Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.444
Filter
1.
Sci Rep ; 14(1): 19440, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169071

ABSTRACT

In 2020, Denmark buried approximately four million culled, farmed mink in mass graves treated with slaked lime due to widespread SARS-CoV-2 infections. After six months, environmental concerns prompted the exhumation of these cadavers. Our analysis encompassed visual inspections, soil pH measurements, and gas emission assessments of the grave environment. Additionally, we evaluated carcasses for decay status, cadaverine content, and the presence of various pathogens, including SARS-CoV-2 and mink coronavirus. Our findings revealed minimal microbial activity and limited carcass decomposition. Although viral RNA from SARS-CoV-2 and mink coronavirus, along with DNA from Aleutian mink disease virus, were detected, the absence of infectious SARS-CoV-2 in cell culture assays suggests slow natural degradation processes. This study provides critical insights for future considerations in managing mass burial scenarios during outbreaks of livestock-associated zoonotic pathogens.


Subject(s)
Burial , COVID-19 , Mink , SARS-CoV-2 , Animals , Mink/virology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/isolation & purification , Denmark , Pandemics , Cadaver , Humans , RNA, Viral/genetics , Coronavirus/isolation & purification , Coronavirus/genetics
2.
Sci Rep ; 14(1): 18712, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39134618

ABSTRACT

In late 2020, the focus of the global effort against the COVID-19 pandemic centered around the development of a vaccine, when reports of a mutated SARS-CoV-2 virus variant in a population of 17 million farmed mink came from Denmark, threatening to jeopardize this effort. Spillover infections of the new variant between mink and humans were feared to threaten the efficacy of upcoming vaccines. In this study the ensuing short-lived yet stringent lockdowns imposed in 7 of the countries 98 municipalities are analysed for their effectiveness to reduce SARS-CoV-2 infections. Synthetic counterfactuals are created for each of these municipalities using a weighted average combination of the remaining municipalities not targeted by the stringent measures. This allows for a clear overview regarding the development of test-positivity rates, citizen mobility behaviours and lastly daily infection numbers in response to the restrictions. The findings show that these targeted, short-term lockdowns significantly curtailed further infections, demonstrating a marked decrease, first in citizens mobility and then in daily cases when compared to their synthetic counterfactuals. Overall, the estimates indicate average reductions to infection numbers to be around 31%. This study underscores the potential of strict, yet severe lockdowns in breaking ongoing infection dynamics, by utilising a rare quasi-experimental design case that avoids bias introduced through treatment selection.


Subject(s)
COVID-19 , Cities , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , COVID-19/transmission , Denmark/epidemiology , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Animals , Quarantine , Mink/virology , Communicable Disease Control/methods , Pandemics/prevention & control
3.
BMC Vet Res ; 20(1): 356, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127663

ABSTRACT

BACKGROUND: Klebsiella pneumoniae is a zoonotic opportunistic pathogen, and also one of the common pathogenic bacteria causing mink pneumonia. The aim of this study was to get a better understanding of the whole-genome of multi-drug resistant Klebsiella pneumoniae with K2 serotype in China. This study for the first time to analyze Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, resistance and virulence genes of Klebsiella pneumoniae in mink. RESULTS: The isolate was Klebsiella pneumoniae with serotype K2 and ST6189 by PCR method. The string test was positive and showed high mucus phenotype. There was one plasmid with IncFIB replicons in the genome. The virulence factors including capsule, lipopolysaccharide, adhesin, iron uptake system, urease, secretory system, regulatory gene (rcsA, rcsB), determinants of pili adhesion, enolase and magnesium ion absorption related genes. The strain was multi-drug resistant. A total of 26  resistance genes, including beta-lactam, aminoglycosides, tetracycline, fluoroquinolones, sulfonamides, amide alcohols, macrolides, rifampicin, fosfomycin, vancomycin, diaminopyrimidines and polymyxin. Multidrug-resistant efflux protein AcrA, AcrB, TolC, were predicted in the strain. CONCLUSION: It was the first to identify that serotype K2 K. pneumonia with ST6189 isolated from mink in China. The finding indicated that hypervirulent and multi-drug resistant K. pneumoniae was exist in Chinese mink. The whole-genome of K. pneumoniae isolates have importance in mink farming practice.


Subject(s)
Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae , Mink , Serogroup , Whole Genome Sequencing , Animals , Drug Resistance, Multiple, Bacterial/genetics , Mink/microbiology , China , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Genome, Bacterial , Klebsiella Infections/veterinary , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics
4.
PLoS One ; 19(7): e0306135, 2024.
Article in English | MEDLINE | ID: mdl-39024380

ABSTRACT

Aleutian disease (AD) is a devastating infectious disease in American mink (Neogale vison) industry caused by Aleutian mink disease virus (AMDV). Two crucial steps toward controlling infectious diseases in farm animals are: (i) assessment of the infection risk factors to minimize the likelihood of infection and (ii) selection of animals with superior immune responses against pathogens to build tolerant farms. This study aimed to investigate AD risk factors and evaluate a novel "ImmunAD" approach for genetic improvement of AD tolerance. Phenotypic records and pedigree information of 1,366 and 24,633 animals were included in this study. The risk of animal's age, sex, color type, and year of sampling on AMDV infection was assessed using a logistic regression model and counter immune-electrophoresis (CIEP) test results. ImmunAD phenotype was calculated based on AMDVG enzyme-linked immunosorbent assay (ELISA) and CIEP test results, and breeding values for ImmunAD were estimated using an animal model. Animals were classified into high-coordinated (HCIR), average-coordinated (ACIR), and low-coordinated immune responders (LCIR) using ImmunAD's breeding values, and the impact of selection of HCIR on live grade of pelt quality (PQ), harvest weight (HW), and harvest length (HL) breeding values were evaluated. Age of > 1 year, male sex, and year of sampling were identified as significant risk factors of AD (p < 0.05). A moderate-to-high heritability (0.55±0.07) was estimated for ImmunAD, while a higher heritability was observed among the CIEP-positive animals (0.76±0.06). Significantly higher breeding values were observed for PQ and HL among HCIR than those for LCIR and ACIR (p < 0.05). Our findings indicate the critical role of male breeders in AD distribution within mink farms. Regular screening of AD in male breeders before pairing them with females during breeding seasons can help disease control. ImmunAD strategy can be applied to genetic improvement of AD tolerance, with favorable impacts on some growth and production traits. Higher genetic gains can be achieved in populations with higher AD seroprevalences.


Subject(s)
Aleutian Mink Disease Virus , Aleutian Mink Disease , Mink , Animals , Aleutian Mink Disease/genetics , Mink/genetics , Risk Factors , Male , Female , Aleutian Mink Disease Virus/genetics , Aleutian Mink Disease Virus/immunology , Phenotype , Breeding
5.
Dev Comp Immunol ; 160: 105234, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39069110

ABSTRACT

Mink are susceptible to viruses such as SARS-CoV-2, H1N1 and H9N2, so they are considered a potential animal model for studying human viral infections. Therefore, it is important to study the immune system of mink. Immunoglobulin (Ig) is an important component of humoral immunity and plays an important role in the body's immune defense. In this study, we described the gene loci structure of mink Ig germline by genome comparison, and analysed the mechanism of expression diversity of mink antibody library by 5'RACE and next-generation sequencing (NGS). The results were as follows: the IgH, Igκ and Igλ loci of mink were located on chromosome 13, chromosome 8 and chromosome 3, respectively, and they had 25, 36 and 7 V genes, 3, 5 and 7 J genes and 10 DH genes, respectively. Mink Ig heavy chain preferred the IGHV1, IGHD2 and IGHJ4 subgroups, κ chain mainly use the IGKV1, IGKJ1 and IGHL4 subgroups, and λ chain mainly use the IGLV3 and IGLJ3 subgroups. Linkage diversity analysis revealed that N nucleotide insertion was the main factor affecting the linkage diversity of mink Igs. On the mutation types of mink Ig Somatic Hypermutation (SHM), the high mutation types of heavy chain were mainly G > A, C > T, T > C, A > G, C > A, G > T, A > C, and T > G; the high mutation types of κ chain were G > A and T > C; and the high mutation types of λ chain were G > A and A > G. The objective of this study was to analyse the loci structure and expression diversity of Ig in mink. The results contribute to our comprehension of Ig expression patterns in mink and were valuable for advancing knowledge in mink immunogenetics, exploring the evolution of adaptive immune systems across different species, and conducting comparative genomics research.


Subject(s)
Mink , Animals , Mink/genetics , Mink/immunology , High-Throughput Nucleotide Sequencing , Immunity, Humoral/genetics , COVID-19/immunology , COVID-19/virology , Immunoglobulins/genetics , Humans , Mutation/genetics , Immunoglobulin Heavy Chains/genetics , SARS-CoV-2/immunology , Genetic Loci
6.
Front Cell Infect Microbiol ; 14: 1404431, 2024.
Article in English | MEDLINE | ID: mdl-39081866

ABSTRACT

Introduction: Endogenous retroviruses (ERVs), which originated from exogenous retroviral infections of germline cells millions of years ago and were inherited by subsequent generations as per Mendelian inheritance patterns, predominantly comprise non-protein-coding sequences due to the accumulation of mutations, insertions, deletions, and truncations. Nevertheless, recent studies have revealed that ERVs play a crucial role in diverse biological processes by encoding various proteins. Methods: In this study, we successfully identified an ERV envelope (env) gene in a mink species. A phylogenetic tree of mink ERV-V env and reference sequences was constructed using Bayesian methods and maximum-likelihood inference. Results: Phylogenetic analyses indicated a significant degree of sequence conservation and positive selection within the env-surface open reading frame. Additionally, qRT-PCR revealed diverse patterns of mink ERV-V env expression in various tissues. The expression of mink ERV-V env gene in testicular tissue strongly correlated with the seasonal reproductive cycles of minks. Discussion: Our study suggests that the ERV-V env gene in mink may have been repurposed for host functions.


Subject(s)
Endogenous Retroviruses , Mink , Phylogeny , Endogenous Retroviruses/genetics , Animals , Mink/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Seasons , Reproduction/genetics , Male , Testis/virology , Bayes Theorem
7.
Viruses ; 16(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39066240

ABSTRACT

Morbillivirus canis (canine distemper virus (CDV)) is recognized as a multihost pathogen responsible for a transmissible disease affecting both domestic and wild animals. A considerable portion of wildlife populations remain unvaccinated due to a lack of safety and immunogenicity data on existing vaccines for the prevention of CDV infection in these species. This review aimed to assess the current state of CDV vaccination research for both domestic and wild animals and to explore novel vaccine candidates through in vivo studies. It also sought to synthesize the scattered information from the extensive scientific literature on CDV vaccine research, identify key researchers in the field, and highlight areas where research on CDV vaccination is lacking. A scoping review was conducted across four databases following the PRISMA-ScR protocol, with information analyzed using absolute and relative frequencies and 95% confidence intervals (CIs) for study number proportions. Among the 2321 articles retrieved, 68 met the inclusion criteria and focused on CDV vaccines in various animal species, such as dogs, ferrets, minks, and mice. Most of the scientific community involved in this research was in the USA, Canada, France, and Denmark. Various vaccine types, including MLV CDV, recombinant virus, DNA plasmids, inactivated CDV, and MLV measles virus (MeV), were identified, along with diverse immunization routes and schedules employed in experimental and commercial vaccines. Safety and efficacy data were summarized. Notably, 37 studies reported postimmunization CDV challenge, primarily in dogs, revealing the survival rates of vaccinated animals. In summary, CDV vaccines generally demonstrate an acceptable safety profile in dogs and show promise as a means of controlling CDV. However, significant gaps in vaccine research persist, particularly concerning wildlife reservoirs, indicating the need for further investigation.


Subject(s)
Animals, Domestic , Animals, Wild , Distemper Virus, Canine , Distemper , Vaccination , Viral Vaccines , Animals , Animals, Wild/virology , Distemper Virus, Canine/immunology , Distemper Virus, Canine/genetics , Viral Vaccines/immunology , Viral Vaccines/adverse effects , Viral Vaccines/administration & dosage , Distemper/prevention & control , Distemper/immunology , Distemper/virology , Vaccination/veterinary , Dogs , Ferrets , Mice , Immunogenicity, Vaccine , Mink/virology , Mink/immunology
8.
PLoS Pathog ; 20(7): e1012039, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950065

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) not only caused the COVID-19 pandemic but also had a major impact on farmed mink production in several European countries. In Denmark, the entire population of farmed mink (over 15 million animals) was culled in late 2020. During the period of June to November 2020, mink on 290 farms (out of about 1100 in the country) were shown to be infected with SARS-CoV-2. Genome sequencing identified changes in the virus within the mink and it is estimated that about 4000 people in Denmark became infected with these mink virus variants. However, the routes of transmission of the virus to, and from, the mink have been unclear. Phylogenetic analysis revealed the generation of multiple clusters of the virus within the mink. Detailed analysis of changes in the virus during replication in mink and, in parallel, in the human population in Denmark, during the same time period, has been performed here. The majority of cases in mink involved variants with the Y453F substitution and the H69/V70 deletion within the Spike (S) protein; these changes emerged early in the outbreak. However, further introductions of the virus, by variants lacking these changes, from the human population into mink also occurred. Based on phylogenetic analysis of viral genome data, we estimate, using a conservative approach, that about 17 separate examples of mink to human transmission occurred in Denmark but up to 59 such events (90% credible interval: (39-77)) were identified using parsimony to count cross-species jumps on transmission trees inferred using Bayesian methods. Using the latter approach, 136 jumps (90% credible interval: (117-164)) from humans to mink were found, which may underlie the farm-to-farm spread. Thus, transmission of SARS-CoV-2 from humans to mink, mink to mink, from mink to humans and between humans were all observed.


Subject(s)
COVID-19 , Mink , Phylogeny , SARS-CoV-2 , Mink/virology , COVID-19/transmission , COVID-19/virology , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2/genetics , Animals , Denmark/epidemiology , Humans , Pandemics , Farms , Betacoronavirus/genetics , Betacoronavirus/classification , Genome, Viral , Coronavirus Infections/veterinary , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus Infections/transmission , Spike Glycoprotein, Coronavirus/genetics
9.
BMC Genom Data ; 25(1): 68, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982354

ABSTRACT

The recent chromosome-based genome assembly and the newly developed 70K single nucleotide polymorphism (SNP) array for American mink (Neogale vison) facilitate the identification of genetic variants underlying complex traits in this species. The objective of this study was to evaluate the association between consensus runs of homozygosity (ROH) with growth and feed efficiency traits in American mink. A subsample of two mink populations (n = 2,986) were genotyped using the Affymetrix Mink 70K SNP array. The identified ROH segments were included simultaneously, concatenated into consensus regions, and the ROH-based association studies were carried out with linear mixed models considering a genomic relationship matrix for 11 growth and feed efficiency traits implemented in ASReml-R version 4. In total, 298,313 ROH were identified across all individuals, with an average length and coverage of 4.16 Mb and 414.8 Mb, respectively. After merging ROH segments, 196 consensus ROH regions were detected and used for genome-wide ROH-based association analysis. Thirteen consensus ROH regions were significantly (P < 0.01) associated with growth and feed efficiency traits. Several candidate genes within the significant regions are known for their involvement in growth and body size development, including MEF2A, ADAMTS17, POU3F2, and TYRO3. In addition, we found ten consensus ROH regions, defined as ROH islands, with frequencies over 80% of the population. These islands harbored 12 annotated genes, some of which were related to immune system processes such as DTX3L, PARP9, PARP14, CD86, and HCLS1. This is the first study to explore the associations between homozygous regions with growth and feed efficiency traits in American mink. Our findings shed the light on the effects of homozygosity in the mink genome on growth and feed efficiency traits, that can be utilized in developing a sustainable breeding program for mink.


Subject(s)
Homozygote , Mink , Polymorphism, Single Nucleotide , Animals , Mink/genetics , Mink/growth & development , Polymorphism, Single Nucleotide/genetics , Genome-Wide Association Study/veterinary , Animal Feed , Phenotype
10.
Chemosphere ; 362: 142562, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851506

ABSTRACT

There is global demand for novel ecotoxicity testing tools that are based on alternative to animal models, have high throughput potential, and may be applicable to a wide diversity of taxa. Here we scaled up a microplate-based cell-free neurochemical testing platform to screen 800 putative endocrine disrupting chemicals from the U.S. Environmental Protection Agency's ToxCast e1k library against the glutamate (NMDA), muscarinic acetylcholine (mACh), and dopamine (D2) receptors. Each assay was tested in cellular membranes isolated from brain tissues from a representative bird (zebra finch = Taeniopygia castanotis), mammal (mink = Neogale vison), and fish (rainbow trout = Oncorhynchus mykiss). The primary objective of this short communication was to make the results database accessible, while also summarising key attributes of assay performance and presenting some initial observations. In total, 7200 species-chemical-assay combinations were tested, of which 453 combinations were classified as a hit (radioligand binding changed by at least 3 standard deviations). There were some differences across species, and most hits were found for the D2 and NMDA receptors. The most active chemical was C.I. Solvent Yellow 14 followed by Diphenhydramine hydrochloride, Gentian Violet, SR271425, and Zamifenacin. Nine chemicals were tested across multiple plates with a mean relative standard deviation of the specific radioligand binding data being 24.6%. The results demonstrate that cell-free assays may serve as screening tools for large chemical libraries especially for ecological species not easily studied using traditional methods.


Subject(s)
Endocrine Disruptors , Animals , Endocrine Disruptors/analysis , Fishes/metabolism , Birds , Mammals/metabolism , Finches , Mink , Toxicity Tests/methods
11.
Euro Surveill ; 29(25)2024 Jun.
Article in English | MEDLINE | ID: mdl-38904109

ABSTRACT

Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe 2020-2023. In July 2023, HPAI A(H5N1) was detected on 27 fur farms in Finland. In total, infections in silver and blue foxes, American minks and raccoon dogs were confirmed by RT-PCR. The pathological findings in the animals include widespread inflammatory lesions in the lungs, brain and liver, indicating efficient systemic dissemination of the virus. Phylogenetic analysis of Finnish A(H5N1) strains from fur animals and wild birds has identified three clusters (Finland I-III), and molecular analyses revealed emergence of mutations known to facilitate viral adaptation to mammals in the PB2 and NA proteins. Findings of avian influenza in fur animals were spatially and temporally connected with mass mortalities in wild birds. The mechanisms of virus transmission within and between farms have not been conclusively identified, but several different routes relating to limited biosecurity on the farms are implicated. The outbreak was managed in close collaboration between animal and human health authorities to mitigate and monitor the impact for both animal and human health.


Subject(s)
Animals, Wild , Charadriiformes , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Finland/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/isolation & purification , Animals, Wild/virology , Charadriiformes/virology , Disease Outbreaks/veterinary , Farms , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/epidemiology , Foxes/virology , Birds/virology , Mink/virology
12.
Sci Rep ; 14(1): 9973, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38693164

ABSTRACT

Identifying the environmental factors that determine the occurrence of invasive species is essential in defining and implementing effective control campaigns. Here, we applied multi-season occupancy models to analyze American mink (Neogale vison) track data collected using 121 floating rafts, as a function of factors occurring at multiple spatial scales. Our overall aim was to identify those factors that determine the use, colonization or abandonment of rafts by free ranging individuals found in western Macedonia, Greece. We found that increasing values of shrubs and rock cover at the micro-habitat scale were positively associated with the species' probability of raft use, as was the density of medium-sized rivers at the landscape scale. Colonization was found to increase with increasing amounts of shrub and reed cover; however, both variables were not informative. Conversely, the distance from the nearest fur farm was highly informative in predicting raft abandonment by the species. Effective control actions may require removal by trapping along rocky or densely vegetated riverbanks or lake shores located in the vicinity of the established fur farms in the area. Habitat management, although possible, may be difficult to implement due to the ability of the species to adapt. Finally, fur farms should maximize security and establish an early warning and rapid eradication system in case of future escapes.


Subject(s)
Ecosystem , Introduced Species , Mink , Animals , Greece , Mink/physiology , Population Dynamics , Seasons
13.
Microb Pathog ; 192: 106709, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810766

ABSTRACT

This study prepared a novel monoclonal antibody (MAb) against mink enteritis parvovirus (MEV) and identified its antigen epitope. The antibody subclass is identified as IgG1, the titers of the MAb is up to 1:1 × 106 and keeps stably after low-temperature storage for 9 months or 11 passages of the MAb cells. The MAb can specifically recognize MEV in the cells in IFA, but not Aleutian disease virus (ADV) or canine distemper virus (CDV). Its antigen epitope was identified as a polypeptide containing 5 key amino acids (378YAFGR382) and the homology in 20 MEV strains, 4 canine parvovirus strains, and 4 feline panleukopenia virus strains was 100%. This study supplies a biological material for developing new methods to detect MEV.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Distemper Virus, Canine , Epitopes , Mink enteritis virus , Animals , Antibodies, Monoclonal/immunology , Epitopes/immunology , Mink enteritis virus/immunology , Distemper Virus, Canine/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Mink/immunology , Immunoglobulin G/immunology , Aleutian Mink Disease Virus/immunology , Parvovirus, Canine/immunology , Feline Panleukopenia Virus/immunology , Epitope Mapping , Mice , Mice, Inbred BALB C , Mink Viral Enteritis/immunology
14.
Virol J ; 21(1): 113, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760812

ABSTRACT

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease. SFTS virus (SFTSV) is transmitted by tick bites and contact with the blood or body fluids of SFTS patients. Animal-to-human transmission of SFTS has been reported in Japan, but not in China. In this study, the possible transmission route of two patients who fed and cared for farm-raised fur animals in a mink farm was explored. METHOD: An epidemiological investigation and a genetic analysis of patients, animals and working environment were carried out. RESULTS: It was found that two patients had not been bitten by ticks and had no contact with patients infected with SFTS virus, but both of them had skinned the dying animals. 54.55% (12/22) of the farm workers were positive for SFTS virus antibody. By analyzing the large, medium and small segments sequences, the viral sequences from the two patients, animals and environments showed 99.9% homology. CONCLUSION: It is suspected that the two patients may be directly infected by farm-raised animals, and that the virus may have been transmitted by aerosols when skinning dying animals. Transmission by direct blood contacts or animal bites cannot be ignored.


Subject(s)
Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Humans , Antibodies, Viral/blood , China/epidemiology , Farmers , Farms , Mink/virology , Phlebovirus/genetics , Phlebovirus/isolation & purification , Phlebovirus/classification , Phylogeny , RNA, Viral/genetics , Severe Fever with Thrombocytopenia Syndrome/transmission , Severe Fever with Thrombocytopenia Syndrome/virology , Severe Fever with Thrombocytopenia Syndrome/epidemiology
15.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791536

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects various mammalian species, with farmed minks experiencing the highest number of outbreaks. In Spain, we analyzed 67 whole genome sequences and eight spike sequences from 18 outbreaks, identifying four distinct lineages: B.1, B.1.177, B.1.1.7, and AY.98.1. The potential risk of transmission to humans raises crucial questions about mutation accumulation and its impact on viral fitness. Sequencing revealed numerous not-lineage-defining mutations, suggesting a cumulative mutation process during the outbreaks. We observed that the outbreaks were predominantly associated with different groups of mutations rather than specific lineages. This clustering pattern by the outbreaks could be attributed to the rapid accumulation of mutations, particularly in the ORF1a polyprotein and in the spike protein. Notably, the mutations G37E in NSP9, a potential host marker, and S486L in NSP13 were detected. Spike protein mutations may enhance SARS-CoV-2 adaptability by influencing trimer stability and binding to mink receptors. These findings provide valuable insights into mink coronavirus genetics, highlighting both host markers and viral transmission dynamics within communities.


Subject(s)
COVID-19 , Genome, Viral , Mink , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , COVID-19/epidemiology , COVID-19/transmission , Animals , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spain/epidemiology , Mink/virology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Host Adaptation/genetics , Humans , Disease Outbreaks , Pandemics , Phylogeny , Whole Genome Sequencing
16.
Nat Commun ; 15(1): 4112, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750016

ABSTRACT

Outbreaks of highly pathogenic H5N1 clade 2.3.4.4b viruses in farmed mink and seals combined with isolated human infections suggest these viruses pose a pandemic threat. To assess this threat, using the ferret model, we show an H5N1 isolate derived from mink transmits by direct contact to 75% of exposed ferrets and, in airborne transmission studies, the virus transmits to 37.5% of contacts. Sequence analyses show no mutations were associated with transmission. The H5N1 virus also has a low infectious dose and remains virulent at low doses. This isolate carries the adaptive mutation, PB2 T271A, and reversing this mutation reduces mortality and airborne transmission. This is the first report of a H5N1 clade 2.3.4.4b virus exhibiting direct contact and airborne transmissibility in ferrets. These data indicate heightened pandemic potential of the panzootic H5N1 viruses and emphasize the need for continued efforts to control outbreaks and monitor viral evolution.


Subject(s)
Ferrets , Influenza A Virus, H5N1 Subtype , Mink , Orthomyxoviridae Infections , Animals , Mink/virology , Ferrets/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/veterinary , Risk Assessment , Humans , Mutation , Viral Proteins/genetics , Viral Proteins/metabolism , Female , Disease Outbreaks/veterinary , Male , Influenza, Human/virology , Influenza, Human/transmission
17.
Emerg Microbes Infect ; 13(1): 2353292, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712345

ABSTRACT

ABSTRACTRapid evolution of highly pathogenic avian influenza viruses (HPAIVs) is driven by antigenic drift but also by reassortment, which might result in robust replication in and transmission to mammals. Recently, spillover of clade 2.3.4.4b HPAIV to mammals including humans, and their transmission between mammalian species has been reported. This study aimed to evaluate the pathogenicity and transmissibility of a mink-derived clade 2.3.4.4b H5N1 HPAIV isolate from Spain in pigs. Experimental infection caused interstitial pneumonia with necrotizing bronchiolitis with high titers of virus present in the lower respiratory tract and 100% seroconversion. Infected pigs shed limited amount of virus, and importantly, there was no transmission to contact pigs. Notably, critical mammalian-like adaptations such as PB2-E627 K and HA-Q222L emerged at low frequencies in principal-infected pigs. It is concluded that pigs are highly susceptible to infection with the mink-derived clade 2.3.4.4b H5N1 HPAIV and provide a favorable environment for HPAIV to acquire mammalian-like adaptations.


Subject(s)
Influenza A Virus, H5N1 Subtype , Mink , Orthomyxoviridae Infections , Swine Diseases , Animals , Mink/virology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/veterinary , Swine , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H5N1 Subtype/isolation & purification , Swine Diseases/virology , Swine Diseases/transmission , Spain , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Shedding
18.
J Virol Methods ; 328: 114958, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801834

ABSTRACT

In this report, a multiplex PCR method was developed for the detection of three diarrhea-associated viruses in mink, including circovirus (MCV), bocavirus (MBoV), and enteritis virus (MEV). Three compatible sets of primers specific for each virus were designed respectively based on their conserved sequences. After optimization of the crucial factors such as primer concentration and annealing temperature in single and multiple amplification, three specific fragments were simultaneously amplified with the highest sensitivity and specificity in one PCR reaction. The fragments amplified were 259 bp (MCV),455 bp (MBoV) and 671 bp (MEV). The sensibility of this one-step multiplex PCR is about 10 times lower than that of regular singleplex PCR. There were no cross-reactions with some relevant pathogens like mink coronavirus, canine distemper virus, and aleutian mink disease virus. In our study we analyzed viral DNA in mink fecal samples by multiplex PCR assay from China, which revealed the occurrence of MCV, MBoV, and MEV as 3.1 %, 5.7 %, and 9.8 %, respectively. The testing results of multiplex PCR agreed with the singleplex PCR results with a coincidence rate of 100 %. These results indicated that the method could provide technical support for rapid detection of the three diarrhea-associated viruses, and epidemiological investigation of mink viral diarrhea.


Subject(s)
DNA Primers , Diarrhea , Feces , Mink , Multiplex Polymerase Chain Reaction , Sensitivity and Specificity , Animals , Mink/virology , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/veterinary , China , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/diagnosis , DNA Primers/genetics , Feces/virology , Circovirus/genetics , Circovirus/isolation & purification , Bocavirus/genetics , Bocavirus/isolation & purification , Mink enteritis virus/genetics , Mink enteritis virus/isolation & purification , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/veterinary
19.
Acta Trop ; 256: 107257, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761833

ABSTRACT

Bovine tuberculosis (bTB) is a chronic infectious-contagious disease with worldwide distribution, caused by the zoonotic pathogen Mycobacterium bovis. It is believed that the existence of wild cycles may hamper the success of bTB control strategies worldwide, where wildlife species could be reservoirs of this bacterial agent across their native (e.g., European badgers, wild boars) or non-indigenous (e.g., brushtail possum in New Zealand) ranges. However, further studies are required to understand the potential risk posed by non-native wildlife in becoming carriers of M. bovis in other neglected latitudes, such as the Southern Cone of South America. In this study, we performed a specific M. bovis-RD4 real-time PCR (qPCR) assay to detect bacterial DNA in tissues from the invasive American mink (Neogale vison) in Los Ríos region, Chile. We detected M. bovis DNA in blood samples collected from 13 out of 186 (7 %) minks with known sex and age. We did not find any significant differences in bacterial DNA detection according to mink sex and age. We found that 92 % (12/13) of specimens were positive in lung, 39 % (5/13) in mediastinal lymph node, and 15 % (2/13) in mesenteric lymph node, which suggest that both respiratory and digestive pathways as possible routes of transmission between infected hosts and minks. Our study is the first report on M. bovis molecular detection in invasive minks in an area where the largest cattle population in the country is located. Furthermore, this area is characterized by a low within-herd prevalence of M. bovis infection in cattle, with a relatively low number of infected herds, and so far, no attempts at eradicating the disease have been successful.


Subject(s)
Mink , Mycobacterium bovis , Real-Time Polymerase Chain Reaction , Tuberculosis , Animals , Mycobacterium bovis/genetics , Mycobacterium bovis/isolation & purification , Mink/microbiology , Chile/epidemiology , Female , Male , Tuberculosis/veterinary , Tuberculosis/microbiology , Tuberculosis/epidemiology , Tuberculosis/transmission , DNA, Bacterial/genetics , Carrier State/veterinary , Carrier State/microbiology , Carrier State/epidemiology , Disease Reservoirs/microbiology , Lung/microbiology
20.
Emerg Infect Dis ; 30(6): 1299-1301, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781980

ABSTRACT

We isolated severe fever with thrombocytopenia syndrome virus (SFTSV) from farmed minks in China, providing evidence of natural SFTSV infection in farmed minks. Our findings support the potential role of farmed minks in maintaining SFTSV and are helpful for the development of public health interventions to reduce human infection.


Subject(s)
Disease Outbreaks , Mink , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Phlebovirus/genetics , Phlebovirus/isolation & purification , Phlebovirus/classification , China/epidemiology , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/virology , Animals , Mink/virology , Phylogeny , Humans , Farms
SELECTION OF CITATIONS
SEARCH DETAIL