Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.036
Filter
1.
Biol Lett ; 20(7): 20240106, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38955226

ABSTRACT

Feather moulting is a crucial process in the avian life cycle, which evolved to maintain plumage functionality. However, moulting involves both energetic and functional costs. During moulting, plumage function temporarily decreases between the shedding of old feathers and the full growth of new ones. In flying taxa, a gradual and sequential replacement of flight feathers evolved to maintain aerodynamic capabilities during the moulting period. Little is known about the moult strategies of non-avian pennaraptoran dinosaurs and stem birds, before the emergence of crown lineage. Here, we report on two Early Cretaceous pygostylian birds from the Yixian Formation (125 mya), probably referable to Confuciusornithiformes, exhibiting morphological characteristics that suggest a gradual and sequential moult of wing flight feathers. Short primary feathers interpreted as immature are symmetrically present on both wings, as is typical among extant flying birds. Our survey of the enormous collection of the Tianyu Museum confirms previous findings that evidence of active moult in non-neornithine pennaraptorans is rare and likely indicates a moult cycle greater than one year. Documenting moult in Mesozoic feathered dinosaurs is critical for understanding their ecology, locomotor ability and the evolution of this important life-history process in birds.


Subject(s)
Biological Evolution , Birds , Feathers , Fossils , Molting , Animals , Feathers/anatomy & histology , Fossils/anatomy & histology , Birds/physiology , Birds/anatomy & histology , Molting/physiology , Dinosaurs/anatomy & histology , Dinosaurs/physiology , Flight, Animal , China , Wings, Animal/anatomy & histology
2.
Commun Biol ; 7(1): 820, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969778

ABSTRACT

Lobopodians represent a key step in the early history of ecdysozoans since they were the first animals to evolve legs within this clade. Their Cambrian representatives share a similar body plan with a typically cylindrical annulated trunk and a series of non-jointed legs. However, they do not form a monophyletic group and likely include ancestors of the three extant panarthropod lineages (Tardigrada, Onychophora, Euarthropoda). Some species display astonishing protective devices such as cuticular plates and spines. We describe here the armor and molting process of Microdictyon from the early Cambrian of China. Microdictyon secreted ovoid paired cuticular sclerites that were duplicated in a non-synchronous way along the animal's body. The reticulated pattern and cuticular architecture of these sclerites have similarities to extant armored tardigrades that recently served in hypothesizing that tardigrades are possibly miniaturized lobopodians. Ecdysis and hard cuticular protection are now well documented in the whole spectrum of early Cambrian ecdysozoans such as soft-bodied scalidophorans, lobopodians and fully articulated euarthropods. We hypothesize that the secretion of sclerotized cuticular elements periodically renewed via ecdysis was a key innovation that opened large-scale evolutionary opportunities to invertebrate animal life, specifically ecdysozoans, both in terms of anatomical functionalities and ecological success.


Subject(s)
Fossils , Molting , Animals , Molting/physiology , Fossils/anatomy & histology , Biological Evolution , Arthropods/anatomy & histology , Arthropods/classification , Arthropods/physiology , China , Phylogeny
3.
J Exp Biol ; 227(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38826104

ABSTRACT

Once a year, penguins undergo a catastrophic moult, replacing their entire plumage during a fasting period on land or on sea-ice during which time individuals can lose 45% of their body mass. In penguins, new feather synthesis precedes the loss of old feathers, leading to an accumulation of two feather layers (double coat) before the old plumage is shed. We hypothesized that the combination of the high metabolism required for new feather synthesis and the potentially high thermal insulation linked to the double coat could lead to a thermal challenge requiring additional peripheral circulation to thermal windows to dissipate the extra heat. To test this hypothesis, we measured the surface temperature of different body regions of captive gentoo penguins (Pygoscelis papua) throughout the moult under constant environmental conditions. The surface temperature of the main body trunk decreased during the initial stages of the moult, suggesting greater thermal insulation. In contrast, the periorbital region, a potential proxy of core temperature in birds, increased during these same early moulting stages. The surface temperature of the bill, flipper and foot (thermal windows) tended to initially increase during the moult, highlighting the likely need for extra heat dissipation in moulting penguins. These results raise questions regarding the thermoregulatory capacities of penguins in the wild during the challenging period of moulting on land in the current context of global warming.


Subject(s)
Body Temperature , Feathers , Molting , Spheniscidae , Animals , Spheniscidae/physiology , Molting/physiology , Feathers/physiology , Body Temperature Regulation/physiology , Male , Female
4.
J Exp Biol ; 227(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38856174

ABSTRACT

Organisms regularly adjust their physiology and energy balance in response to predictable seasonal environmental changes. Stressors and contaminants have the potential to disrupt these critical seasonal transitions. No studies have investigated how simultaneous exposure to the ubiquitous toxin methylmercury (MeHg) and food stress affects birds' physiological performance across seasons. We quantified several aspects of energetic performance in song sparrows, Melospiza melodia, exposed or not to unpredictable food stress and MeHg in a 2×2 experimental design, over 3 months during the breeding season, followed by 3 months post-exposure. Birds exposed to food stress had reduced basal metabolic rate and non-significant higher factorial metabolic scope during the exposure period, and had a greater increase in lean mass throughout most of the experimental period. Birds exposed to MeHg had increased molt duration, and increased mass:length ratio of some of their primary feathers. Birds exposed to the combined food stress and MeHg treatment often had responses similar to the stress-only or MeHg-only exposure groups, suggesting these treatments affected physiological performance through different mechanisms and resulted in compensatory or independent effects. Because the MeHg and stress variables were selected in candidate models with a ΔAICc lower than 2 but the 95% confidence interval of these variables overlapped zero, we found weak support for MeHg effects on all measures except basal metabolic rate, and for food stress effects on maximum metabolic rate, factorial metabolic scope and feather mass:length ratio. This suggests that MeHg and food stress effects on these measures are statistically identified but not simple and/or were too weak to be detected via linear regression. Overall, combined exposure to ecologically relevant MeHg and unpredictable food stress during the breeding season does not appear to induce extra energetic costs for songbirds in the post-exposure period. However, MeHg effects on molt duration could carry over across multiple annual cycle stages.


Subject(s)
Energy Metabolism , Feathers , Methylmercury Compounds , Molting , Stress, Physiological , Animals , Feathers/drug effects , Methylmercury Compounds/toxicity , Molting/drug effects , Stress, Physiological/drug effects , Energy Metabolism/drug effects , Sparrows/physiology , Basal Metabolism/drug effects , Male , Seasons , Female
5.
Ecol Evol Physiol ; 97(3): 129-143, 2024.
Article in English | MEDLINE | ID: mdl-38875140

ABSTRACT

AbstractTemperate reptiles are often considered to be low-energy systems, with their discrete use of time and energy making them model systems for the study of time-energy budgets. However, the semifrequent replacement and sloughing of the epidermis is a ubiquitous feature of squamate reptiles that is often overlooked when accounting for time and energy budgets in these animals. We used open-flow respirometry to measure both the energetic effort of ecdysis and the duration of the associated metabolic upregulation (likely related to behavioral changes often reported for animals in shed) in wild-caught timber rattlesnakes (Crotalus horridus). We hypothesized that total effort of skin biosynthesis and physical removal would be related to body mass and expected the duration of the process to remain static across individuals at a fixed temperature (25°C). We provide both the first measurements of the cost of skin biosynthesis and physical removal in a reptile and the highest-resolution estimate of process duration recorded to date. We found that skin biosynthesis, but not the cost of physical removal of the epidermis, was related to body mass. Shed cycle duration was consistent across individuals, taking nearly 4 wk from process initiation to physical removal of the outermost epidermal layer. Total energetic effort of ecdysis was of sizeable magnitude, requiring ∼3% of the total annual energy budget of a timber rattlesnake. Energetic effort for a 500-g snake was equivalent to the amount of metabolizable energy acquired from the consumption of approximately two adult mice. Ecdysis is a significant part of the time-energy budgets of snakes, necessitating further attention in studies of reptilian energetics.


Subject(s)
Crotalus , Energy Metabolism , Molting , Animals , Energy Metabolism/physiology , Crotalus/metabolism , Molting/physiology , Male , Female
6.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891781

ABSTRACT

Carotenoid cleavage oxygenases can cleave carotenoids into a range of biologically important products. Carotenoid isomerooxygenase (NinaB) and ß, ß-carotene 15, 15'-monooxygenase (BCO1) are two important oxygenases. In order to understand the roles that both oxygenases exert in crustaceans, we first investigated NinaB-like (EsNinaBl) and BCO1-like (EsBCO1l) within the genome of Chinese mitten crab (Eriocheir sinensis). Their functions were then deciphered through an analysis of their expression patterns, an in vitro ß-carotene degradation assay, and RNA interference. The results showed that both EsNinaBl and EsBCO1l contain an RPE65 domain and exhibit high levels of expression in the hepatopancreas. During the molting stage, EsNinaBl exhibited significant upregulation in stage C, whereas EsBCO1l showed significantly higher expression levels at stage AB. Moreover, dietary supplementation with ß-carotene resulted in a notable increase in the expression of EsNinaBl and EsBCO1l in the hepatopancreas. Further functional assays showed that the EsNinaBl expressed in E. coli underwent significant changes in its color, from orange to light; in addition, its ß-carotene cleavage was higher than that of EsBCO1l. After the knockdown of EsNinaBl or EsBCO1l in juvenile E. sinensis, the expression levels of both genes were significantly decreased in the hepatopancreas, accompanied by a notable increase in the redness (a*) values. Furthermore, a significant increase in the ß-carotene content was observed in the hepatopancreas when EsNinaBl-mRNA was suppressed, which suggests that EsNinaBl plays an important role in carotenoid cleavage, specifically ß-carotene. In conclusion, our findings suggest that EsNinaBl and EsBCO1l may exhibit functional co-expression and play a crucial role in carotenoid cleavage in crabs.


Subject(s)
Brachyura , Hepatopancreas , beta Carotene , beta-Carotene 15,15'-Monooxygenase , Animals , beta Carotene/metabolism , Brachyura/metabolism , Brachyura/genetics , beta-Carotene 15,15'-Monooxygenase/metabolism , beta-Carotene 15,15'-Monooxygenase/genetics , Hepatopancreas/metabolism , Molting/genetics , Oxygenases/metabolism , Oxygenases/genetics , Phylogeny , Arthropod Proteins/genetics , Arthropod Proteins/metabolism
7.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892237

ABSTRACT

NPC intracellular cholesterol transporter 1 (NPC1) plays an important role in sterol metabolism and transport processes and has been studied in many vertebrates and some insects, but rarely in crustaceans. In this study, we characterized NPC1 from Macrobrachium nipponense (Mn-NPC1) and evaluated its functions. Its total cDNA length was 4283 bp, encoding for 1344 amino acids. It contained three conserved domains typical of the NPC family (NPC1_N, SSD, and PTC). In contrast to its role in insects, Mn-NPC1 was mainly expressed in the adult female hepatopancreas, with moderate expression in the ovary and heart. No expression was found in the embryo (stages CS-ZS) and only weak expression in the larval stages from hatching to the post-larval stage (L1-PL15). Mn-NPC1 expression was positively correlated with ovarian maturation. In situ hybridization showed that it was mainly located in the cytoplasmic membrane and nucleus of oocytes. A 25-day RNA interference experiment was employed to illustrate the Mn-NPC1 function in ovary maturation. Experimental knockdown of Mn-NPC1 using dsRNA resulted in a marked reduction in the gonadosomatic index and ecdysone content of M. nipponense females. The experimental group showed a significant delay in ovarian maturation and a reduction in the frequency of molting. These results expand our understanding of NPC1 in crustaceans and of the regulatory mechanism of ovarian maturation in M. nipponense.


Subject(s)
Molting , Ovary , Palaemonidae , Animals , Female , Palaemonidae/genetics , Palaemonidae/growth & development , Palaemonidae/metabolism , Ovary/metabolism , Ovary/growth & development , Molting/genetics , Molting/physiology , Phylogeny , Amino Acid Sequence , Gene Expression Regulation, Developmental , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , RNA Interference
8.
J Exp Biol ; 227(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38869075

ABSTRACT

Lepidosaurian reptiles, particularly snakes, periodically shed the outer epidermal layers of their skin (ecdysis) to restore or enhance vital functions such as regulating water and gaseous exchange, growth, and protection against insult, infection or physical injury. Although many studies have focused on the nature and mechanisms of skin shedding, little attention has been paid to the timing of the first ecdysis in neonates following birth or hatching. A recent study investigated patterns of the time to first postnatal ecdysis in snakes based on a large dataset taken from the literature. The analysis demonstrated patterns in the time to first postnatal ecdysis related to phylogeny as well as several life history traits. While this assessment provides important advances in our knowledge of this topic, data on known biophysical drivers of ecdysis - temperature and humidity - were largely unavailable and were not evaluated. The first postnatal ecdysis of neonatal snakes can be viewed as an adaptive adjustment to the transition from the aqueous environment of the embryo to the aerial environment of the newborn. Hence, the timing of the first postnatal ecdysis is logically influenced by the aerial environment into which a newborn snake or hatchling finds itself. Therefore, in this Commentary, we first emphasize the putative plasticity of ecdysis with respect to epidermal lipids that structure the water permeability barrier and are established or renewed during ecdysis to reduce transepidermal evaporative water loss. We then discuss the likely importance of biophysical variables as influential covariates that need future investigation as potential co-determinants of the timing of first postnatal ecdysis.


Subject(s)
Molting , Snakes , Animals , Snakes/physiology , Snakes/growth & development , Molting/physiology , Time Factors , Animals, Newborn/physiology , Animals, Newborn/growth & development
9.
Mar Biotechnol (NY) ; 26(3): 511-525, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38748059

ABSTRACT

Bicarbonate and sulfate are among two primary ion constituents of saline-alkaline water, with excessive levels potentially causing metabolic disorders in crustaceans, affecting their molting and interrupting development. As an economically important crustacean species, the molecular adaptive mechanism of giant freshwater prawn Macrobrachium rosenbergii in response to the stress of bicarbonate and sulfate remains unexplored. To investigate the mechanism underlying NaHCO3, Na2SO4, and mixed NaHCO3, Na2SO4 stresses, M. rosenbergii larvae were exposed to the above three stress conditions, followed by total RNA extraction and high-throughput sequencing at eight distinct time points (0, 4, 8, 12, 24, 48, 72, and 96 h). Subsequent analysis revealed 13, 16, and 13 consistently identified differentially expressed genes (DEGs) across eight time points under three stress conditions. These consistently identified DEGs were significantly involved in the Gene Ontology (GO) terms of chitin-based cuticle development, protein-carbohydrate complex, structural constituent of cuticle, carnitine biosynthetic process, extracellular matrix, and polysaccharide catabolic process, indicating that alkaline stresses might potentially impact the energy metabolism, growth, and molting of M. rosenbergii larvae. Particularly, the transcriptome data revealed that DEGs associated with energy metabolism, immunity, and amino acid metabolism were enriched across multiple time points under three stress conditions. These DEGs are linked to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including glycolysis/glucogenesis, amino sugar and nucleotide sugar metabolism, and lysine degradation. Consistent enrichment findings across the three stress conditions support conclusions above. Together, these insights are instrumental in enhancing our understanding of the molecular mechanisms underlying the alkaline response in M. rosenbergii larvae. Additionally, they offer valuable perspectives on the regulatory mechanisms of freshwater crustaceans amid saline-alkaline water development.


Subject(s)
Gene Expression Profiling , Larva , Palaemonidae , Transcriptome , Animals , Palaemonidae/genetics , Palaemonidae/metabolism , Palaemonidae/drug effects , Larva/genetics , Larva/metabolism , Larva/drug effects , Stress, Physiological/genetics , Sulfates/metabolism , Molting/genetics , Molting/drug effects , Bicarbonates/metabolism , Fresh Water
10.
Gen Comp Endocrinol ; 355: 114548, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38761872

ABSTRACT

Ecdysteroid molting hormones coordinate arthropod growth and development. Binding of 20-hydroxyecdysone (20E) to ecdysteroid receptor EcR/RXR activates a cascade of nuclear receptor transcription factors that mediate tissue responses to hormone. Insect ecdysteroid responsive and Forkhead box class O (FOXO) transcription factor gene sequences were used to extract orthologs from blackback land crab (Gecarcinus lateralis) Y-organ (YO) transcriptome: Gl-Ecdysone Receptor (EcR), Gl-Broad Complex (Br-C), Gl-E74, Gl-Hormone Receptor 3 (HR3), Gl-Hormone Receptor 4 (HR4), Gl-FOXO, and Gl-Fushi tarazu factor-1 (Ftz-f1). Quantitative polymerase chain reaction quantified mRNA levels in tissues from intermolt animals and in YO of animals induced to molt by multiple limb autotomy (MLA) or eyestalk ablation (ESA). Gl-EcR, Gl-Retinoid X Receptor (RXR), Gl-Br-C, Gl-HR3, Gl-HR4, Gl-E74, Gl-E75, Gl-Ftz-f1, and Gl-FOXO were expressed in all 10 tissues, with Gl-Br-C, Gl-E74, Gl-E75, and Gl-HR4 mRNA levels in the YO lower than those in most of the other tissues. In MLA animals, molting had no effect on Gl-Br-C, Gl-E74, and Gl-Ftz-f1 mRNA levels and little effect on Gl-EcR, Gl-E75, and Gl-HR4 mRNA levels. Gl-HR3 and Gl-FOXO mRNA levels were increased during premolt stages, while Gl-RXR mRNA level was highest during intermolt and premolt stages and lowest at postmolt stage. In ESA animals, YO mRNA levels were not correlated with hemolymph ecdysteroid titers. ESA had no effect on Gl-EcR, Gl-E74, Gl-HR3, Gl-HR4, Gl-Ftz-f1, and Gl-FOXO mRNA levels, while Gl-RXR, Gl-Br-C, and Gl-E75 mRNA levels were decreased at 3 days post-ESA. These data suggest that transcriptional up-regulation of Gl-FOXO and Gl-HR3 contributes to increased YO ecdysteroidogenesis during premolt. By contrast, transcriptional regulation of ecdysteroid responsive genes and ecdysteroidogenesis were uncoupled in the YO of ESA animals.


Subject(s)
Ecdysteroids , Molting , Animals , Molting/genetics , Ecdysteroids/metabolism , Ecdysteroids/genetics , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Ecdysterone/metabolism , Brachyura/genetics , Brachyura/metabolism , Brachyura/growth & development , Endocrine Glands/metabolism
11.
Dev Comp Immunol ; 157: 105194, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38754572

ABSTRACT

In crustaceans, the steroid hormone 20-hydroxyecdysone (20E) initiates molting, and the molting process is also regulated by energy metabolism. AMPK is an energy sensor and plays a critical role in systemic energy balance. Here, the regulatory mechanism in the interaction between 20E and AMPK was investigated in Chinese mitten crab, Eriocheir sinensis. The results showed that the 20E concentration and the mRNA expression levels of 20E receptors in hepatopancreas were down-regulated post AMPK activator (AICAR) treatment, and were up-regulated after AMPK inhibitor (Compound C) injection in crabs. Besides, the molt-inhibiting hormone (MIH) gene expression in eyestalk showed the opposite patterns in response to the AICAR and Compound C treatment, respectively. Further investigation found that there was a significant reduction in 20E concentration post PI3K inhibitor (LY294002) treatment, and the phosphorylation level of PI3K was increased in hepatopancreas after AMPK inhibitor injection. On the other hand, the positive regulation of PI3K-mediated activation of AMPK was also observed, the phosphorylation levels of AMPKα, AMPKß and PI3K in hepatopancreas were significantly increased post 20E injection. In addition, the phosphorylation levels of AMPKα and AMPKß induced by 20E were decreased after the injection of PI3K inhibitor. Taken together, these results suggest that the regulatory cross-talk between 20E and AMPK is likely to act through PI3K pathway in E. sinensis, which appeared to be helpful for a better understanding in molting regulation.


Subject(s)
AMP-Activated Protein Kinases , Brachyura , Ecdysterone , Hepatopancreas , Molting , Phosphatidylinositol 3-Kinases , Animals , Brachyura/immunology , Ecdysterone/metabolism , AMP-Activated Protein Kinases/metabolism , Hepatopancreas/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Invertebrate Hormones/metabolism , Chromones/pharmacology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Ribonucleotides/pharmacology , Morpholines/pharmacology , Arthropod Proteins/metabolism , Arthropod Proteins/genetics , Phosphorylation , Energy Metabolism
12.
Int J Biol Macromol ; 270(Pt 2): 132459, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763254

ABSTRACT

Nuclear receptors (NRs) are ligand-regulated transcription factors that are important for the normal growth and development of insects. However, systematic function analysis of NRs in the molting process of Lasioderma serricorne has not been reported. In this study, we identified and characterized 16 NR genes from L. serricorne. Spatiotemporal expression analysis revealed that six NRs were mainly expressed in 3-d-old 4th-instar larvae; five NRs were primarily expressed in 5-d-old adults and four NRs were predominately expressed in prepupae. All the NRs were highly expressed in epidermis, fat body and foregut. RNA interference (RNAi) experiments revealed that knockdown of 15 NRs disrupted the larva-pupa-adult transitions and caused 64.44-100 % mortality. Hematoxylin-eosin staining showed that depletion of 12 NRs prevented the formation of new cuticle and disrupted apolysis of old cuticle. Silencing of LsHR96, LsSVP and LsE78 led to newly formed cuticle that was thinner than the controls. The 20E titer and chitin content significantly decreased by 17.67-95.12 % after 15 NR dsRNA injection and the gene expression levels of 20E synthesis genes and chitin metabolism genes were significantly reduced. These results demonstrated that 15 NR genes are essential for normal molting and metamorphosis of L. serricorne by regulating 20E synthesis and chitin metabolism.


Subject(s)
Coleoptera , Gene Expression Regulation, Developmental , Metamorphosis, Biological , Molting , Receptors, Cytoplasmic and Nuclear , Animals , Molting/genetics , Metamorphosis, Biological/genetics , Coleoptera/genetics , Coleoptera/growth & development , Coleoptera/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Larva/genetics , Larva/growth & development , Chitin/metabolism , RNA Interference , Insect Proteins/genetics , Insect Proteins/metabolism , Phylogeny , Ecdysterone/metabolism
13.
Arch Insect Biochem Physiol ; 115(4): e22106, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597092

ABSTRACT

Kissing bugs do not respond to host cues when recently molted and only exhibit robust host-seeking several days after ecdysis. Behavioral plasticity has peripheral correlates in antennal gene expression changes through the week after ecdysis. The mechanisms regulating these peripheral changes are still unknown, but neuropeptide, G-protein coupled receptor, nuclear receptor, and takeout genes likely modulate peripheral sensory physiology. We evaluated their expression in antennal transcriptomes along the first week postecdysis of Rhodnius prolixus 5th instar larvae. Besides, we performed clustering and co-expression analyses to reveal relationships between neuromodulatory (NM) and sensory genes. Significant changes in transcript abundance were detected for 50 NM genes. We identified 73 sensory-related and NM genes that were assigned to nine clusters. According to their expression patterns, clusters were classified into four groups: two including genes up or downregulated immediately after ecdysis; and two with genes with expression altered at day 2. Several NM genes together with sensory genes belong to the first group, suggesting functional interactions. Co-expression network analysis revealed a set of genes that seem to connect with sensory system maturation. Significant expression changes in NM components were described in the antennae of R. prolixus after ecdysis, suggesting that a local NM system acts on antennal physiology. These changes may modify the sensitivity of kissing bugs to host cues during this maturation interval.


Subject(s)
Neuropeptides , Rhodnius , Triatoma , Animals , Rhodnius/genetics , Rhodnius/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Transcriptome , Molting
14.
Molecules ; 29(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611907

ABSTRACT

The insecticidal property of ring C-seco limonoids has been discovered empirically and the target protein identified, but, to date, the molecular mechanism of action has not been described at the atomic scale. We elucidate on computational grounds whether nine C-seco limonoids present sufficiently high affinity to bind specifically with the putative target enzyme of the insects (ecdysone 20-monooxygenase). To this end, 3D models of ligands and the receptor target were generated and their interaction energies estimated by docking simulations. As a proof of concept, the tetrahydro-isoquinolinyl propenamide derivative QHC is the reference ligand bound to aldosterone synthase in the complex with PDB entry 4ZGX. It served as the 3D template for target modeling via homology. QHC was successfully docked back to its crystal pose in a one-digit nanomolar range. The reported experimental binding affinities span over the nanomolar to lower micromolar range. All nine limonoids were found with strong affinities in the range of -9 < ΔG < -13 kcal/mol. The molt hormone ecdysone showed a comparable ΔG energy of -12 kcal/mol, whereas -11 kcal/mol was the back docking result for the liganded crystal 4ZGX. In conclusion, the nine C-seco limonoids were strong binders on theoretical grounds in an activity range between a ten-fold lower to a ten-fold higher concentration level than insecticide ecdysone with its known target receptor. The comparable or even stronger binding hints at ecdysone 20-monooxygenase as their target biomolecule. Our assumption, however, is in need of future experimental confirmation before conclusions with certainty can be drawn about the true molecular mechanism of action for the C-seco limonoids under scrutiny.


Subject(s)
Insecticides , Limonins , Oxygenases , Insecticides/pharmacology , Ecdysone , Limonins/pharmacology , Molting
15.
Pestic Biochem Physiol ; 200: 105845, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582577

ABSTRACT

7-dehydrocholesterol (7-DHC) is a key intermediate product used for biosynthesis of molting hormone. This is achieved through a series of hydroxylation reactions catalyzed by the Halloween family of cytochrome P450s. Neverland is an enzyme catalyzes the first reaction of the ecdysteroidogenic pathway, which converts dietary cholesterol into 7-DHC. However, research on the physiological function of neverland in orthopteran insects is lacking. In this study, neverland from Locusta migratoria (LmNvd) was cloned and analyzed. LmNvd was mainly expressed in the prothoracic gland and highly expressed on days 6 and 7 of fifth instar nymphs. RNAi-mediated silencing of LmNvd resulted in serious molting delays and abnormal phenotypes, which could be rescued by 7-DHC and 20-hydroxyecdysone supplementation. Hematoxylin and eosin staining results showed that RNAi-mediated silencing of LmNvd disturbed the molting process by both promoting the synthesis of new cuticle and suppressing the degradation of the old cuticle. Quantitative real-time PCR results suggested that the mRNA expression of E75 early gene and chitinase 5 gene decreased and that of chitin synthase 1 gene was markedly upregulated after knockdown of LmNvd. Our results suggest that LmNvd participates in the biosynthesis process of molting hormone, which is involved in regulating chitin synthesis and degradation in molting cycles.


Subject(s)
Locusta migratoria , Molting , Animals , Molting/genetics , Ecdysone/metabolism , Locusta migratoria/genetics , Locusta migratoria/metabolism , RNA Interference , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Insect Proteins/metabolism
16.
Mar Pollut Bull ; 204: 116410, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38688757

ABSTRACT

We exposed adult individuals of the sentinel mangrove crab Minuca rapax to waterborne microplastics (MP; 53-63 µm polyethylene spheres) in a long-term experiment (56 days). Weassessed 1) MP effects on growth, survival, and food intake. and 2) the MP tissue acumulation and its reduction of body burden through feces and molting. MP exposure did not affect growth and survival. The hepatopancreas accumulated more MP than the gills and muscle. Most of the ingested MP particles were released in the feces and molts, indicating a rapid passage through the digestive tract. MP impaired food intake of M. rapax, with unknown consequences to the local populations. These results provide insights on MP translocation mechanisms, its elimination and toxicity associated with MP.


Subject(s)
Brachyura , Feces , Microplastics , Molting , Water Pollutants, Chemical , Animals , Brachyura/physiology , Feces/chemistry , Environmental Monitoring , Hepatopancreas/metabolism
17.
Naturwissenschaften ; 111(3): 22, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607380

ABSTRACT

Documentation of cryptic trilobite behavior has presented important insights into the paleoecology of this fully extinct arthropod group. One such example is the preservation of trilobites inside the remains of larger animals. To date, evidence for trilobites within cephalopods, gastropods, hyoliths, and other trilobites has been presented. Importantly, most of these interactions show trilobite molts, suggesting that trilobites used larger animals for protection during molting. To expand the record of molted trilobites within cephalopods, we present a unique case of a Toxochasmops vormsiensis trilobite within the body chamber of a Gorbyoceras textumaraneum nautiloid from the Upper Ordovician Kõrgessaare Formation of Estonia. By examining this material, we present new insights into the ecology of pterygometopid trilobites, highlighting how these forms used large cephalopods as areas to successfully molt.


Subject(s)
Arthropods , Molting , Animals , Ecology , Estonia
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124309, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38663137

ABSTRACT

Scorpion fluorescence under ultraviolet light is a well-known phenomenon, but its features under excitation in the UVA, UVB and UVC bands have not been characterized. Systematic fluorescence characterization revealed indistinguishable fluorescence spectra with a peak wavelength of 475 nm for whole exuviae from second-, third- and fifth-instar scorpions under different ultraviolet light ranges. In-depth investigations of the chelae, mesosoma, metasoma and telson of adult scorpions further indicated heterogeneity in the typical fluorescence spectrum within the visible light range and in the newly reported fluorescence spectrum with a peak wavelength of 320 nm within the ultraviolet light range, which both showed excitation wavelength-independent features. Dynamic fluorescence changes during the molting process of third-instar scorpions revealed the fluorescence heterogeneity-dependent recovery speed of scorpion exoskeletons. The typical fluorescence spectra of the molted chelae and telson rapidly recovered approximately 6 h after ecdysis under UVA light and approximately 36 h after ecdysis under UVB and UVC light. However, it took approximately 12 h and 24 h to obtain the typical fluorescence spectra of the molted metasoma and mesosoma, respectively, under UVA irradiation and 72 h to obtain the typical fluorescence spectra under UVB and UVC irradiation. The fluorescence heterogeneity-dependent fluorescence recovery of the scorpion exoskeleton was further confirmed by tissue section analysis of different segments from molting third-instar scorpions. These findings reveal novel scorpion fluorescence features and provide potential clues on the biological function of scorpion fluorescence.


Subject(s)
Molting , Scorpions , Spectrometry, Fluorescence , Ultraviolet Rays , Scorpions/physiology , Scorpions/chemistry , Animals , Molting/physiology , Fluorescence , Animal Shells/chemistry
19.
Sci Rep ; 14(1): 9163, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38644433

ABSTRACT

Emerging infestations of bed bugs are affecting normal human lifestyle globally. This study has been designed to optimize the rearing conditions for Cimex lectularius L. (Hemiptera), to support the scientific research on them. Bed bugs have been projected onto three different temperature (20 °C, 25 °C, and 30 °C) and relative humidity (50%, 70%, and 90%) conditions to check their overall growth and survival rate. Adult mortality, weight loss, egg laying, percentage hatching, hatching initiation and completion, nymph mortality, and molting have been evaluated to optimize the best conditions. The temperature at 25 °C with 90% RH showed minimum mortality for adults (female 13.33 ± 3.33% and male 6.67 ± 3.33%) and nymphs (13.33 ± 3.33%), while maximum egg laying (40.33 ± 1.86), with highest percentage hatching (98.23 ± 0.58%). At 30 °C with 90% RH, hatching initiation and completion (5.19 ± 0.12 days and 7.23 ± 0.16 days) as well as molting initiation and completion (3.73 ± 0.12 days and 7.00 ± 0.24 days) were found to be fastest. Thus, it can be concluded that 25 °C with 90% RH is ideal for rearing of adults and 30 °C with 90% RH is appropriate for rapid growth of nymphs.


Subject(s)
Bedbugs , Humidity , Nymph , Temperature , Animals , Bedbugs/growth & development , Bedbugs/physiology , Female , Male , Nymph/growth & development , Molting/physiology , Laboratories
20.
Proc Biol Sci ; 291(2021): 20232335, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628129

ABSTRACT

Many animals and plants have species-typical annual cycles, but individuals vary in their timing of life-history events. Individual variation in fur replacement (moult) timing is poorly understood in mammals due to the challenge of repeated observations and longitudinal sampling. We examined factors that influence variation in moult duration and timing among elephant seals (Mirounga angustirostris). We quantified the onset and progression of fur loss in 1178 individuals. We found that an exceptionally rapid visible moult (7 days, the shortest of any mammals or birds), and a wide range of moult start dates (spanning 6-10× the event duration) facilitated high asynchrony across individuals (only 20% of individuals in the population moulting at the same time). Some of the variation was due to reproductive state, as reproductively mature females that skipped a breeding season moulted a week earlier than reproductive females. Moreover, individual variation in timing and duration within age-sex categories far outweighed (76-80%) variation among age-sex categories. Individuals arriving at the end of the moult season spent 50% less time on the beach, which allowed them to catch up in their annual cycles and reduce population-level variance during breeding. These findings underscore the importance of individual variation in annual cycles.


Subject(s)
Birds , Seals, Earless , Animals , Female , Molting , Reproduction , Mammals , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...