Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.575
Filter
1.
Elife ; 122024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954462

ABSTRACT

Perceiving biological motion (BM) is crucial for human survival and social interaction. Many studies have reported impaired BM perception in autism spectrum disorder, which is characterised by deficits in social interaction. Children with attention deficit hyperactivity disorder (ADHD) often exhibit similar difficulties in social interaction. However, few studies have investigated BM perception in children with ADHD. Here, we compared differences in the ability to process local kinematic and global configurational cues, two fundamental abilities of BM perception, between typically developing and ADHD children. We further investigated the relationship between BM perception and social interaction skills measured using the Social Responsiveness Scale and examined the contributions of latent factors (e.g. sex, age, attention, and intelligence) to BM perception. The results revealed that children with ADHD exhibited atypical BM perception. Local and global BM processing showed distinct features. Local BM processing ability was related to social interaction skills, whereas global BM processing ability significantly improved with age. Critically, general BM perception (i.e. both local and global BM processing) may be affected by sustained attentional ability in children with ADHD. This relationship was primarily mediated by reasoning intelligence. These findings elucidate atypical BM perception in ADHD and the latent factors related to BM perception. Moreover, this study provides new evidence that BM perception is a hallmark of social cognition and advances our understanding of the potential roles of local and global processing in BM perception and social cognitive disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Motion Perception , Humans , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/psychology , Child , Male , Female , Motion Perception/physiology , Social Interaction , Adolescent , Attention/physiology
2.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38834301

ABSTRACT

How features of complex visual patterns are combined to drive perception and eye movements is not well understood. Here we simultaneously assessed human observers' perceptual direction estimates and ocular following responses (OFR) evoked by moving plaids made from two summed gratings with varying contrast ratios. When the gratings were of equal contrast, observers' eye movements and perceptual reports followed the motion of the plaid pattern. However, when the contrasts were unequal, eye movements and reports during early phases of the OFR were biased toward the direction of the high-contrast grating component; during later phases, both responses followed the plaid pattern direction. The shift from component- to pattern-driven behavior resembles the shift in tuning seen under similar conditions in neuronal responses recorded from monkey MT. Moreover, for some conditions, pattern tracking and perceptual reports were correlated on a trial-by-trial basis. The OFR may therefore provide a precise behavioral readout of the dynamics of neural motion integration for complex visual patterns.


Subject(s)
Eye Movements , Motion Perception , Photic Stimulation , Motion Perception/physiology , Humans , Eye Movements/physiology , Photic Stimulation/methods , Male , Female , Adult , Young Adult , Pattern Recognition, Visual/physiology
3.
Behav Brain Funct ; 20(1): 16, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926731

ABSTRACT

BACKGROUND: An intronic deletion within intron 2 of the DCDC2 gene encompassing the entire READ1 (hereafter, READ1d) has been associated in both children with developmental dyslexia (DD) and typical readers (TRs), with interindividual variation in reading performance and motion perception as well as with structural and functional brain alterations. Visual motion perception -- specifically processed by the magnocellular (M) stream -- has been reported to be a solid and reliable endophenotype of DD. Hence, we predicted that READ1d should affect neural activations in brain regions sensitive to M stream demands as reading proficiency changes. METHODS: We investigated neural activations during two M-eliciting fMRI visual tasks (full-field sinusoidal gratings controlled for spatial and temporal frequencies and luminance contrast, and sensitivity to motion coherence at 6%, 15% and 40% dot coherence levels) in four subject groups: children with DD with/without READ1d, and TRs with/without READ1d. RESULTS: At the Bonferroni-corrected level of significance, reading skills showed a significant effect in the right polar frontal cortex during the full-field sinusoidal gratings-M task. Regardless of the presence/absence of the READ1d, subjects with poor reading proficiency showed hyperactivation in this region of interest (ROI) compared to subjects with better reading scores. Moreover, a significant interaction was found between READ1d and reading performance in the left frontal opercular area 4 during the 15% coherent motion sensitivity task. Among subjects with poor reading performance, neural activation in this ROI during this specific task was higher for subjects without READ1d than for READ1d carriers. The difference vanished as reading skills increased. CONCLUSIONS: Our findings showed a READ1d-moderated genetic vulnerability to alterations in neural activation in the ventral attentive and salient networks during the processing of relevant stimuli in subjects with poor reading proficiency.


Subject(s)
Dyslexia , Frontal Lobe , Magnetic Resonance Imaging , Motion Perception , Parietal Lobe , Reading , Humans , Dyslexia/physiopathology , Dyslexia/genetics , Male , Child , Female , Magnetic Resonance Imaging/methods , Parietal Lobe/physiopathology , Motion Perception/physiology , Frontal Lobe/physiopathology , Frontal Lobe/diagnostic imaging , Microtubule-Associated Proteins/genetics , Brain Mapping/methods , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Photic Stimulation/methods
4.
J Vis ; 24(6): 14, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38904641

ABSTRACT

Accurately estimating time to contact (TTC) is crucial for successful interactions with moving objects, yet it is challenging under conditions of sensory and contextual uncertainty, such as occlusion. In this study, participants engaged in a prediction motion task, monitoring a target that moved rightward and an occluder. The participants' task was to press a key when they predicted the target would be aligned with the occluder's right edge. We manipulated sensory uncertainty by varying the visible and occluded periods of the target, thereby modulating the time available to integrate sensory information and the duration over which motion must be extrapolated. Additionally, contextual uncertainty was manipulated by having a predictable and unpredictable condition, meaning the occluder either reliably indicated where the moving target would disappear or provided no such indication. Results showed differences in accuracy between the predictable and unpredictable occluder conditions, with different eye movement patterns in each case. Importantly, the ratio of the time the target was visible, which allows for the integration of sensory information, to the occlusion time, which determines perceptual uncertainty, was a key factor in determining performance. This ratio is central to our proposed model, which provides a robust framework for understanding and predicting human performance in dynamic environments with varying degrees of uncertainty.


Subject(s)
Motion Perception , Humans , Motion Perception/physiology , Uncertainty , Male , Female , Adult , Young Adult , Photic Stimulation/methods , Eye Movements/physiology , Reaction Time/physiology , Time Perception/physiology , Psychomotor Performance/physiology
5.
Bioinspir Biomim ; 19(5)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38917814

ABSTRACT

Flying insects rely mainly upon visual motion to detect and track objects. There has been a lot of research on fly inspired algorithms for object detection, but few have been developed based on visual motion alone. One of the daunting difficulties is that the neural and circuit mechanisms underlying the foreground-background segmentation are still unclear. Our previous modeling study proposed that the lobula held parallel pathways with distinct directional selectivity, each of which could retinotopically discriminate figures moving in its own preferred direction based on relative motion cues. The previous model, however, did not address how the multiple parallel pathways gave the only detection output at their common downstream. Since the preferred directions of the pathways along either horizontal or vertical axis were opposite to each other, the background moving in the opposite direction to an object also activated the corresponding lobula pathway. Indiscriminate or ungated projection from all the pathways to their downstream would mix objects with the moving background, making the previous model fail with non-stationary background. Here, we extend the previous model by proposing that the background motion-dependent gating of individual lobula projections is the key to object detection. Large-field lobula plate tangential cells are hypothesized to perform the gating to realize bioinspired background subtraction. The model is shown to be capable of implementing a robust detection of moving objects in video sequences with either a moving camera that induces translational optic flow or a static camera. The model sheds light on the potential of the concise fly algorithm in real-world applications.


Subject(s)
Motion Perception , Animals , Motion Perception/physiology , Biomimetics/methods , Algorithms , Computer Simulation , Insecta/physiology , Models, Neurological , Visual Pathways/physiology , Diptera/physiology
6.
Nat Commun ; 15(1): 4779, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839782

ABSTRACT

Despite the profound implications of self-organization in animal groups for collective behaviors, understanding the fundamental principles and applying them to swarm robotics remains incomplete. Here we propose a heuristic measure of perception of motion salience (MS) to quantify relative motion changes of neighbors from first-person view. Leveraging three large bird-flocking datasets, we explore how this perception of MS relates to the structure of leader-follower (LF) relations, and further perform an individual-level correlation analysis between past perception of MS and future change rate of velocity consensus. We observe prevalence of the positive correlations in real flocks, which demonstrates that individuals will accelerate the convergence of velocity with neighbors who have higher MS. This empirical finding motivates us to introduce the concept of adaptive MS-based (AMS) interaction in swarm model. Finally, we implement AMS in a swarm of ~102 miniature robots. Swarm experiments show the significant advantage of AMS in enhancing self-organization of the swarm for smooth evacuations from confined environments.


Subject(s)
Birds , Robotics , Animals , Birds/physiology , Motion Perception/physiology , Behavior, Animal/physiology , Motion , Flight, Animal/physiology , Social Behavior
7.
Optom Vis Sci ; 101(5): 252-262, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38857038

ABSTRACT

PURPOSE: We aimed to develop a paradigm that can efficiently characterize motion percepts in people with low vision and compare their responses with well-known misperceptions made by people with typical vision when targets are hard to see. METHODS: We recruited a small cohort of individuals with reduced acuity and contrast sensitivity (n = 5) as well as a comparison cohort with typical vision (n = 5) to complete a psychophysical study. Study participants were asked to judge the motion direction of a tilted rhombus that was either high or low contrast. In a series of trials, the rhombus oscillated vertically, horizontally, or diagonally. Participants indicated the perceived motion direction using a number wheel with 12 possible directions, and statistical tests were used to examine response biases. RESULTS: All participants with typical vision showed systematic misperceptions well predicted by a Bayesian inference model. Specifically, their perception of vertical or horizontal motion was biased toward directions orthogonal to the long axis of the rhombus. They had larger biases for hard-to-see (low contrast) stimuli. Two participants with low vision had a similar bias, but with no difference between high- and low-contrast stimuli. The other participants with low vision were unbiased in their percepts or biased in the opposite direction. CONCLUSIONS: Our results suggest that some people with low vision may misperceive motion in a systematic way similar to people with typical vision. However, we observed large individual differences. Future work will aim to uncover reasons for such differences and identify aspects of vision that predict susceptibility.


Subject(s)
Contrast Sensitivity , Motion Perception , Vision, Low , Humans , Motion Perception/physiology , Male , Female , Adult , Vision, Low/physiopathology , Contrast Sensitivity/physiology , Visual Acuity/physiology , Middle Aged , Psychophysics , Young Adult , Bayes Theorem , Photic Stimulation/methods
8.
J Vis ; 24(6): 4, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38842836

ABSTRACT

The interception (or avoidance) of moving objects is a common component of various daily living tasks; however, it remains unclear whether precise alignment of foveal vision with a target is important for motor performance. Furthermore, there has also been little examination of individual differences in visual tracking strategy and the use of anticipatory gaze adjustments. We examined the importance of in-flight tracking and predictive visual behaviors using a virtual reality environment that required participants (n = 41) to intercept tennis balls projected from one of two possible locations. Here, we explored whether different tracking strategies spontaneously arose during the task, and which were most effective. Although indices of closer in-flight tracking (pursuit gain, tracking coherence, tracking lag, and saccades) were predictive of better interception performance, these relationships were rather weak. Anticipatory gaze shifts toward the correct release location of the ball provided no benefit for subsequent interception. Nonetheless, two interceptive strategies were evident: 1) early anticipation of the ball's onset location followed by attempts to closely track the ball in flight (i.e., predictive strategy); or 2) positioning gaze between possible onset locations and then using peripheral vision to locate the moving ball (i.e., a visual pivot strategy). Despite showing much poorer in-flight foveal tracking of the ball, participants adopting a visual pivot strategy performed slightly better in the task. Overall, these results indicate that precise alignment of the fovea with the target may not be critical for interception tasks, but that observers can adopt quite varied visual guidance approaches.


Subject(s)
Individuality , Motion Perception , Humans , Male , Female , Young Adult , Motion Perception/physiology , Adult , Psychomotor Performance/physiology , Fixation, Ocular/physiology , Virtual Reality , Saccades/physiology , Fovea Centralis/physiology , Eye Movements/physiology
9.
Nat Commun ; 15(1): 4382, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862476

ABSTRACT

A brain-computer interface (BCI) enables users to control devices with their minds. Despite advancements, non-invasive BCIs still exhibit high error rates, prompting investigation into the potential reduction through concurrent targeted neuromodulation. Transcranial focused ultrasound (tFUS) is an emerging non-invasive neuromodulation technology with high spatiotemporal precision. This study examines whether tFUS neuromodulation can improve BCI outcomes, and explores the underlying mechanism of action using high-density electroencephalography (EEG) source imaging (ESI). As a result, V5-targeted tFUS significantly reduced the error in a BCI speller task. Source analyses revealed a significantly increase in theta and alpha activities in the tFUS condition at both V5 and downstream in the dorsal visual processing pathway. Correlation analysis indicated that the connection within the dorsal processing pathway was preserved during tFUS stimulation, while the ventral connection was weakened. These findings suggest that V5-targeted tFUS enhances feature-based attention to visual motion.


Subject(s)
Attention , Brain-Computer Interfaces , Electroencephalography , Humans , Male , Attention/physiology , Adult , Female , Young Adult , Visual Cortex/physiology , Motion Perception/physiology , Photic Stimulation/methods
10.
Commun Biol ; 7(1): 759, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909084

ABSTRACT

That younger individuals perceive the world as moving slower than adults is a familiar phenomenon. Yet, it remains an open question why that is. Using event segmentation theory, electroencephalogram (EEG) beamforming and nonlinear causal relationship estimation using artificial neural network methods, we studied neural activity while adolescent and adult participants segmented a movie. We show when participants were instructed to segment a movie into meaningful units, adolescents partitioned incoming information into fewer encapsulated segments or episodes of longer duration than adults. Importantly, directed communication between medial frontal and lower-level perceptual areas and between occipito-temporal regions in specific neural oscillation spectrums explained behavioral differences between groups. Overall, the study reveals that a different organization of directed communication between brain regions and inefficient transmission of information between brain regions are key to understand why younger people perceive the world as moving slow.


Subject(s)
Electroencephalography , Humans , Adolescent , Male , Female , Adult , Young Adult , Brain/physiology , Motion Perception/physiology , Neural Networks, Computer
11.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38918076

ABSTRACT

Biological motion, the typical movement of vertebrates, is perceptually salient for many animal species. Newly hatched domestic chicks and human newborns show a spontaneous preference for simple biological motion stimuli (point-light displays) at birth prior to any visual learning. Despite evidence of such preference at birth, neural studies performed so far have focused on a specialized neural network involving primarily cortical areas. Here, we presented newly hatched visually naïve domestic chicks to either biological or rigid motion stimuli and measured for the first time their brain activation. Immediate Early Gene (c-Fos) expression revealed selective activation in the preoptic area of the hypothalamus and the nucleus taeniae of the amygdala. These results suggest that subpallial/subcortical regions play a crucial role in biological motion perception at hatching, paving the way for future studies on adult animals, including humans.


Subject(s)
Animals, Newborn , Chickens , Motion Perception , Animals , Motion Perception/physiology , Brain/physiology , Proto-Oncogene Proteins c-fos/metabolism , Photic Stimulation/methods
12.
Exp Brain Res ; 242(7): 1721-1730, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38816552

ABSTRACT

Humans can selectively process information and make decisions by directing their attention to desired locations in their daily lives. Numerous studies have shown that attention increases the rate of correct responses and shortens reaction time, and it has been hypothesized that this phenomenon is caused by an increase in sensitivity of the sensory signals to which attention is directed. The present study employed psychophysical methods and electroencephalography (EEG) to test the hypothesis that attention accelerates the onset of information accumulation. Participants were asked to discriminate the motion direction of one of two random dot kinematograms presented on the left and right sides of the visual field, one of which was cued by an arrow in 80% of the trials. The drift-diffusion model was applied to the percentage of correct responses and reaction times in the attended and unattended fields of view. Attention primarily increased sensory sensitivity and shortened the time unrelated to decision making. Next, we measured centroparietal positivity (CPP), an EEG measure associated with decision making, and found that CPP latency was shorter in attended trials than in unattended trials. These results suggest that attention not only increases sensory sensitivity but also accelerates the initiation of decision making.


Subject(s)
Attention , Decision Making , Electroencephalography , Reaction Time , Humans , Electroencephalography/methods , Male , Decision Making/physiology , Female , Attention/physiology , Young Adult , Reaction Time/physiology , Adult , Psychophysics , Photic Stimulation/methods , Visual Perception/physiology , Motion Perception/physiology
13.
Eur J Neurosci ; 60(1): 3557-3571, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38706370

ABSTRACT

Extensive research has shown that observers are able to efficiently extract summary information from groups of people. However, little is known about the cues that determine whether multiple people are represented as a social group or as independent individuals. Initial research on this topic has primarily focused on the role of static cues. Here, we instead investigate the role of dynamic cues. In two experiments with male and female human participants, we use EEG frequency tagging to investigate the influence of two fundamental Gestalt principles - synchrony and common fate - on the grouping of biological movements. In Experiment 1, we find that brain responses coupled to four point-light figures walking together are enhanced when they move in sync vs. out of sync, but only when they are presented upright. In contrast, we found no effect of movement direction (i.e., common fate). In Experiment 2, we rule out that synchrony takes precedence over common fate by replicating the null effect of movement direction while keeping synchrony constant. These results suggest that synchrony plays an important role in the processing of biological group movements. In contrast, the role of common fate is less clear and will require further research.


Subject(s)
Electroencephalography , Motion Perception , Humans , Male , Female , Adult , Electroencephalography/methods , Motion Perception/physiology , Young Adult , Cues , Movement/physiology , Brain/physiology , Photic Stimulation/methods
14.
Nat Commun ; 15(1): 4003, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734715

ABSTRACT

Accurate perception and behavior rely on distinguishing sensory signals arising from unexpected events from those originating from our own voluntary actions. In the vestibular system, sensory input that is the consequence of active self-motion is canceled early at the first central stage of processing to ensure postural and perceptual stability. However, the source of the required cancellation signal was unknown. Here, we show that the cerebellum combines sensory and motor-related information to predict the sensory consequences of active self-motion. Recordings during attempted but unrealized head movements in two male rhesus monkeys, revealed that the motor-related signals encoded by anterior vermis Purkinje cells explain their altered sensitivity to active versus passive self-motion. Further, a model combining responses from ~40 Purkinje cells accounted for the cancellation observed in early vestibular pathways. These findings establish how cerebellar Purkinje cells predict sensory outcomes of self-movements, resolving a long-standing issue of sensory signal suppression during self-motion.


Subject(s)
Macaca mulatta , Purkinje Cells , Animals , Purkinje Cells/physiology , Male , Head Movements/physiology , Cerebellum/physiology , Cerebellum/cytology , Vestibule, Labyrinth/physiology , Motion Perception/physiology
15.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38821872

ABSTRACT

Animals use a combination of eye movements to track moving objects. These different eye movements need to be coordinated for successful tracking, requiring interactions between the systems involved. Here, we study the interaction between the saccadic and smooth pursuit eye movement systems in marmosets. Using a single-target pursuit task, we show that saccades cause an enhancement in pursuit following a saccade. Using a two-target pursuit task, we show that this enhancement in pursuit is selective toward the motion of the target selected by the saccade, irrespective of any biases in pursuit prior to the saccade. These experiments highlight the similarities in the functioning of saccadic and smooth pursuit eye movement systems across primates.


Subject(s)
Callithrix , Pursuit, Smooth , Saccades , Animals , Callithrix/physiology , Pursuit, Smooth/physiology , Saccades/physiology , Male , Female , Photic Stimulation/methods , Motion Perception/physiology
16.
Brain Stimul ; 17(3): 660-667, 2024.
Article in English | MEDLINE | ID: mdl-38763414

ABSTRACT

BACKGROUND: Phase synchronization over long distances underlies inter-areal communication and importantly, modulates the flow of information processing to adjust to cognitive demands. OBJECTIVE: This study investigates the impact of single-session, cross-frequency (Alpha-Gamma) bifocal transcranial alternating current stimulation (cf-tACS) to the cortical visual motion network on inter-areal coupling between the primary visual cortex (V1) and the medio-temporal area (MT) and on motion direction discrimination. METHODS: Based on the well-established phase-amplitude coupling (PAC) mechanism driving information processing in the visual system, we designed a novel directionally tuned cf-tACS protocol. Directionality of information flow was inferred from the area receiving low-frequency tACS (e.g., V1) projecting onto the area receiving high-frequency tACS (e.g., MT), in this case, promoting bottom-up information flow (Forward-tACS). The control condition promoted the opposite top-down connection (from MT to V1, called Backward-tACS), both compared to a Sham-tACS condition. Task performance and EEG activity were recorded from 45 young healthy subjects. An additional cohort of 16 stroke patients with occipital lesions and impairing visual processing was measured to assess the influence of a V1 lesion on the modulation of V1-MT coupling. RESULTS: The results indicate that Forward cf-tACS successfully modulated bottom-up PAC (V1 α-phase-MT É£-amplitude) in both cohorts, while producing opposite effects on the reverse MT-to-V1 connection. Backward-tACS did not change V1-MT PAC in either direction in healthy participants but induced a slight decrease in bottom-up PAC in stroke patients. However, these changes in inter-areal coupling did not translate into cf-tACS-specific behavioural improvements. CONCLUSIONS: Single session cf-tACS can alter inter-areal coupling in intact and lesioned brains but is probably not enough to induce longer-lasting behavioural effects in these cohorts. This might suggest that a longer daily visual training protocol paired with tACS is needed to unveil the relationship between externally applied oscillatory activity and behaviourally relevant brain processing.


Subject(s)
Motion Perception , Stroke , Transcranial Direct Current Stimulation , Humans , Male , Female , Stroke/physiopathology , Adult , Transcranial Direct Current Stimulation/methods , Motion Perception/physiology , Young Adult , Middle Aged , Electroencephalography , Visual Cortex/physiology , Visual Cortex/physiopathology , Primary Visual Cortex/physiology , Primary Visual Cortex/physiopathology , Aged
17.
Elife ; 132024 May 29.
Article in English | MEDLINE | ID: mdl-38809774

ABSTRACT

In the 'double-drift' illusion, local motion within a window moving in the periphery of the visual field alters the window's perceived path. The illusion is strong even when the eyes track a target whose motion matches the window so that the stimulus remains stable on the retina. This implies that the illusion involves the integration of retinal signals with non-retinal eye-movement signals. To identify where in the brain this integration occurs, we measured BOLD fMRI responses in visual cortex while subjects experienced the double-drift illusion. We then used a combination of univariate and multivariate decoding analyses to identify (1) which brain areas were sensitive to the illusion and (2) whether these brain areas contained information about the illusory stimulus trajectory. We identified a number of cortical areas that responded more strongly during the illusion than a control condition that was matched for low-level stimulus properties. Only in area hMT+ was it possible to decode the illusory trajectory. We additionally performed a number of important controls that rule out possible low-level confounds. Concurrent eye tracking confirmed that subjects accurately tracked the moving target; we were unable to decode the illusion trajectory using eye position measurements recorded during fMRI scanning, ruling out explanations based on differences in oculomotor behavior. Our results provide evidence for a perceptual representation in human visual cortex that incorporates extraretinal information.


Subject(s)
Illusions , Magnetic Resonance Imaging , Motion Perception , Visual Cortex , Humans , Motion Perception/physiology , Female , Male , Visual Cortex/physiology , Visual Cortex/diagnostic imaging , Adult , Illusions/physiology , Eye Movements/physiology , Young Adult , Photic Stimulation , Brain Mapping , Brain/physiology , Brain/diagnostic imaging
18.
Conscious Cogn ; 122: 103709, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781813

ABSTRACT

Conscious visual experiences are enriched by concurrent auditory information, implying audiovisual interactions. In the present study, we investigated how prior conscious experience of auditory and visual information influences the subsequent audiovisual temporal integration under the surface of awareness. We used continuous flash suppression (CFS) to render perceptually invisible a ball-shaped object constantly moving and bouncing inside a square frame window. To examine whether audiovisual temporal correspondence facilitates the ball stimulus to enter awareness, the visual motion was accompanied by click sounds temporally congruent or incongruent with the bounces of the ball. In Experiment 1, where no prior experience of the audiovisual events was given, we found no significant impact of audiovisual correspondence on visual detection time. However, when the temporally congruent or incongruent bounce-sound relations were consciously experienced prior to CFS in Experiment 2, congruent sounds yielded faster detection time compared to incongruent sounds during CFS. In addition, in Experiment 3, explicit processing of the incongruent bounce-sound relation prior to CFS slowed down detection time when the ball bounces became later congruent with sounds during CFS. These findings suggest that audiovisual temporal integration may take place outside of visual awareness though its potency is modulated by previous conscious experiences of the audiovisual events. The results are discussed in light of the framework of multisensory causal inference.


Subject(s)
Auditory Perception , Awareness , Consciousness , Visual Perception , Humans , Auditory Perception/physiology , Female , Male , Visual Perception/physiology , Adult , Young Adult , Awareness/physiology , Consciousness/physiology , Unconscious, Psychology , Reaction Time/physiology , Motion Perception/physiology , Photic Stimulation , Acoustic Stimulation
19.
Vision Res ; 221: 108422, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38718618

ABSTRACT

We used the psychophysical summation paradigm to reveal some spatial characteristics of the mechanism responsible for detecting a motion-defined visual target in central vision. There has been much previous work on spatial summation for motion detection and direction discrimination, but none has assessed it in terms of the velocity threshold or used velocity noise to provide a measure of the efficiency of the velocity processing mechanism. Motion-defined targets were centered within square fields of randomly selected gray levels. The motion was produced within the disk-shaped target region by shifting the pixels rightwards for 0.2 s. The uniform target motion was perturbed by Gaussian motion noise in horizontal strips of 16 pixels. Independent variables were field size, the diameter of the disk target, and the variance of an independent perturbation added to the (signed) velocity of each 16-pixel strip. The dependent variable was the threshold velocity for target detection. Velocity thresholds formed swoosh-shaped (descending, then ascending) functions of target diameter. Minimum values were obtained when targets subtended approximately 2 degrees of visual angle. The data were fit with a continuum of models, extending from the theoretically ideal observer through various inefficient and noisy refinements thereof. In particular, we introduce the concept of sparse sampling to account for the relative inefficiency of the velocity thresholds. The best fits were obtained from a model observer whose responses were determined by comparing the velocity profile of each stimulus with a limited set of sparsely sampled "DoG" templates, each of which is the product of a random binary array and the difference between two 2-D Gaussian density functions.


Subject(s)
Motion Perception , Photic Stimulation , Psychophysics , Sensory Thresholds , Humans , Motion Perception/physiology , Sensory Thresholds/physiology , Photic Stimulation/methods , Discrimination, Psychological/physiology , Space Perception/physiology , Adult
20.
Biol Psychol ; 190: 108820, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815896

ABSTRACT

The perception of biological motion is an important social cognitive ability. Models of biological motion perception recognize two processes that contribute to the perception of biological motion: a bottom-up process that binds optic-flow patterns into a coherent percept of biological motion and a top-down process that binds sequences of body-posture 'snapshots' over time into a fluent percept of biological motion. The vast majority of studies on autism and biological motion perception have used point-light figure stimuli, which elicit biological motion perception predominantly via bottom-up processes. Here, we investigated whether autism is associated with deviances in the top-down processing of biological motion. For this, we tested a sample of adults scoring low vs high on autism traits on a recently validated EEG paradigm in which apparent biological motion is combined with frequency tagging (Cracco et al., 2022) to dissociate between two percepts: 1) the representation of individual body postures, and 2) their temporal integration into movements. In contrast to our hypothesis, we found no evidence for a diminished temporal body posture integration in the high-scoring group. We did, however, find a group difference that suggests that adults scoring high on autism traits have a visual processing style that focuses more on a single percept (i.e. either body postures or movements, contingent on saliency) compared to adults scoring low on autism traits who instead seemed to represent the two percepts included in the paradigm in a more balanced manner. Although unexpected, this finding aligns well with the autism literature on perceptual stability.


Subject(s)
Autistic Disorder , Electroencephalography , Motion Perception , Humans , Motion Perception/physiology , Male , Female , Adult , Autistic Disorder/physiopathology , Autistic Disorder/psychology , Young Adult , Photic Stimulation/methods , Posture/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...