Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 339
Filter
1.
Exp Gerontol ; 194: 112520, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38992823

ABSTRACT

Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA, Cn-3, 22:6) are essential in improving cognitive function and protecting neurocytes. This study explored the effects of the combined intervention of MCTs and DHA on inhibiting neurocyte apoptosis of the brain and improving cognitive function in senescence-accelerated mouse-prone 8 (SAMP8). Four-month-old male SAMP8 mice were randomly divided into four treatment groups (12 mice/group): DHA, MCT, DHA + MCT, and control groups, which intervened for seven months. Twelve age-matched male senescence-accelerated mouse resistant 1 (SAMR1) was used as the natural aging group. TUNEL assay and HE staining were used to assess neurocyte apoptosis and damage in the brain of mice. Moreover, the cognitive function was analyzed using the Morris water maze (MWM) and open field (OF) tests. The results showed that the cognitive function of 11-month-old SAMP8 mice decreased with age, and further pathological examination revealed the damaged neurocyte structure, karyopyknosis, cell atrophy, and even apoptosis. MCTs combined with DHA supplementation could increase octanoic acid (C8:0), decanoic acid (C10:0), and DHA levels in the serum, inhibit neurocyte apoptosis, improve neurocyte damage, moreover delay age-related cognitive decline after seven-month treatment. Furthermore, combining MCTs and DHA was significantly more beneficial than MCTs or DHA alone. In conclusion, MCTs combined with DHA could delay cognitive decline by inhibiting neurocyte apoptosis of the brain in SAMP8 mice.


Subject(s)
Apoptosis , Brain , Cognition , Docosahexaenoic Acids , Triglycerides , Animals , Docosahexaenoic Acids/pharmacology , Apoptosis/drug effects , Male , Cognition/drug effects , Mice , Brain/drug effects , Brain/pathology , Maze Learning/drug effects , Dietary Supplements , Aging , Morris Water Maze Test/drug effects , Neurons/drug effects , Caprylates/pharmacology , Disease Models, Animal
2.
Neuromolecular Med ; 26(1): 29, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014255

ABSTRACT

Vascular dementia (VaD) is a cognitive disorder characterized by a decline in cognitive function resulting from cerebrovascular disease. The hippocampus is particularly susceptible to ischemic insults, leading to memory deficits in VaD. Astaxanthin (AST) has shown potential therapeutic effects in neurodegenerative diseases. However, the mechanisms underlying its protective effects in VaD and against hippocampal neuronal death remain unclear. In this study, We used the bilateral common carotid artery occlusion (BCCAO) method to establish a chronic cerebral hypoperfusion (CCH) rat model of VaD and administered a gastric infusion of AST at 25 mg/kg per day for 4 weeks to explore its therapeutic effects. Memory impairments were assessed using Y-maze and Morris water maze tests. We also performed biochemical analyses to evaluate levels of hippocampal neuronal death and apoptosis-related proteins, as well as the impact of astaxanthin on the PI3K/Akt/mTOR pathway and oxidative stress. Our results demonstrated that AST significantly rescued memory impairments in VaD rats. Furthermore, astaxanthin treatment protected against hippocampal neuronal death and attenuated apoptosis. We also observed that AST modulated the PI3K/Akt/mTOR pathway, suggesting its involvement in promoting neuronal survival and synaptic plasticity. Additionally, AST exhibited antioxidant properties, mitigating oxidative stress in the hippocampus. These findings provide valuable insights into the potential therapeutic effects of AST in VaD. By elucidating the mechanisms underlying the actions of AST, this study highlights the importance of protecting hippocampal neurons and suggests potential targets for intervention in VaD. There are still some unanswered questions include long-term effects and optimal dosage of the use in human. Further research is warranted to fully understand the therapeutic potential of AST and its application in the clinical treatment of VaD.


Subject(s)
Apoptosis , Dementia, Vascular , Hippocampus , Memory Disorders , Neurons , Neuroprotective Agents , Oxidative Stress , Rats, Sprague-Dawley , Xanthophylls , Animals , Xanthophylls/therapeutic use , Xanthophylls/pharmacology , Hippocampus/drug effects , Dementia, Vascular/drug therapy , Rats , Male , Memory Disorders/drug therapy , Memory Disorders/etiology , Oxidative Stress/drug effects , Neurons/drug effects , Apoptosis/drug effects , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Maze Learning/drug effects , Disease Models, Animal , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Cell Death/drug effects , Antioxidants/therapeutic use , Antioxidants/pharmacology , Morris Water Maze Test/drug effects
3.
Int. j. morphol ; 42(3): 614-622, jun. 2024. ilus
Article in English | LILACS | ID: biblio-1564596

ABSTRACT

SUMMARY: Both the academic and popular worlds have paid close attention to the link between exercise and cognitive performance. It is increasingly important to understand the numerous mechanisms by which exercise might influence cognitive abilities in view of the continuous societal issues caused by aging populations and the prevalence of disorders associated to cognitive decline. A rising amount of evidence showing a favorable association between physical activity and cognitive well-being serves as the foundation for the justification for studying the effects of exercise on cognitive function and learning ability. The study employed an 8-week treadmill based on exercise on male adults C57BL/6 mice. The exercise group were engaged in 5 sessions a week gradually increasing the intensity of the protocol by 5 % each week. The Mice cognitive assessments were done using Morris Water Maze and Novel Object Recognition tests. The long term-impact on learning ability were further assessed through immmohistochemistry and molecular analysis of the hippocampal and prefrontal cortex tissues of the animals' brain tissues. The findings showed improved spatial learning abilities, recognition memory, and heighted synaptic plasticity indicated by elevated synaptic makers. The study underscores the role of long-term aerobic exercise in augmenting cognitive performance. It not only contributes to the understanding of the interplay between neuroplasticity and cognitive benefits but also the growing body of research on the impact of exercise on cognitive function.


Tanto el mundo académico como el popular han prestado mucha atención al vínculo entre el ejercicio y el rendimiento cognitivo. Es cada vez más importante comprender los numerosos mecanismos por los cuales el ejercicio podría influir en las capacidades cognitivas en vista de los continuos problemas sociales causados por el envejecimiento de la población y la prevalencia de trastornos asociados al deterioro cognitivo. Una cantidad cada vez mayor de evidencia que muestra una asociación favorable entre la actividad física y el bienestar cognitivo sirve como base para justificar el estudio de los efectos del ejercicio sobre la función cognitiva y la capacidad de aprendizaje. El estudio se realizó en ratones machos adultos C57BL/6 utilizándose en los ejercicios una cinta rodante durante 8 semanas. El grupo de ejercicio realizó 5 sesiones por semana aumentando gradualmente la intensidad del protocolo en un 5 % cada semana. Las evaluaciones cognitivas de los ratones se realizaron utilizando las pruebas Morris Water Maze y Novel Object Recognition. El impacto a largo plazo en la capacidad de aprendizaje se evaluó mediante inmunohistoquímica y análisis molecular de los tejidos del hipocampo y la corteza prefrontal de los tejidos cerebrales de los animales. Los hallazgos mostraron mejoras en las habilidades de aprendizaje espacial, la memoria de reconocimiento y una mayor plasticidad sináptica indicada por unos creadores sinápticos elevados. El estudio subraya el papel del ejercicio aeróbico a largo plazo para aumentar el rendimiento cognitivo. No sólo contribuye a la comprensión de la interacción entre la neuroplasticidad y los beneficios cognitivos, sino también al creciente conjunto de investigaciones sobre el impacto del ejercicio en la función cognitiva.


Subject(s)
Animals , Male , Mice , Exercise , Hippocampus/anatomy & histology , Hippocampus/physiology , Prefrontal Cortex , Cognition , Spatial Learning , Open Field Test , Morris Water Maze Test , Mice, Inbred C57BL , Neuronal Plasticity , Neurons/physiology
4.
Phytomedicine ; 130: 155725, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38772181

ABSTRACT

BACKGROUND: Bidirectional communication between the gut microbiota and the brain may play an essential role in the cognitive dysfunction associated with chronic sleep deprivation(CSD). Salvia miltiorrhiza Bunge (Danshen, DS), a famous Chinese medicine and functional tea, is extensively used to protect learning and memory capacities, although the mechanism of action remains unknown. PURPOSE: The purpose of this research was to explore the efficacy and the underlying mechanism of DS in cognitive dysfunction caused by CSD. METHODS: DS chemical composition was analyzed by UPLC-QTOF-MS/MS. Forty rats were randomly assigned to five groups (n = 8): control (CON), model (MOD), low- (1.35 g/kg, DSL), high-dose (2.70 g/kg, DSH) DS group, and Melatonin(100 mg/kg, MT) group. A CSD rat model was established over 21 days. DS's effects and the underlying mechanism were explored using the open-field test(OFT), Morris water-maze(MWM), tissue staining(Hematoxylin and Eosin Staining, Nissl staining, Alcian blue-periodic acid SCHIFF staining, and Immunofluorescence), enzyme-linked immunosorbent assay, Western blot, quantitative real-time polymerase chain reaction(qPCR), and 16S rRNA sequencing. RESULTS: We demonstrated that CSD caused gut dysbiosis and cognitive dysfunction. Furthermore, 16S rRNA sequencing demonstrated that Firmicutes and Proteobacteria were more in fecal samples from model group rats, whereas Bacteroidota and Spirochaetota were less. DS therapy, on the contrary hand, greatly restored the gut microbial community, consequently alleviating cognitive impairment in rats. Further research revealed that DS administration reduced systemic inflammation via lowering intestinal inflammation and barrier disruption. Following that, DS therapy reduced Blood Brain Barrier(BBB) and neuronal damage, further decreasing neuroinflammation in the hippocampus(HP). Mechanistic studies revealed that DS therapy lowered lipopolysaccharide (LPS) levels in the HP, serum, and colon, consequently blocking the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products(IL-1ß, IL-6, TNF-α, iNOS, and COX2) in the HP and colon. CONCLUSION: DS treatment dramatically improved spatial learning and memory impairments in rats with CSD by regulating the composition of the intestinal flora, preserving gut and brain barrier function, and reducing inflammation mediated by the LPS-TLR4 signaling pathway. Our findings provide novel insight into the mechanisms by which DS treats cognitive dysfunction caused by CSD.


Subject(s)
Cognitive Dysfunction , Drugs, Chinese Herbal , Rats, Sprague-Dawley , Salvia miltiorrhiza , Sleep Deprivation , Animals , Salvia miltiorrhiza/chemistry , Sleep Deprivation/complications , Sleep Deprivation/drug therapy , Cognitive Dysfunction/drug therapy , Male , Drugs, Chinese Herbal/pharmacology , Rats , Gastrointestinal Microbiome/drug effects , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , NF-kappa B/metabolism , Morris Water Maze Test/drug effects , Maze Learning/drug effects
5.
Biomed Pharmacother ; 176: 116754, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810401

ABSTRACT

Alzheimer's disease (AD) presents a significant challenge due to its prevalence and lack of cure, driving the quest for effective treatments. Anshen Bunao Syrup, a traditional Chinese medicine known for its neuroprotective properties, shows promise in addressing this need. However, understanding its precise mechanisms in AD remains elusive. This study aimed to investigate Anshen Bunao Syrup's therapeutic potential in AD treatment using a scopolamine-induced AD rat model. Assessments included novel-object recognition and Morris water maze tasks to evaluate spatial learning and memory, alongside Nissl staining and ELISA analyses for neuronal damage and biomarker levels. Results demonstrated that Anshen Bunao Syrup effectively mitigated cognitive dysfunction by inhibiting amyloid-ß and phosphorylation Tau aggregation, thereby reducing neuronal damage. Metabolomics profiling of rats cortex revealed alterations in key metabolites implicated in tryptophan and fatty acid metabolism pathways, suggesting a role in the therapeutic effects of Anshen Bunao Syrup. Additionally, ELISA and correlation analyses indicated attenuation of oxidative stress and immune response through metabolic remodeling. In conclusion, this study provides compelling evidence for the neuroprotective effects of Anshen Bunao Syrup in AD models, shedding light on its potential as a therapeutic agent for AD prevention and treatment.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Disease Models, Animal , Drugs, Chinese Herbal , Neuroprotective Agents , Oxidative Stress , Rats, Sprague-Dawley , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Male , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Oxidative Stress/drug effects , Amyloid beta-Peptides/metabolism , Maze Learning/drug effects , Scopolamine , tau Proteins/metabolism , Morris Water Maze Test/drug effects
6.
J Ethnopharmacol ; 329: 118161, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38599474

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS) is a classic herbal formula for the treatment and prevention of AD (Alzheimer's disease) with definite curative effect, but its mechanism, which involves multiple components, pathways, and targets, is not yet fully understood. AIM OF THE STUDY: To verify the effect of KXS on gut microbiota and explore its anti-AD mechanism related with gut microbiota. MATERIALS AND METHODS: AD rat model was established and evaluated by intraperitoneal injection of D-gal and bilateral hippocampal CA1 injections of Aß25-35. The pharmacodynamics of KXS in vivo includes general behavior, Morris water maze test, ELISA, Nissl & HE staining and immunofluorescence. Systematic analysis of gut microbiota was conducted using 16S rRNA gene sequencing technology. The potential role of gut microbiota in the anti-AD effect of KXS was validated with fecal microbiota transplantation (FMT) experiments. RESULTS: KXS could significantly improve cognitive impairment, reduce neuronal damage and attenuate neuroinflammation and colonic inflammation in vivo in AD model rats. Nine differential intestinal bacteria associated with AD were screened, in which four bacteria (Lactobacillus murinus, Ligilactobacillus, Alloprevotella, Prevotellaceae_NK3B31_group) were very significant. CONCLUSION: KXS can maintain the ecological balance of intestinal microbiota and exert its anti-AD effect by regulating the composition and proportion of gut microbiota in AD rats through the microbiota-gut-brain axis.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cognitive Dysfunction , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Neurons , Peptide Fragments , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Male , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/chemically induced , Amyloid beta-Peptides/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/chemically induced , Rats , Neurons/drug effects , Disease Models, Animal , Fecal Microbiota Transplantation , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Morris Water Maze Test/drug effects
7.
Neural Netw ; 172: 106050, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38232429

ABSTRACT

Navigation is a complex skill with a long history of research in animals and humans. In this work, we simulate the Morris Water Maze in 2D to train deep reinforcement learning agents. We perform automatic classification of navigation strategies, analyze the distribution of strategies used by artificial agents, and compare them with experimental data to show similar learning dynamics as those seen in humans and rodents. We develop environment-specific auxiliary tasks and examine factors affecting their usefulness. We suggest that the most beneficial tasks are potentially more biologically feasible for real agents to use. Lastly, we explore the development of internal representations in the activations of artificial agent neural networks. These representations resemble place cells and head-direction cells found in mouse brains, and their presence has correlation to the navigation strategies that artificial agents employ.


Subject(s)
Morris Water Maze Test , Spatial Navigation , Mice , Animals , Humans , Reinforcement, Psychology , Learning , Neural Networks, Computer , Maze Learning
8.
Epilepsy Behav ; 147: 109391, 2023 10.
Article in English | MEDLINE | ID: mdl-37619464

ABSTRACT

Temporal lobe epilepsy (TLE) often causes cognitive impairment, especially a decline in spatial memory. Reductions in spatial memory and learning are also common in rodent models of TLE. The Morris water maze and the Barnes maze are the standard methods for evaluating spatial learning and memory in rodents. However, animals with TLE may exhibit agitation, distress, and fail to follow the paradigmatic context of these tests, making the interpretation of experimental data difficult. This study optimized the procedure of the Morris water maze and the Barnes maze to evaluate spatial learning and memory in rats with the lithium-pilocarpine TLE model (LPM rats). It was demonstrated that LPM rats required a mandatory and prolonged habituation stage for both tests. Therefore, the experimental rats performed relatively well on these tests. Nevertheless, LPM rats exhibited a slower learning process compared to the control rats. LPM rats also showed a reduction in spatial memory formation. This was more pronounced in the Barnes maze. Also, LPM rats utilized a sequential strategy for searching in the Barnes maze and were incapable of developing a more efficient spatial search strategy that is common in control animals. The Barnes maze may be a better choice for assessing search strategies, learning deficits, and spatial memory in rats with TLE when choosing between the two tests. This is because of the risk of unexpected seizure occurrence during the Morris water maze tests, and the potential risks for animal welfare.


Subject(s)
Cognitive Dysfunction , Epilepsy, Temporal Lobe , Epilepsy , Rats , Animals , Pilocarpine/toxicity , Lithium , Morris Water Maze Test , Rats, Wistar , Spatial Learning , Cognition , Maze Learning , Disease Models, Animal
9.
Biomolecules ; 13(7)2023 06 30.
Article in English | MEDLINE | ID: mdl-37509100

ABSTRACT

The Morris water maze (MWM) is regarded as one of the most popular tests for detecting spatial memory in rodents. Long-term potentiation and cGMP synthesis seem to be among the crucial factors involved in this type of learning. Muscarinic (M1, M4, and M5 receptors) and metabotropic glutamate (mGlu) receptors are important targets in the search for antipsychotic drugs with the potency to treat cognitive disabilities associated with the disorder. Here, we show that muscarinic receptor activators (VU0357017, VU0152100, and VU0238429) and an mGlu2 receptor activator, LY487379, dose-dependently prevented the development of cognitive disorders as a result of MK-801 administration in the MWM. The dose-ranges of the compounds were as follows: VU0357017, 0.25, 0.5, and 1 mg/kg; VU0152100, 0.05, 0.25, and 1 mg/kg; VU0238429, 1, 5, and 20 mg/kg; and LY487379, 0.5, 3, and 5 mg/kg. The co-administration of LY487379 with each of the individual muscarinic receptor ligands showed no synergistic effect, which contradicts the results obtained earlier in the novel object recognition (NOR) test. MWM learning resulted in increased cGMP synthesis, both in the cortex and hippocampi, when compared to that in intact animals, which was prevented by MK-801 administration. The investigated compounds at the highest doses reversed this MK-801-induced effect. Neither the procedure nor the treatment resulted in changes in GluN2B-NMDA expression.


Subject(s)
Dizocilpine Maleate , Receptors, Metabotropic Glutamate , Animals , Dizocilpine Maleate/pharmacology , Receptors, Metabotropic Glutamate/metabolism , Glutamic Acid , N-Methylaspartate , Morris Water Maze Test , Receptors, Muscarinic
10.
Behav Brain Res ; 442: 114294, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36638914

ABSTRACT

People who live or work in moldy buildings often complain of "brain fog" that interferes with cognitive performance. Until recently, there was no published research on the effects of controlled exposure to mold stimuli on cognitive function or an obvious mechanism of action, fueling controversy over these claims. The constellation of health problems reported by mold-exposed individuals (respiratory issues, fatigue, pain, anxiety, depression, and cognitive deficits) correspond to those caused by innate immune activation following exposure to bacterial or viral stimuli. To determine if mold-induced innate immune activation might cause cognitive issues, we quantified the effects of both toxic and nontoxic mold on brain immune activation and spatial memory in the Morris water maze. We intranasally administered either 1) intact, toxic Stachybotrys chartarum spores; 2) ethanol-extracted, nontoxic Stachybotrys chartarum spores; or 3) control saline vehicle to mice. Inhalation of nontoxic spores caused significant deficits in the test of long-term memory of platform location, while not affecting short-term memory. Inhalation of toxic spores increased motivation to reach the platform. Interestingly, in both groups of mold-exposed males, numbers of interleukin-1ß-immunoreactive cells in many areas of the hippocampus significantly correlated with latency to find the platform, path length, and swimming speed during training, but not during testing for long-term memory. These data add to our prior evidence that mold inhalation can interfere with cognitive processing in different ways depending on the task, and that brain inflammation is significantly correlated with changes in behavior.


Subject(s)
Encephalitis , Stachybotrys , Male , Mice , Animals , Spores, Fungal/physiology , Morris Water Maze Test , Encephalitis/chemically induced
11.
Cannabis Cannabinoid Res ; 8(2): 283-298, 2023 04.
Article in English | MEDLINE | ID: mdl-36108318

ABSTRACT

Background: The mechanisms underlying the clinical effects of CBD remain poorly understood. Given the increasing evidence for CBD's effects on mitochondria, we sought to examine in more detail whether CBD impacts mitochondrial function and neuronal integrity. Methods: We utilized BE(2)-M17 neuroblastoma cells or acutely isolated brain mitochondria from rodents using a Seahorse extracellular flux analyzer and a fluorescent spectrofluorophotometer assay. Mitochondrial ion channel activity and hippocampal long-term potentiation were measured using standard cellular electrophysiological methods. Spatial learning/memory function was evaluated using the Morris water maze task. Plasma concentrations of CBD were assessed with liquid chromatography-mass spectrometry, and cellular viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction neuronal injury assay. Results: At low micromolar concentrations, CBD reduced mitochondrial respiration, the threshold for mitochondrial permeability transition, and calcium uptake, blocked a novel mitochondrial chloride channel, and reduced the viability of hippocampal cells. These effects were paralleled by in vitro and in vivo learning/memory deficits. We further found that these effects were independent of cannabinoid receptor 1 and mitochondrial G-protein-coupled receptor 55. Conclusion: Our results provide evidence for concentration- and dose-dependent toxicological effects of CBD, findings that may bear potential relevance to clinical populations.


Subject(s)
Brain , Cannabidiol , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Cannabidiol/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , Neurons/physiology , Animals , Morris Water Maze Test , Male , Mice , Rats , Rats, Wistar
12.
J Affect Disord ; 324: 8-15, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36566932

ABSTRACT

BACKGROUND: We investigated the effects of liraglutide, a glucagon-like peptide-1 (GLP-1) agonist, on a depression-like phenotype in mice exposed to chronic unpredictable stress (CUS). Learning and memory were also assessed using the Morris water maze (MWM) test. METHODS: Liraglutide (0.3 mg/kg/day for 21 days) was administered to mice with or without exposure to CUS. After 21 days of CUS, the forced swim test (FST) was performed to assess its antidepressant effect. To evaluate cognitive function, liraglutide was administered to mice under stress-free conditions for 21 days, and then the MWM test was performed on 6 consecutive days. RESULTS: Chronic liraglutide treatment reduced FST immobility in mice with and without CUS. In the probe trial of the Morris water maze test, the search error rate was reduced and the time spent and path length in the target quadrant and the number of platform crossings were increased. LIMITATION: Additional animal model experiments and molecular level studies are needed to support the results obtained in this study. CONCLUSIONS: Liraglutide appears to exert antidepressant effects and could improve cognitive function. Based on these results, GLP-1 agonists could have potential as novel antidepressants.


Subject(s)
Liraglutide , Morris Water Maze Test , Mice , Animals , Liraglutide/pharmacology , Liraglutide/therapeutic use , Depression/drug therapy , Maze Learning , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Cognition , Glucagon-Like Peptide 1 , Disease Models, Animal , Behavior, Animal , Stress, Psychological
13.
Sci Rep ; 12(1): 5451, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361814

ABSTRACT

Spatial disorientation is one of the earliest symptoms in Alzheimer's disease and allocentric deficits can already be detected in the asymptomatic preclinical stages of the disease. The Morris Water Maze (MWM) is used to study spatial learning in rodent models. Here we investigated the spatial memory of female 3, 7 and 12 month-old Alzheimer Tg4-42 mice in comparison to wild-type control animals. Conventional behavior analysis of escape latencies and quadrant preference revealed spatial memory and reference memory deficits in female 7 and 12 month-old Tg4-42 mice. In contrast, conventional analysis of the MWM indicated an intact spatial memory in 3 month-old Tg4-42 mice. However, a detailed analysis of the swimming strategies demonstrated allocentric-specific memory deficits in 3 month-old Tg4-42 mice before the onset of severe memory deficits. Furthermore, we could show that the spatial reference memory deficits in aged Tg4-42 animals are caused by the lack of allocentric and spatial strategies. Analyzing search strategies in the MWM allows to differentiate between hippocampus-dependent allocentric and hippocampus-independent egocentric search strategies. The spatial navigation impairments in young Tg4-42 mice are well in line with the hypometabolism and synaptic deficits in the hippocampus. Therefore, analyzing search strategies in the Tg4-42 model can be a powerful tool for preclinical drug testing and identifying early therapeutic successes.


Subject(s)
Alzheimer Disease , Spatial Navigation , Animals , Female , Maze Learning , Mice , Morris Water Maze Test , Spatial Memory
14.
Exp Anim ; 71(3): 264-280, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35314563

ABSTRACT

Since its development about 40 years ago (1981-2021), Morris water maze has turned into a very popular tool for assessing spatial learning and memory. Its many advantages have ensured its pertinence to date. These include its effectiveness in evaluating hippocampal-dependent learning and memory, exemption from motivational differences across diverse experimental manipulations, reliability in various cross-species studies, and adaptability to many experimental conditions with various test protocols. Nonetheless, throughout its establishment, several experimental and analysis loopholes have galvanized researchers to assess ways in which it could be improved and adapted to fill this gap. Therefore, in this review, we briefly summarize these developments since the early years of its establishment through to the most recent advancements in computerized analysis, offering more comprehensive analysis paradigms. In addition, we discuss the adaptability of the Morris water maze across different test versions and analysis paradigms, providing suggestions with regard to the best paradigms for particular experimental conditions. Hence, the proper selection of the experimental protocols, analysis paradigms, and consideration of the assay's limitations should be carefully considered. Given that appropriate measures are taken, with various adaptations made, the Morris water maze will likely remain a relevant tool to assess the mechanisms of spatial learning and memory.


Subject(s)
Memory , Spatial Learning , Animals , Maze Learning , Morris Water Maze Test , Reproducibility of Results
15.
Pak J Pharm Sci ; 35(1): 59-67, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35221274

ABSTRACT

After undergoing inhalation anesthesia, some patients, especially elderly patients, experience postoperative cognitive dysfunction, such as personality changes and memory impairment. In the present study, 20-month-old rats were randomly allocated to sevoflurane (Sevo group) and control groups (Con group), and they inhaled 3% sevoflurane or 40% oxygen for 8 hours, respectively. The Morris water maze test found that the cognitive function of rats in the Sevo group were significantly different on 1d and 3d after anesthesia than that of rats in the Con group. The expression of RGS2 mRNA and protein in hippocampus of Sevo group was lower compared to the Con group, while Ca2 + was higher than con group. The expression of CaM and CaMK II in Sevo group was higher compared to the Con group. We found that Bcl-2 reduced, but the expression of Bax and Caspase-3 increased, indicating that apoptosis of hippocampal neurons was increased after sevoflurane inhalation. Both the expression of NGF and BDNF was depressed in the Sevo group. After continuous inhalation of 3% sevoflurane for 8h, the expression of RGS2 in the hippocampi of aged rats is down regulated. RGS2 may be an important factor that leads to cognitive dysfunction in rats.


Subject(s)
Cognitive Dysfunction/chemically induced , RGS Proteins/metabolism , Sevoflurane/toxicity , Aging , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Morris Water Maze Test , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RGS Proteins/genetics , Rats , Rats, Wistar , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
16.
Cell Mol Life Sci ; 79(3): 148, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35195763

ABSTRACT

Patients with progressive neurodegenerative disorder retinitis pigmentosa (RP) are diagnosed in the midst of ongoing retinal degeneration and remodeling. Here, we used a Pde6b-deficient RP gene therapy mouse model to test whether treatment at late disease stages can halt photoreceptor degeneration and degradative remodeling, while sustaining constructive remodeling and restoring function. We demonstrated that when fewer than 13% of rods remain, our genetic rescue halts photoreceptor degeneration, electroretinography (ERG) functional decline and inner retinal remodeling. In addition, in a water maze test, the performance of mice treated at 16 weeks of age or earlier was indistinguishable from wild type. In contrast, no efficacy was apparent in mice treated at 24 weeks of age, suggesting the photoreceptors had reached a point of no return. Further, remodeling in the retinal pigment epithelium (RPE) and retinal vasculature was not halted at 16 or 24 weeks of age, although there appeared to be some slowing of blood vessel degradation. These data suggest a novel working model in which restoration of clinically significant visual function requires only modest threshold numbers of resilient photoreceptors, halting of destructive remodeling and sustained constructive remodeling. These novel findings define the potential and limitations of RP treatment and suggest possible nonphotoreceptor targets for gene therapy optimization.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Genetic Therapy/methods , Neurodegenerative Diseases/metabolism , Point Mutation , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/therapy , Animals , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Disease Models, Animal , Electroretinography/methods , Mice , Mice, Transgenic , Morris Water Maze Test/drug effects , Neurodegenerative Diseases/genetics , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Vessels/metabolism , Retinitis Pigmentosa/metabolism , Tamoxifen/administration & dosage
17.
Gene ; 822: 146348, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35183682

ABSTRACT

Aging is referred to progressive dysfunction of body organs, including the brain. This study aims to explore the anti-aging effect of combing nicotinamide mononucleotide (NMN) and lycopene (Lyco) (NMN + Lyco) on aging rats and senescent PC12 cells. Both in vivo and in vitro aging models were established using D-galactose (D-gal). The combination showed a trend to superiority over monotherapy in preventing aging in vivo and in vitro. Morris water maze test showed that NMN + Lyco effectively improved the ability of spatial location learning and memory of aging model rats. NMN + Lyco mitigated the oxidative stress of rat brains, livers, and PC12 cells by elevating the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), GSH, as well as total antioxidant capacity (T-AOC), and reducing malondialdehyde (MDA) content. CCK-8 assay, senescence-associated ß-galactosidase staining, and flow cytometer confirmed the cellular senescence of PC12 cells after exposing D-gal, and indicated the anti-senescence effect of NMN + Lyco in vitro. Moreover, NMN + Lyco effectively down-regulated the expressions of p53, p21, and p16 (senescence-related genes), and activated Keap1-Nrf2 signaling in both in vivo and in vitro aging models. In total, NMN + Lyco protected rats and PC12 cells from cognitive impairment and cellular senescence induced by D-gal, of which effects might be linked to the reduction of oxidative stress and the activation of Keap1-Nrf2 signaling.


Subject(s)
Aging/psychology , Cognitive Dysfunction/prevention & control , Galactose/adverse effects , Kelch-Like ECH-Associated Protein 1/metabolism , Lycopene/administration & dosage , NF-E2-Related Factor 2/metabolism , Nicotinamide Mononucleotide/administration & dosage , Aging/drug effects , Animals , Cognitive Dysfunction/etiology , Drug Therapy, Combination , Gene Expression Regulation/drug effects , Lycopene/pharmacology , Male , Morris Water Maze Test , Nicotinamide Mononucleotide/pharmacology , Oxidative Stress/drug effects , PC12 Cells , Rats , Signal Transduction/drug effects , Spatial Learning/drug effects , Treatment Outcome
18.
BMC Complement Med Ther ; 22(1): 30, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35101010

ABSTRACT

BACKGROUND: Lactuca sativa is an edible plant commonly used by local communities to manage diabetes and stomach problems. METHODS: This work aimed to investigate the anti-oxidant, anticancer, antidiabetic and Anti-Alzheimer effects of hydroponically (HyL) and soil-grown (SoL) Lactuca sativa. Streptozotocin-induced diabetes and AlCl3-induced Alzheimer's disease model was used to evaluate the medicinal effects of Lactuca sativa. RESULTS: HyL showed significant activity in lipid peroxidation assay, DPPH and DNA protection assay, while SoL extract showed moderated activity, respectively. A similar activity response was quantified for α-glucosidase, α-amylase, acetylcholinesterase and butyrylcholinesterase inhibition assays. The cytotoxic potential of HyL and SoL extracts against MCF7, and HePG2 cancer cell lines exhibited significant activity. HyL and SoL showed a substantial decrease in blood glucose levels in streptozotocin-induced diabetic rats. Diabetes-related liver/kidney biomarkers and anti-oxidant enzyme trends moved toward normal after HyL and SoL treatment. In Anti-Alzheimer's based Morris water and elevated plus maze tests, HyL and SoL displayed memory-enhancing response and anti-anxiety behaviour, respectively. HPLC quantification of dopamine and serotonin revealed a moderate but significant (p<0.05) increase in the level of these neurotransmitters in HyL and SoL groups. CONCLUSION: Overall, the study revealed that hydroponic Lactuca sativa possesses the therapeutic potential to treat diseases like Alzheimer's and diabetes.


Subject(s)
Alzheimer Disease/drug therapy , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Lactuca , Plant Extracts/pharmacology , Animals , Lipid Peroxidation/drug effects , Male , Maze Learning , Morris Water Maze Test , Pakistan , Rats , Rats, Sprague-Dawley , Streptozocin
19.
Hippocampus ; 32(4): 264-285, 2022 04.
Article in English | MEDLINE | ID: mdl-35025127

ABSTRACT

Most commonly used behavioral measures for testing learning and memory in the Morris water maze (MWM) involve comparisons of an animal's residence time in different quadrants of the pool. Such measures are limited in their ability to test different aspects of the animal's performance. Here, we describe novel measures of performance in the MWM that use vector fields to capture the motion of mice as well as their search pattern in the maze. Using these vector fields, we develop quantitative measures of performance that are intuitive and more sensitive than classical measures. First, we describe search patterns in terms of vector field properties and use these properties to define three metrics of spatial memory namely Spatial Accuracy, Uncertainty and, Intensity of Search. We demonstrate the usefulness of these measures using four different data sets including comparisons between different strains of mice, an analysis of two mouse models of Noonan syndrome (NS; Ptpn11 D61G and Ptpn11 N308D/+), and a study of goal reversal training. Importantly, besides highlighting novel aspects of performance in this widely used spatial task, our measures were able to uncover previously undetected differences, including in an animal model of NS, which we rescued with the mitogen activated protein kinase kinase (MEK) inhibitor SL327. Thus, our results show that our approach breaks down performance in the MWM into sensitive measurable independent components that highlight differences in spatial learning and memory in the MWM that were undetected by conventional measures.


Subject(s)
Intention , Morris Water Maze Test , Animals , Disease Models, Animal , Maze Learning/physiology , Mice , Spatial Learning , Uncertainty
20.
Sci Rep ; 12(1): 432, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013366

ABSTRACT

Behavioral measurements in mice are critical tools used to evaluate the effects of interventions. Whilst mice are nocturnal animals, many studies conduct behavioral tests during the day. To better understand the effects of diurnal rhythm on mouse behaviors, we compared the results from behavioral tests conducted in the active and inactive phases. C57BL/6 mice were used in this study; we focus on sensorimotor performance, anxiety, learning and memory. Overall, our results show mice exhibit slightly higher cutaneous sensitivity, better long-term contextual memory, and a greater active avoidance escape response during the active phase. We did not observe significant differences in motor coordination, anxiety, or spatial learning and memory. Furthermore, apart from the elevated-O-maze, there was no remarkable sex effect among these tests. This study provides information on the effects of different diurnal phases on types of behavior and demonstrates the importance of the circadian cycle on learning and memory. Although we did not detect differences in anxiety and spatial learning/memory, diurnal rhythm may interact with other factors to influence these behaviors.


Subject(s)
Anxiety , Circadian Rhythm , Memory/physiology , Psychomotor Performance , Spatial Learning/physiology , Animals , Avoidance Learning , Female , Male , Mice, Inbred C57BL , Morris Water Maze Test , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL