%, 25.4%, 4%, 42.4%, and 6.4% in cattle faeces, cattle milk, sheep faeces, sheep milk, goat faeces, and goat milk, respectively. However, the prevalence of L. monocytogenes was 8.3% in human samples. Both animal and human isolates showed 100% resistance to trimethoprim-sulfamethoxazole, and the isolates showed the highest sensitivity to flumequine (100%), amikacin (99.2%), gentamicin (97.6%), and levofloxacin (94.6%). Multidrug resistance (MDR) was detected in 86.9% of the tested isolates. The 16 S rRNA and inlB genes were detected in 100% of the randomly selected L. monocytogenes isolates. Phylogenetic analysis of three isolates based on the inlB gene showed 100% identity between faecal, milk and human stool isolates. CONCLUSIONS: Faeces and milk are major sources of listeriosis, and the high degree of genetic similarity between animal and human isolates suggests the possibility of zoonotic circulation. The high prevalence of MDR L. monocytogenes in both animal and human samples could negatively impact the success of prevention and treatments for animal and human diseases, thereby imposing serious risks to public health.


Subject(s)
Anti-Bacterial Agents , Feces , Goats , Listeria monocytogenes , Listeriosis , Milk , Animals , Egypt/epidemiology , Listeria monocytogenes/drug effects , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Humans , Prevalence , Sheep , Anti-Bacterial Agents/pharmacology , Cattle , Feces/microbiology , Listeriosis/veterinary , Listeriosis/epidemiology , Listeriosis/microbiology , Milk/microbiology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
6.
Sci Rep ; 14(1): 16708, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030251

ABSTRACT

Controlling foodborne pathogens in buffalo milk is crucial for ensuring food safety. This study estimated the prevalence of nine target genes representing seven critical foodborne bacteria in milk and milk products, and identified factors associated with their presence in buffalo milk chain nodes in Bangladesh. One hundred and forty-three milk samples from bulk tank milk (n = 34), middlemen (n = 37), milk collection centers (n = 37), and milk product shops (n = 35) were collected and analyzed using RT-PCR. Escherichia (E.) coli, represented through yccT genes, was the most prevalent throughout the milk chain (81-97%). Chi-squared tests were performed to identify the potential risk factors associated with the presence of foodborne bacteria encoded for different genes. At the middleman level, the prevalence of E. coli was associated with the Mymensingh, Noakhali, and Bhola districts (P = 0.01). The prevalence of Listeria monocytogenes, represented through inlA genes, and Yersinia (Y.) enterocolitica, represented through yst genes, were the highest at the farm level (65-79%). The prevalence of both bacteria in bulk milk was associated with the Noakhali and Bhola districts (P < 0.05). The prevalence of Y. enterocolitica in bulk milk was also associated with late autumn and spring (P = 0.01) and was higher in buffalo-cow mixed milk than in pure buffalo milk at the milk collection center level (P < 0.01). The gene stx2 encoding for Shiga toxin-producing (STEC) E. coli was detected in 74% of the milk products. At the middleman level, the prevalence of STEC E. coli was associated with the use of cloths or tissues when drying milk containers (P = 0.01). Salmonella enterica, represented through the presence of invA gene, was most commonly detected (14%) at the milk collection center. The use of plastic milk containers was associated with a higher prevalence of Staphylococcus aureus, represented through htrA genes, at milk product shops (P < 0.05). These results suggest that raw milk consumers in Bangladesh are at risk if they purchase and consume unpasteurized milk.


Subject(s)
Buffaloes , Food Microbiology , Milk , Buffaloes/microbiology , Animals , Milk/microbiology , Bangladesh , Foodborne Diseases/microbiology , Foodborne Diseases/epidemiology , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Yersinia enterocolitica/genetics , Yersinia enterocolitica/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification
7.
PLoS One ; 19(7): e0305674, 2024.
Article in English | MEDLINE | ID: mdl-39024228

ABSTRACT

This study aims to compare rumen microbiome and metabolites between second lactation dairy cows in the 75th percentile (n = 12; 57.2 ± 5.08 kg/d) of production according to genomic predicted transmitting ability for milk (GPTAM) and their counterparts in the 25th percentile (n = 12; 47.2 ± 8.61 kg/d). It was hypothesized that the metagenome and metabolome would differ between production levels. Cows were matched by days in milk (DIM), sire, occurrence of disease, and days open in previous lactation. For an additional comparison, the cows were also divided by phenotype into high (n = 6; 61.3 ± 2.8 kg/d), medium (n = 10; 55 ± 1.2 kg/d), and low (n = 8; 41.9 ± 5.6 kg/d) based on their milk production. Samples were collected 65 ± 14 DIM. Rumen content was collected using an oro-gastric tube and serum samples were collected from the coccygeal vessels. High-resolution liquid chromatography-mass spectrometry (LC-MS) was used for rumen and serum metabolite profiling. Shotgun metagenomics was used for rumen microbiome profiling. Microbiome sample richness and diversity were used to determine alpha and Bray-Curtis dissimilarity index was used to estimate beta diversity. Differences in metabolites were determined using t-tests or ANOVA. Pearson correlations were used to consider associations between serum metabolites and milk production. There was no evidence of a difference in rumen metabolites or microbial communities by GPTAM or phenotype. Cows in the phenotypic low group had greater serum acetate to propionate ratio and acetate proportion compared to the cows in the phenotypic medium group. Likewise, serum propionate proportion was greater in the medium compared to the low phenotypic group. Serum acetate, butyrate, and propionate concentrations had a weak positive correlation with milk production. When investigating associations between rumen environment and milk production, future studies must consider the impact of the ruminal epithelium absorption and post-absorption processes in relation to milk production.


Subject(s)
Lactation , Milk , Rumen , Animals , Cattle , Rumen/microbiology , Rumen/metabolism , Female , Milk/metabolism , Milk/microbiology , Phenotype , Metabolome , Microbiota , Genomics/methods , Metagenome , Metabolomics/methods , Multiomics
8.
BMC Microbiol ; 24(1): 263, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026151

ABSTRACT

BACKGROUND: Coagulase-negative Staphylococcus species are an emerging cause of intramammary infection, posing a significant economic and public health threat. The aim of this study was to assess the occurrence of coagulase-negative Staphylococcus species in bovine milk and dairy farms in Northwestern Ethiopia and to provide information about their antibiotic susceptibility and virulence gene profiles. METHODS: The cross-sectional study was conducted from February to August 2022. Coagulase-negative Staphylococcus species were isolated from 290 milk samples. Species isolation and identification were performed by plate culturing and biochemical tests and the antimicrobial susceptibility pattern of each isolate was determined by the Kirby-Bauer disc diffusion test. The single-plex PCR was used to detect the presence of virulent genes. The STATA software version 16 was used for data analysis. The prevalence, proportion of antimicrobial resistance and the number of virulent genes detected from coagulase-negative Staphylococcus species were analyzed using descriptive statistics. RESULTS: Coagulase-negative Staphylococcus species were isolated in 28.6%, (95% CI: 23.5-34.2) of the samples. Of these, the S. epidermidis, S. sciuri, S. warneri, S. haemolyticus, S. simulans, S. chromogens, S. cohnii, and S. captis species were isolated at the rates of 11, 5.2, 3.4, 3.1, 3.1, 1, 1, and 0.7% respectively. All the isolates showed a high percentage (100%) of resistance to Amoxicillin, Ampicillin, and Cefotetan and 37.5% of resistance to Oxacillin. The majority (54.2%) of coagulase-negative isolates also showed multidrug resistance. Coagulase-negative Staphylococcus species carried the icaD, pvl, mecA, hlb, sec, and hla virulent genes at the rates of 26.5%, 22.1%, 21.7%, 9.6%, 9.6% and 8.4% respectively. CONCLUSION: The present study revealed that the majority of the isolates (54.2%) were found multidrug-resistant and carriage of one or more virulent and enterotoxin genes responsible for intramammary and food poisoning infections. Thus, urgent disease control and prevention measures are warranted to reduce the deleterious impact of coagulase-negative species. To the best of our knowledge, this is the first study in Ethiopia to detect coagulase-negative Staphylococcus species with their associated virulent and food poisoning genes from bovine milk.


Subject(s)
Anti-Bacterial Agents , Coagulase , Microbial Sensitivity Tests , Milk , Staphylococcus , Animals , Milk/microbiology , Cattle , Staphylococcus/genetics , Staphylococcus/drug effects , Staphylococcus/isolation & purification , Staphylococcus/enzymology , Ethiopia , Coagulase/genetics , Coagulase/metabolism , Cross-Sectional Studies , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Virulence/genetics , Virulence Factors/genetics , Female , Genes, Bacterial/genetics , Mastitis, Bovine/microbiology
9.
Mikrochim Acta ; 191(7): 430, 2024 06 29.
Article in English | MEDLINE | ID: mdl-38949666

ABSTRACT

A pico-injection-aided digital droplet detection platform is presented that integrates loop-mediated isothermal amplification (LAMP) with molecular beacons (MBs) for the ultrasensitive and quantitative identification of pathogens, leveraging the sequence-specific detection capabilities of MBs. The microfluidic device contained three distinct functional units including droplet generation, pico-injection, and droplet counting. Utilizing a pico-injector, MBs are introduced into each droplet to specifically identify LAMP amplification products, thereby overcoming issues related to temperature incompatibility. Our methodology has been validated through the quantitative detection of Escherichia coli, achieving a detection limit as low as 9 copies/µL in a model plasmid containing the malB gene and 3 CFU/µL in a spiked milk sample. The total analysis time was less than 1.5 h. The sensitivity and robustness of this platform further demonstrated the potential for rapid pathogen detection and diagnosis, particularly when integrated with cutting-edge microfluidic technologies.


Subject(s)
Escherichia coli , Limit of Detection , Milk , Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , Escherichia coli/isolation & purification , Escherichia coli/genetics , Milk/microbiology , Animals , Molecular Diagnostic Techniques/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , DNA, Bacterial/analysis , DNA, Bacterial/genetics
10.
J Agric Food Chem ; 72(28): 15959-15970, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38954479

ABSTRACT

The lack of practical platforms for bacterial separation remains a hindrance to the detection of bacteria in complex samples. Herein, a composite cryogel was synthesized by using clickable building blocks and boronic acid for bacterial separation. Macroporous cryogels were synthesized by cryo-gelation polymerization using 2-hydroxyethyl methacrylate and allyl glycidyl ether. The interconnected macroporous architecture enabled high interfering substance tolerance. Nanohybrid nanoparticles were prepared via surface-initiated atom transfer radical polymerization and immobilized onto cryogel by click reaction. Alkyne-tagged boronic acid was conjugated to the composite for specific bacteria binding. The physical and chemical characteristics of the composite cryogel were analyzed systematically. Benefitting from the synergistic, multiple binding sites provided by the silica-assisted polymer, the composite cryogel exhibited excellent affinity toward S. aureus and Salmonella spp. with capacities of 91.6 × 107 CFU/g and 241.3 × 107 CFU/g in 0.01 M PBS (pH 8.0), respectively. Bacterial binding can be tuned by variations in pH and temperature and the addition of monosaccharides. The composite was employed to separate S. aureus and Salmonella spp. from spiked tap water, 40% cow milk, and sea cucumber enzymatic hydrolysate, which resulted in high bacteria separation and demonstrated remarkable potential in bacteria separation from food samples.


Subject(s)
Click Chemistry , Cryogels , Salmonella , Staphylococcus aureus , Cryogels/chemistry , Staphylococcus aureus/isolation & purification , Animals , Salmonella/isolation & purification , Porosity , Milk/microbiology , Milk/chemistry , Boronic Acids/chemistry , Cattle , Methacrylates/chemistry
11.
Mikrochim Acta ; 191(8): 464, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39007936

ABSTRACT

Rapid and high-sensitive Salmonella detection in milk is important for preventing foodborne disease eruption. To overcome the influence of the complex ingredients in milk on the sensitive detection of Salmonella, a dual-signal reporter red fluorescence nanosphere (RNs)-Pt was designed by combining RNs and Pt nanoparticles. After being equipped with antibodies, the immune RNs-Pt (IRNs-Pt) provide an ultra-strong fluorescence signal when excited by UV light. With the assistance of the H2O2/TMB system, a visible color change appeared that was attributed to the strong peroxidase-like catalytic activity derived from Pt nanoparticles. The IRNs-Pt in conjunction with immune magnetic beads can realize that Salmonella typhimurium (S. typhi) was captured, labeled, and separated effectively from untreated reduced-fat pure milk samples. Under the optimal experimental conditions, with the assay, as low as 50 CFU S. typhi can be converted to detectable fluorescence and absorbance signals within 2 h, suggesting the feasibility of practical application of the assay. Meanwhile, dual-signal modes of quantitative detection were realized. For fluorescence signal detection (emission at 615 nm), the linear correlation between signal intensity and the concentration of S. typhi was Y = 83C-3321 (R2 = 0.9941), ranging from 103 to 105 CFU/mL, while for colorimetric detection (absorbamce at 450 nm), the relationship between signal intensity and the concentration of S. typhi was Y = 2.9logC-10.2 (R2 = 0.9875), ranging from 5 × 103 to 105 CFU/mL. For suspect food contamination by foodborne pathogens, this dual-mode signal readout assay is promising for achieving the aim of convenient preliminary screening and accurate quantification simultaneously.


Subject(s)
Colorimetry , Milk , Salmonella typhimurium , Milk/microbiology , Milk/chemistry , Salmonella typhimurium/isolation & purification , Colorimetry/methods , Animals , Metal Nanoparticles/chemistry , Limit of Detection , Platinum/chemistry , Hydrogen Peroxide/chemistry , Fluorescence , Nanospheres/chemistry , Food Microbiology/methods , Food Contamination/analysis , Spectrometry, Fluorescence/methods
12.
World J Microbiol Biotechnol ; 40(9): 276, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037634

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, or paratuberculosis (PTB) in ruminants, besides having zoonotic potential. It possibly changes the gut microbiome, but no conclusive data are available yet. This study aimed at investigating the influence of MAP on the faecal microbiome of cattle naturally infected with PTB. In a follow up period of 10 months, PTB status was investigated in a herd of dairy cattle with history of clinical cases. Each animal was tested for MAP infection using serum and milk ELISA for MAP anti-bodies and IS900 real-time PCR and recombinase polymerase amplification assays for MAP DNA in the faeces and milk monthly for 4 successive months, then a last one after 6 months. The faecal samples were subjected to 16S rDNA metagenomic analysis using Oxford Nanopore Sequencing Technology. The microbial content was compared between animal groups based on MAP positivity rate and production status. All animals were MAP positive by one or more tests, but two animals were consistently negative for MAP DNA in the faeces. In all animals, the phyla firmicutes and bacteroidetes were highly enriched with a small contribution of proteobacteria, and increased abundance of the families Oscillospiraceae, Planococcaceae, and Streptococcacaceae was noted. Animals with high MAP positivity rate showed comparable faecal microbial content, although MAP faecal positivity had no significant effect (p > 0.05) on the microbiome. Generally, richness and evenness indices decreased with increasing positivity rate. A significantly different microbial content was found between dry cows and heifers (p < 0.05). Particularly, Oscillospiraceae and Rikenellaceae were enriched in heifers, while Planococcaceae and Streptococcaceae were overrepresented in dry cows. Furthermore, abundance of 72 genera was significantly different between these two groups (p < 0.05). Changes in faecal microbiome composition were notably associated with increasing MAP shedding in the faeces. The present findings suggest a combined influence of the production status and MAP on the cattle faecal microbiome. This possibly correlates with the fate of the infection, the concern in disease control, again remains for further investigations.


Subject(s)
Cattle Diseases , DNA, Bacterial , Feces , Milk , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , RNA, Ribosomal, 16S , Animals , Cattle , Mycobacterium avium subsp. paratuberculosis/isolation & purification , Mycobacterium avium subsp. paratuberculosis/genetics , Feces/microbiology , Paratuberculosis/microbiology , RNA, Ribosomal, 16S/genetics , Cattle Diseases/microbiology , Milk/microbiology , DNA, Bacterial/genetics , Gastrointestinal Microbiome , Female , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Metagenomics/methods
13.
Sci Rep ; 14(1): 14569, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914650

ABSTRACT

Mastitis is considered one of the most widespread infectious disease of cattle and buffaloes, affecting dairy herds. The current study aimed to characterize the Staphylococcus aureus isolates recovered from subclinical mastitis animals in Pothohar region of the country. A total of 278 milk samples from 17 different dairy farms around two districts of the Pothohar region, Islamabad and Rawalpindi, were collected and screened for sub clinical mastitis using California Mastitis Test. Positive milk samples were processed for isolation of Staphylococcus aureus using mannitol salt agar. The recovered isolates were analyzed for their antimicrobial susceptibility and virulence genes using disc diffusion and PCR respectively. 62.2% samples were positive for subclinical mastitis and in total 70 Staphylococcus aureus isolates were recovered. 21% of these isolates were determined to be methicillin resistant, carrying the mecA gene. S. aureus isolates recovered during the study were resistant to all first line therapeutic antibiotics and in total 52% isolates were multidrug resistant. SCCmec typing revealed MRSA SCCmec types IV and V, indicating potential community-acquired MRSA (CA-MRSA) transmission. Virulence profiling revealed high prevalence of key genes associated with adhesion, toxin production, and immune evasion, such as hla, hlb, clfA, clfB and cap5. Furthermore, the Panton-Valentine leukocidin (PVL) toxin, that is often associated with recurrent skin and soft tissue infections, was present in 5.7% of isolates. In conclusion, the increased prevalence of MRSA in bovine mastitis is highlighted by this study, which also reveals a variety of virulence factors in S. aureus and emphasizes the significance of appropriate antibiotic therapy in combating this economically burdensome disease.


Subject(s)
Anti-Bacterial Agents , Mastitis, Bovine , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Mastitis, Bovine/microbiology , Female , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Pakistan , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Virulence Factors/genetics , Microbial Sensitivity Tests , Milk/microbiology , Bacterial Proteins/genetics
14.
Anal Methods ; 16(25): 4083-4092, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38855899

ABSTRACT

Salmonella enterica is a common foodborne pathogen that can cause food poisoning in humans. The organism also infects and causes disease in animals. Rapid and sensitive detection of S. enterica is essential to prevent the spread of this pathogen. Traditional technologies for the extraction and detection of this pathogen from complex food matrices are cumbersome and time-consuming. In this study, we introduced a novel strategy of biphasic assay integrated with an accelerated strand exchange amplification (ASEA) method for efficient detection of S. enterica without culture or other extraction procedures. Food samples are rapidly dried, resulting in a physical fluidic network inside the dried food matrix, which allows polymerases and primers to access the target DNA and initiate ASEA. The dried food matrix is defined as the solid phase, while amplification products are enriched in the supernatant (liquid phase) and generate fluorescence signals. The analytical performances demonstrated that this strategy was able to specifically identify S. enterica and did not show any cross-reaction with other common foodborne pathogens. For artificially spiked food samples, the strategy can detect 5.0 × 101 CFU mL-1S. enterica in milk, 1.0 × 102 CFU g-1 in duck, scallop or lettuce, and 1.0 × 103 CFU g-1 in either oyster or cucumber samples without pre-enrichment of the target pathogen. We further validated the strategy using 82 real food samples, and this strategy showed 92% sensitivity. The entire detection process can be finished, sample-to-answer, within 50 min, dramatically decreasing the detection time. Therefore, we believe that the proposed method enables rapid and sensitive detection of S. enterica and holds great promise for the food safety industry.


Subject(s)
Food Microbiology , Nucleic Acid Amplification Techniques , Salmonella enterica , Salmonella enterica/isolation & purification , Salmonella enterica/genetics , Food Microbiology/methods , Nucleic Acid Amplification Techniques/methods , Animals , DNA, Bacterial/analysis , Milk/microbiology , Ducks/microbiology , Food Contamination/analysis , Lactuca/microbiology
15.
Sensors (Basel) ; 24(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38894425

ABSTRACT

Milk and dairy products are included in the list of the Food Security Doctrine and are of paramount importance in the diet of the human population. At the same time, the presence of many macro- and microcomponents in milk, as available sources of carbon and energy, as well as the high activity of water, cause the rapid development of native and pathogen microorganisms in it. The goal of the work was to assess the possibility of using an array of gas chemical sensors based on piezoquartz microbalances with polycomposite coatings to assess the microbiological indicators of milk quality and to compare the microflora of milk samples. Piezosensors with polycomposite coatings with high sensitivity to volatile compounds were obtained. The gas phase of raw milk was analyzed using the sensors; in parallel, the physicochemical and microbiological parameters were determined for these samples, and species identification of the microorganisms was carried out for the isolated microorganisms in milk. The most informative output data of the sensor array for the assessment of microbiological indicators were established. Regression models were constructed to predict the quantity of microorganisms in milk samples based on the informative sensors' data with an error of no more than 17%. The limit of determination of QMAFAnM in milk was 243 ± 174 CFU/cm3. Ways to improve the accuracy and specificity of the determination of microorganisms in milk samples were proposed.


Subject(s)
Electronic Nose , Milk , Milk/microbiology , Milk/chemistry , Animals , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Volatile Organic Compounds/analysis , Humans
16.
BMC Vet Res ; 20(1): 249, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849801

ABSTRACT

BACKGROUND: Intramammary infection is the result of invasion and multiplication of microorganisms in the mammary gland and commonly leads to mastitis in dairy animals. Although much has been done to improve cows' udder health, mastitis remains a significant and costly health issue for dairy farmers, especially if subclinical. In this study, quarter milk samples from clinically healthy cows were harvested to detect pathogens via quantitative PCR (qPCR) and evaluate changes in individual milk traits according to the number of quarters infected and the type of microorganism(s). A commercial qPCR kit was used for detection of Mycoplasma bovis, Mycoplasma spp., Staphylococcus aureus, coagulase-negative staphylococci (CNS), Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Prototheca spp., Escherichia coli, Klebsiella spp., Enterococcus spp. and Lactococcus lactis ssp. lactis. Quarter and pooled milk information of 383 Holstein, 132 Simmental, 129 Rendena, and 112 Jersey cows in 9 Italian single-breed herds was available. RESULTS: Among the cows with pathogen(s) present in at least 1 quarter, CNS was the most commonly detected DNA, followed by Streptococcus uberis, Mycoplasma bovis, and Streptococcus agalactiae. Cows negative to qPCR were 206 and had the lowest milk somatic cell count. Viceversa, cows with DNA isolated in ≥ 3 quarters were those with the highest somatic cell count. Moreover, when major pathogens were isolated in ≥ 3 quarters, milk had the lowest casein index and lactose content. In animals with pathogen(s) DNA isolated, the extent with whom milk yield and major solids were impaired did not significantly differ between major and minor pathogens. CONCLUSIONS: The effect of the number of affected quarters on the pool milk quality traits was investigated in clinically healthy cows using a commercial kit. Results remark the important negative effect of subclinical udder inflammations on milk yield and quality, but more efforts should be made to investigate the presence of untargeted microorganisms, as they may be potentially dangerous for cows. For a smarter use of antimicrobials, analysis of milk via qPCR is advisable - especially in cows at dry off - to identify quarters at high risk of inflammation and thus apply a targeted/tailored treatment.


Subject(s)
Mastitis, Bovine , Milk , Animals , Cattle , Milk/microbiology , Milk/chemistry , Female , Mastitis, Bovine/microbiology , DNA, Bacterial/analysis , Streptococcus/isolation & purification , Lactation , Real-Time Polymerase Chain Reaction/veterinary
17.
Molecules ; 29(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38930811

ABSTRACT

Due to the intricate complexity of the original microbiota, residual heat-resistant enzymes, and chemical components, identifying the essential factors that affect dairy quality using traditional methods is challenging. In this study, raw milk, pasteurized milk, and ultra-heat-treated (UHT) milk samples were collectively analyzed using metagenomic next-generation sequencing (mNGS), high-throughput liquid chromatography-mass spectrometry (LC-MS), and gas chromatography-mass spectrometry (GC-MS). The results revealed that raw milk and its corresponding heated dairy products exhibited different trends in terms of microbiota shifts and metabolite changes during storage. Via the analysis of differences in microbiota and correlation analysis of the microorganisms present in differential metabolites in refrigerated pasteurized milk, the top three differential microorganisms with increased abundance, Microbacterium (p < 0.01), unclassified Actinomycetia class (p < 0.05), and Micrococcus (p < 0.01), were detected; these were highly correlated with certain metabolites in pasteurized milk (r > 0.8). This indicated that these genera were the main proliferating microorganisms and were the primary genera involved in the metabolism of pasteurized milk during refrigeration-based storage. Microorganisms with decreased abundance were classified into two categories based on correlation analysis with certain metabolites. It was speculated that the heat-resistant enzyme system of a group of microorganisms with high correlation (r > 0.8), such as Pseudomonas and Acinetobacter, was the main factor causing milk spoilage and that the group with lower correlation (r < 0.3) had a lower impact on the storage process of pasteurized dairy products. By comparing the metabolic pathway results based on metagenomic and metabolite annotation, it was proposed that protein degradation may be associated with microbial growth, whereas lipid degradation may be linked to raw milk's initial heat-resistant enzymes. By leveraging the synergy of metagenomics and metabolomics, the interacting factors determining the quality evolution of dairy products were systematically investigated, providing a novel perspective for controlling dairy processing and storage effectively.


Subject(s)
Microbiota , Milk , Animals , Milk/microbiology , Milk/metabolism , Food Storage/methods , Pasteurization , High-Throughput Nucleotide Sequencing , Dairy Products/microbiology , Metagenomics/methods , Gas Chromatography-Mass Spectrometry , Food Handling/methods , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Metabolome
18.
Nat Commun ; 15(1): 5341, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937464

ABSTRACT

Gut microbiomes of mammals carry a complex symbiotic assemblage of microorganisms. Feeding newborn infants milk from the mammary gland allows vertical transmission of the parental milk microbiome to the offspring's gut microbiome. This has benefits, but also has hazards for the host population. Using mathematical models, we demonstrate that biparental vertical transmission enables deleterious microbial elements to invade host populations. In contrast, uniparental vertical transmission acts as a sieve, preventing these invasions. Moreover, we show that deleterious symbionts generate selection on host modifier genes that keep uniparental transmission in place. Since microbial transmission occurs during birth in placental mammals, subsequent transmission of the milk microbiome needs to be maternal to avoid the spread of deleterious elements. This paper therefore argues that viviparity and the hazards from biparental transmission of the milk microbiome, together generate selection against male lactation in placental mammals.


Subject(s)
Gastrointestinal Microbiome , Lactation , Symbiosis , Animals , Female , Male , Gastrointestinal Microbiome/physiology , Milk/microbiology , Pregnancy , Mammals/microbiology , Maternal Inheritance
19.
Food Res Int ; 188: 114463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823831

ABSTRACT

To investigate the prevalence of Pseudomonas in the pasteurized milk production process and its effect on milk quality, 106 strains of Pseudomonas were isolated from the pasteurized milk production process of a milk production plant in Shaanxi Province, China. The protease, lipase and biofilm-producing capacities of the 106 Pseudomonas strains were evaluated, and the spoilage enzyme activities of their metabolites were assessed by simulating temperature incubation in the refrigerated (7 °C) and transport environment (25 °C) segments and thermal treatments of pasteurization (75 °C, 5 min) and ultra-high temperature sterilization (121 °C, 15 s). A phylogenetic tree was drawn based on 16S rDNA gene sequencing and the top 5 strains were selected as representative strains to identify their in situ spoilage potential by examining their growth potential and ability to hydrolyze proteins and lipids in milk using growth curves, pH, whiteness, Zeta-potential, lipid oxidation, SDS-PAGE and volatile flavor compounds. The results showed that half and more of the isolated Pseudomonas had spoilage enzyme production and biofilm capacity, and the spoilage enzyme activity of metabolites was affected by the culture temperature and sterilization method, but ultra-high temperature sterilization could not completely eliminate the enzyme activity. The growth of Pseudomonas lundensis and Pseudomonas qingdaonensis was less affected by temperature and time, and the hydrolytic capacity of extracellular protease and lipase secreted by Pseudomonas lurida was the strongest, which had the greatest effect on milk quality. Therefore, it is crucial to identify the key contamination links of Pseudomonas, the main bacteria responsible for milk spoilage, and the influence of environmental factors on its deterioration.


Subject(s)
Biofilms , Food Microbiology , Lipase , Milk , Pasteurization , Pseudomonas , Pseudomonas/metabolism , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pseudomonas/growth & development , Milk/microbiology , Animals , Biofilms/growth & development , Lipase/metabolism , China , Phylogeny , Peptide Hydrolases/metabolism , RNA, Ribosomal, 16S/genetics , Food Contamination/analysis , Temperature
20.
Int J Food Microbiol ; 421: 110797, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38878706

ABSTRACT

Nowadays, the discovery of alternative natural antimicrobial substances such as bacteriophages, essential oils, and other physical and chemical agents is developing in the food industry. In this study, nine bacteriophages were isolated from various parts of raw chickens and exhibited lytic activities against L. monocytogenes and various Listeria spp. The characterization of phage vB_LmoS-PLM9 was stable at 4 to 50 °C and pH range from 4 to 10. Phage vB_LmoS-PLM9 had a circular, double-stranded genomic DNA with 38,345 bp having endolysin but no antibiotic resistance or virulence genes. Among the eight essential oils tested at 10 %, cinnamon bark, and cassia oils showed the strongest antilisterial activities. The combined use of phage vB_LmoS-PLM9 and cinnamon oils indicated higher efficiency than single treatments. The combination of phage (MOI of 10) and both cinnamon oils (0.03 %) reduced the viable counts of L. monocytogenes and inhibited the regrowth of resistant cell populations in broth at 30 °C. Furthermore, treatment with the combination of phage (MOI of 100) and cinnamon oil (0.125 %) was effective in milk, especially at 4 °C by reducing the viable count to less than lower limit of detection. These results suggest combining phage and cinnamon oil is a potential approach for controlling L. monocytogenes in milk.


Subject(s)
Bacteriophages , Cinnamomum zeylanicum , Listeria monocytogenes , Milk , Oils, Volatile , Salmon , Animals , Listeria monocytogenes/drug effects , Listeria monocytogenes/virology , Milk/microbiology , Cinnamomum zeylanicum/chemistry , Oils, Volatile/pharmacology , Salmon/microbiology , Food Microbiology , Plant Oils/pharmacology , Food Preservation/methods , Chickens , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL