Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 11(8): 649, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32811824

ABSTRACT

The folate-coupled metabolic enzyme MTHFD2 (the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase) confers redox homeostasis and drives cancer cell proliferation and migration. Here, we show that MTHFD2 is hyperacetylated and lysine 88 is the critical acetylated site. SIRT3, the major deacetylase in mitochondria, is responsible for MTHFD2 deacetylation. Interestingly, chemotherapeutic agent cisplatin inhibits expression of SIRT3 to induce acetylation of MTHFD2 in colorectal cancer cells. Cisplatin-induced acetylated K88 MTHFD2 is sufficient to inhibit its enzymatic activity and downregulate NADPH levels in colorectal cancer cells. Ac-K88-MTHFD2 is significantly decreased in human colorectal cancer samples and is inversely correlated with the upregulated expression of SIRT3. Our findings reveal an unknown regulation axis of cisplatin-SIRT3-MTHFD2 in redox homeostasis and suggest a potential therapeutic strategy for cancer treatments by targeting MTHFD2.


Subject(s)
Cisplatin/metabolism , Colorectal Neoplasms/metabolism , Sirtuin 3/metabolism , Acetylation , Aminohydrolases/genetics , Aminohydrolases/metabolism , Aminohydrolases/physiology , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , Colonic Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Folic Acid/metabolism , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Hydrolases , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/physiology , Mitochondria/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/physiology , Oxidation-Reduction
2.
Mol Cell ; 78(6): 1237-1251.e7, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32442397

ABSTRACT

DNA replication stress can stall replication forks, leading to genome instability. DNA damage tolerance pathways assist fork progression, promoting replication fork reversal, translesion DNA synthesis (TLS), and repriming. In the absence of the fork remodeler HLTF, forks fail to slow following replication stress, but underlying mechanisms and cellular consequences remain elusive. Here, we demonstrate that HLTF-deficient cells fail to undergo fork reversal in vivo and rely on the primase-polymerase PRIMPOL for repriming, unrestrained replication, and S phase progression upon limiting nucleotide levels. By contrast, in an HLTF-HIRAN mutant, unrestrained replication relies on the TLS protein REV1. Importantly, HLTF-deficient cells also exhibit reduced double-strand break (DSB) formation and increased survival upon replication stress. Our findings suggest that HLTF promotes fork remodeling, preventing other mechanisms of replication stress tolerance in cancer cells. This remarkable plasticity of the replication fork may determine the outcome of replication stress in terms of genome integrity, tumorigenesis, and response to chemotherapy.


Subject(s)
DNA Replication/physiology , DNA-Binding Proteins/metabolism , DNA/biosynthesis , Transcription Factors/metabolism , Cell Line, Tumor , DNA/genetics , DNA Damage/genetics , DNA Primase/metabolism , DNA Primase/physiology , DNA Repair/genetics , DNA Replication/genetics , DNA-Binding Proteins/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/physiology , HEK293 Cells , Humans , K562 Cells , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/physiology , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/physiology , Transcription Factors/genetics
3.
J Bacteriol ; 202(4)2020 01 29.
Article in English | MEDLINE | ID: mdl-31792012

ABSTRACT

Variation in the concentration of biological components is inescapable for any cell. Robustness in any biological circuit acts as a cushion against such variation and enables the cells to produce homogeneous output despite the fluctuation. The two-component system (TCS) with a bifunctional sensor kinase (that possesses both kinase and phosphatase activities) is proposed to be a robust circuit. Few theoretical models explain the robustness of a TCS, although the criteria and extent of robustness by these models differ. Here, we provide experimental evidence to validate the extent of the robustness of a TCS signaling pathway. We have designed a synthetic circuit in Escherichia coli using a representative TCS of Mycobacterium tuberculosis, MprAB, and monitored the in vivo output signal by systematically varying the concentration of either of the components or both. We observed that the output of the TCS is robust if the concentration of MprA is above a threshold value. This observation is further substantiated by two in vitro assays, in which we estimated the phosphorylated MprA pool or MprA-dependent transcription yield by varying either of the components of the TCS. This synthetic circuit could be used as a model system to analyze the relationship among different components of gene regulatory networks.IMPORTANCE Robustness in essential biological circuits is an important feature of the living organism. A few pieces of evidence support the existence of robustness in vivo in the two-component system (TCS) with a bifunctional sensor kinase (SK). The assays were done under physiological conditions in which the SK was much lower than the response regulator (RR). Here, using a synthetic circuit, we varied the concentrations of the SK and RR of a representative TCS to monitor output robustness in vivo. In vitro assays were also performed under conditions where the concentration of the SK was greater than that of the RR. Our results demonstrate the extent of output robustness in the TCS signaling pathway with respect to the concentrations of the two components.


Subject(s)
Bacterial Proteins/physiology , Multifunctional Enzymes/physiology , Protein Kinases/physiology , Signal Transduction/physiology , Gene Expression Regulation, Bacterial , Phosphorylation , Transcription, Genetic
4.
Mol Cell ; 77(3): 461-474.e9, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31676232

ABSTRACT

Acute treatment with replication-stalling chemotherapeutics causes reversal of replication forks. BRCA proteins protect reversed forks from nucleolytic degradation, and their loss leads to chemosensitivity. Here, we show that fork degradation is no longer detectable in BRCA1-deficient cancer cells exposed to multiple cisplatin doses, mimicking a clinical treatment regimen. This effect depends on increased expression and chromatin loading of PRIMPOL and is regulated by ATR activity. Electron microscopy and single-molecule DNA fiber analyses reveal that PRIMPOL rescues fork degradation by reinitiating DNA synthesis past DNA lesions. PRIMPOL repriming leads to accumulation of ssDNA gaps while suppressing fork reversal. We propose that cells adapt to repeated cisplatin doses by activating PRIMPOL repriming under conditions that would otherwise promote pathological reversed fork degradation. This effect is generalizable to other conditions of impaired fork reversal (e.g., SMARCAL1 loss or PARP inhibition) and suggests a new strategy to modulate cisplatin chemosensitivity by targeting the PRIMPOL pathway.


Subject(s)
DNA Primase/metabolism , DNA Replication/drug effects , DNA-Directed DNA Polymerase/metabolism , Multifunctional Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line, Tumor , DNA/genetics , DNA Damage/genetics , DNA Damage/physiology , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Primase/physiology , DNA Replication/genetics , DNA Replication/physiology , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/physiology , HEK293 Cells , Humans , Multifunctional Enzymes/physiology , Ubiquitin-Protein Ligases/genetics
5.
Oncogene ; 38(34): 6211-6225, 2019 08.
Article in English | MEDLINE | ID: mdl-31289360

ABSTRACT

One-carbon metabolism plays a central role in a broad array of metabolic processes required for the survival and growth of tumor cells. However, the molecular basis of how one-carbon metabolism may influence RNA methylation and tumorigenesis remains largely unknown. Here we show MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, contributes to the progression of renal cell carcinoma (RCC) via a novel epitranscriptomic mechanism that involves HIF-2α. We found that expression of MTHFD2 was significantly elevated in human RCC tissues, and MTHFD2 knockdown strongly reduced xenograft tumor growth. Mechanistically, using an unbiased methylated RNA immunoprecipitation sequencing (meRIP-Seq) approach, we found that MTHFD2 plays a critical role in controlling global N6-methyladenosine (m6A) methylation levels, including the m6A methylation of HIF-2α mRNA, which results in enhanced translation of HIF-2α. Enhanced HIF-2α translation, in turn, promotes the aerobic glycolysis, linking one-carbon metabolism to HIF-2α-dependent metabolic reprogramming through RNA methylation. Our findings also suggest that MTHFD2 and HIF-2α form a positive feedforward loop in RCC, promoting metabolic reprograming and tumor growth. Taken together, our results suggest that MTHFD2 links RNA methylation status to the metabolic state of tumor cells in RCC.


Subject(s)
Aminohydrolases/physiology , Carcinoma, Renal Cell/metabolism , Glycolysis/genetics , Kidney Neoplasms/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/physiology , Methyltransferases/metabolism , Multifunctional Enzymes/physiology , RNA Processing, Post-Transcriptional/genetics , Animals , Carbohydrate Metabolism/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cellular Reprogramming/genetics , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Male , Methylation , Mice , Mice, Nude
6.
Med Sci Monit ; 25: 4474-4484, 2019 Jun 16.
Article in English | MEDLINE | ID: mdl-31203308

ABSTRACT

BACKGROUND Formiminotransferase cyclodeaminase (FTCD) is a candidate tumor suppressor gene in hepatocellular carcinoma (HCC). However, the mechanism for reduced expression of FTCD and its functional role in HCC remains unclear. In this study, we explored the biological functions of FTCD in HCC. MATERIAL AND METHODS The expression and clinical correlation of FTCD in HCC tissue were analyzed using TCGA (The Cancer Genome Atlas) and a cohort of 60 HCC patients. The MEXPRESS platform was accessed to identify the methylation level in promoter region FTCD. CCK-8 assay and flow cytometry analysis were used to explore the proliferation, cell apoptosis proportion, and DNA damage in HCC cells with FTCD overexpression. Western blot analysis was performed to identify the downstream target of FTCD. RESULTS FTCD is significantly downregulated in HCC tissues and cell lines. Low FTCD expression is correlated with a poor prognosis (P<0.001) and an aggressive tumor phenotype, including AFP levels (P=0.009), tumor size (P=0.013), vascular invasion (P=0.001), BCLC stage (P=0.024), and pTNM stage (P<0.001). Bioinformatics analysis indicated promoter hypermethylation can result in decreased expression of FTCD. FTCD overexpression suppressed cell proliferation by promoting DNA damage and inducing cell apoptosis in HCC cells. FTCD overexpression resulted in increased level of PTEN protein, but a decrease in PI3K, total Akt, and phosphorylated Akt protein in HCC cells, suggesting involvement of the PI3K/Akt pathway. CONCLUSIONS FTCD acts as a tumor suppressor gene in HCC pathogenesis and progression and is a candidate prognostic marker and a possible therapeutic target for this disease.


Subject(s)
Ammonia-Lyases/metabolism , Carcinoma, Hepatocellular/metabolism , Glutamate Formimidoyltransferase/metabolism , Multifunctional Enzymes/metabolism , Aged , Ammonia-Lyases/physiology , Apoptosis/physiology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , China , DNA Damage/physiology , Female , Gene Expression Regulation, Neoplastic/genetics , Glutamate Formimidoyltransferase/physiology , Hep G2 Cells , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Middle Aged , Multifunctional Enzymes/physiology , Phosphatidylinositol 3-Kinases/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology
7.
Genes Dev ; 31(14): 1469-1482, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28860160

ABSTRACT

Protection of the stalled replication fork is crucial for responding to replication stress and minimizing its impact on chromosome instability, thus preventing diseases, including cancer. We found a new component, Abro1, in the protection of stalled replication fork integrity. Abro1 deficiency results in increased chromosome instability, and Abro1-null mice are tumor-prone. We show that Abro1 protects stalled replication fork stability by inhibiting DNA2 nuclease/WRN helicase-mediated degradation of stalled forks. Depletion of RAD51 prevents the DNA2/WRN-dependent degradation of stalled forks in Abro1-deficient cells. This mechanism is distinct from the BRCA2-dependent fork protection pathway, in which stable RAD51 filament formation prevents MRE11-dependent degradation of the newly synthesized DNA at stalled forks. Thus, our data reveal a new aspect of regulated protection of stalled replication forks that involves Abro1.


Subject(s)
DNA Replication , Genomic Instability , Nuclear Matrix-Associated Proteins/physiology , Ubiquitin-Specific Proteases/physiology , Animals , BRCA2 Protein/genetics , Cell Line , Cells, Cultured , DNA/biosynthesis , DNA Helicases/physiology , Endodeoxyribonucleases/physiology , MRE11 Homologue Protein/physiology , Mice, Knockout , Multifunctional Enzymes/physiology , Neoplasms, Experimental/genetics , Nuclear Matrix-Associated Proteins/genetics , Rad51 Recombinase/genetics , Stress, Physiological , Ubiquitin-Specific Proteases/genetics
8.
Nucleic Acids Res ; 44(10): 4734-44, 2016 06 02.
Article in English | MEDLINE | ID: mdl-26926109

ABSTRACT

PrimPol is a DNA damage tolerant polymerase displaying both translesion synthesis (TLS) and (re)-priming properties. This led us to study the consequences of a PrimPol deficiency in tolerating mutagenic lesions induced by members of the APOBEC/AID family of cytosine deaminases. Interestingly, during somatic hypermutation, PrimPol counteracts the generation of C>G transversions on the leading strand. Independently, mutation analyses in human invasive breast cancer confirmed a pro-mutagenic activity of APOBEC3B and revealed a genome-wide anti-mutagenic activity of PRIMPOL as well as most Y-family TLS polymerases. PRIMPOL especially prevents APOBEC3B targeted cytosine mutations within TpC dinucleotides. As C transversions induced by APOBEC/AID family members depend on the formation of AP-sites, we propose that PrimPol reprimes preferentially downstream of AP-sites on the leading strand, to prohibit error-prone TLS and simultaneously stimulate error-free homology directed repair. These in vivo studies are the first demonstrating a critical anti-mutagenic activity of PrimPol in genome maintenance.


Subject(s)
Cytidine Deaminase/metabolism , DNA Primase/physiology , DNA-Directed DNA Polymerase/physiology , Minor Histocompatibility Antigens/metabolism , Multifunctional Enzymes/physiology , Mutagenesis , Animals , B-Lymphocytes/enzymology , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , CRISPR-Cas Systems , Cell Line , Cell Survival/radiation effects , Cells, Cultured , Cytidine Deaminase/antagonists & inhibitors , DNA/metabolism , DNA Replication , Female , Humans , Immunoglobulin Class Switching , Mice, Inbred C57BL , Somatic Hypermutation, Immunoglobulin , T-Lymphocytes/enzymology , Ultraviolet Rays
9.
Sci Rep ; 6: 18726, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26725302

ABSTRACT

A multifunctional enzyme is one that performs multiple physiological functions, thus benefiting the organism. Characterization of multifunctional enzymes is important for researchers to understand how organisms adapt to different environmental challenges. In the present study, we report the discovery of a novel multifunctional enzyme Amy63 produced by marine bacterium Vibrio alginolyticus 63. Remarkably, Amy63 possesses amylase, agarase and carrageenase activities. Amy63 is a substrate promiscuous α-amylase, with the substrate priority order of starch, carrageenan and agar. Amy63 maintains considerable amylase, carrageenase and agarase activities and stabilities at wide temperature and pH ranges, and optimum activities are detected at temperature of 60 °C and pH of 6.0, respectively. Moreover, the heteroexpression of Amy63 dramatically enhances the ability of E. coli to degrade starch, carrageenan and agar. Motif searching shows three continuous glycosyl hydrolase 70 (GH70) family homologs existed in Amy63 encoding sequence. Combining serial deletions and phylogenetic analysis of Amy63, the GH70 homologs are proposed as the determinants of enzyme promiscuity. Notably, such enzymes exist in all kingdoms of life, thus providing an expanded perspective on studies of multifunctional enzymes. To our knowledge, this is the first report of an amylase having additional agarase and carrageenase activities.


Subject(s)
Amylases/chemistry , Bacterial Proteins/chemistry , Glycoside Hydrolases/chemistry , Vibrio alginolyticus/enzymology , Agar/chemistry , Amino Acid Sequence , Amylases/physiology , Bacterial Proteins/physiology , Carrageenan/chemistry , Consensus Sequence , Escherichia coli , Evolution, Molecular , Glucans/chemistry , Glycoside Hydrolases/physiology , Hydrogen-Ion Concentration , Multifunctional Enzymes/chemistry , Multifunctional Enzymes/physiology , Phylogeny , Starch/chemistry , Starch/metabolism , Substrate Specificity
10.
Proc Natl Acad Sci U S A ; 112(48): E6624-33, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26627254

ABSTRACT

After UV irradiation, DNA polymerases specialized in translesion DNA synthesis (TLS) aid DNA replication. However, it is unclear whether other mechanisms also facilitate the elongation of UV-damaged DNA. We wondered if Rad51 recombinase (Rad51), a factor that escorts replication forks, aids replication across UV lesions. We found that depletion of Rad51 impairs S-phase progression and increases cell death after UV irradiation. Interestingly, Rad51 and the TLS polymerase polη modulate the elongation of nascent DNA in different ways, suggesting that DNA elongation after UV irradiation does not exclusively rely on TLS events. In particular, Rad51 protects the DNA synthesized immediately before UV irradiation from degradation and avoids excessive elongation of nascent DNA after UV irradiation. In Rad51-depleted samples, the degradation of DNA was limited to the first minutes after UV irradiation and required the exonuclease activity of the double strand break repair nuclease (Mre11). The persistent dysregulation of nascent DNA elongation after Rad51 knockdown required Mre11, but not its exonuclease activity, and PrimPol, a DNA polymerase with primase activity. By showing a crucial contribution of Rad51 to the synthesis of nascent DNA, our results reveal an unanticipated complexity in the regulation of DNA elongation across UV-damaged templates.


Subject(s)
DNA Breaks, Double-Stranded , DNA Primase/physiology , DNA-Binding Proteins/physiology , DNA-Directed DNA Polymerase/physiology , DNA/radiation effects , Multifunctional Enzymes/physiology , Rad51 Recombinase/physiology , Ultraviolet Rays , Cell Cycle , Cell Death , Cell Line, Tumor , Cell Survival , DNA Repair , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Disease Progression , Dose-Response Relationship, Radiation , HeLa Cells , Humans , MRE11 Homologue Protein , RNA, Small Interfering/metabolism
11.
Nat Chem Biol ; 10(6): 425-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24814673

ABSTRACT

Fatty acid-derived ether lipids are present not only in most vertebrates but also in some bacteria. Here we describe what is to our knowledge the first gene cluster involved in the biosynthesis of such lipids in myxobacteria that encodes the multifunctional enzyme ElbD, which shows similarity to polyketide synthases. Initial characterization of elbD mutants in Myxococcus xanthus and Stigmatella aurantiaca showed the importance of these ether lipids for fruiting body formation and sporulation.


Subject(s)
Lipids/biosynthesis , Multifunctional Enzymes/physiology , Multigene Family , Myxococcus xanthus/enzymology , Stigmatella aurantiaca/enzymology , Catalytic Domain , Ethers , Genes, Bacterial , Genome, Bacterial , Lipids/chemistry , Molecular Sequence Data , Multifunctional Enzymes/genetics , Myxococcus xanthus/genetics , Myxococcus xanthus/physiology , Spores, Bacterial/physiology , Stigmatella aurantiaca/genetics , Stigmatella aurantiaca/physiology
12.
Nucleic Acids Res ; 42(9): 5830-45, 2014 May.
Article in English | MEDLINE | ID: mdl-24682820

ABSTRACT

PrimPol is a primase-polymerase involved in nuclear and mitochondrial DNA replication in eukaryotic cells. Although PrimPol is predicted to possess an archaeo-eukaryotic primase and a UL52-like zinc finger domain, the role of these domains has not been established. Here, we report that the proposed zinc finger domain of human PrimPol binds zinc ions and is essential for maintaining primase activity. Although apparently dispensable for its polymerase activity, the zinc finger also regulates the processivity and fidelity of PrimPol's extension activities. When the zinc finger is disrupted, PrimPol becomes more promutagenic, has an altered translesion synthesis spectrum and is capable of faithfully bypassing cyclobutane pyrimidine dimer photolesions. PrimPol's polymerase domain binds to both single- and double-stranded DNA, whilst the zinc finger domain binds only to single-stranded DNA. We additionally report that although PrimPol's primase activity is required to restore wild-type replication fork rates in irradiated PrimPol-/- cells, polymerase activity is sufficient to maintain regular replisome progression in unperturbed cells. Together, these findings provide the first analysis of the molecular architecture of PrimPol, describing the activities associated with, and interplay between, its functional domains and defining the requirement for its primase and polymerase activities during nuclear DNA replication.


Subject(s)
DNA Primase/chemistry , DNA-Directed DNA Polymerase/chemistry , Multifunctional Enzymes/chemistry , Animals , Catalytic Domain , Cell Line , DNA Primase/physiology , DNA Repair , DNA Replication , DNA-Directed DNA Polymerase/physiology , Electrophoretic Mobility Shift Assay , Humans , Manganese/chemistry , Multifunctional Enzymes/physiology , Protein Binding , Xenopus Proteins/chemistry , Zinc/chemistry
13.
Nat Struct Mol Biol ; 20(12): 1348-50, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24304914

ABSTRACT

Faithful bypass of replication forks encountering obstructive DNA lesions is essential to prevent fork collapse and cell death. PrimPol is a new human primase and translesion polymerase that is able to bypass fork-blocking UV-induced lesions and to restart replication by origin-independent repriming.


Subject(s)
DNA Primase/physiology , DNA Replication/physiology , DNA-Directed DNA Polymerase/physiology , Multifunctional Enzymes/physiology , Humans
14.
Nat Struct Mol Biol ; 20(12): 1383-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24240614

ABSTRACT

DNA replication forks that collapse during the process of genomic duplication lead to double-strand breaks and constitute a threat to genomic stability. The risk of fork collapse is higher in the presence of replication inhibitors or after UV irradiation, which introduces specific modifications in the structure of DNA. In these cases, fork progression may be facilitated by error-prone translesion synthesis (TLS) DNA polymerases. Alternatively, the replisome may skip the damaged DNA, leaving an unreplicated gap to be repaired after replication. This mechanism strictly requires a priming event downstream of the lesion. Here we show that PrimPol, a new human primase and TLS polymerase, uses its primase activity to mediate uninterrupted fork progression after UV irradiation and to reinitiate DNA synthesis after dNTP depletion. As an enzyme involved in tolerance to DNA damage, PrimPol might become a target for cancer therapy.


Subject(s)
DNA Primase/physiology , DNA Replication/physiology , DNA-Directed DNA Polymerase/physiology , Multifunctional Enzymes/physiology , DNA Breaks, Double-Stranded , DNA Damage , DNA Primase/chemistry , DNA Primase/metabolism , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , Genomic Instability , Humans , Multifunctional Enzymes/chemistry , Multifunctional Enzymes/metabolism , RNA, Messenger/metabolism , S Phase , Ultraviolet Rays
15.
Mol Cell ; 52(4): 566-73, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24267451

ABSTRACT

DNA damage can stall the DNA replication machinery, leading to genomic instability. Thus, numerous mechanisms exist to complete genome duplication in the absence of a pristine DNA template, but identification of the enzymes involved remains incomplete. Here, we establish that Primase-Polymerase (PrimPol; CCDC111), an archaeal-eukaryotic primase (AEP) in eukaryotic cells, is involved in chromosomal DNA replication. PrimPol is required for replication fork progression on ultraviolet (UV) light-damaged DNA templates, possibly mediated by its ability to catalyze translesion synthesis (TLS) of these lesions. This PrimPol UV lesion bypass pathway is not epistatic with the Pol η-dependent pathway and, as a consequence, protects xeroderma pigmentosum variant (XP-V) patient cells from UV-induced cytotoxicity. In addition, we establish that PrimPol is also required for efficient replication fork progression during an unperturbed S phase. These and other findings indicate that PrimPol is an important player in replication fork progression in eukaryotic cells.


Subject(s)
Chromosomes, Human/genetics , DNA Adducts/genetics , DNA Primase/physiology , DNA Replication , DNA-Directed DNA Polymerase/physiology , Multifunctional Enzymes/physiology , Amino Acid Sequence , Animals , Cell Proliferation , Cell Survival , Chickens , DNA Adducts/chemistry , DNA Adducts/metabolism , DNA Damage , DNA Primase/chemistry , DNA, Single-Stranded/chemistry , DNA-Directed DNA Polymerase/chemistry , G2 Phase Cell Cycle Checkpoints , Gene Knockdown Techniques , HEK293 Cells , Humans , Mice , Mice, Knockout , Molecular Sequence Data , Multifunctional Enzymes/chemistry , Ultraviolet Rays , Xenopus
16.
Mol Cell ; 52(4): 541-53, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24207056

ABSTRACT

We describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication.


Subject(s)
DNA Primase/physiology , DNA Replication , DNA-Directed DNA Polymerase/physiology , Multifunctional Enzymes/physiology , Amino Acid Sequence , Animals , Apurinic Acid/chemistry , Base Sequence , Catalytic Domain , Cell Nucleus/enzymology , DNA Polymerase II/chemistry , DNA Polymerase gamma , DNA Primase/chemistry , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , DNA-Directed DNA Polymerase/chemistry , Deoxyadenosines/chemistry , Deoxyribonucleotides/chemistry , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Knockout , Mitochondria/enzymology , Molecular Sequence Data , Multifunctional Enzymes/chemistry
17.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1633-44, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23999287

ABSTRACT

The enzymes 3,4-dihydroxy-2-butanone 4-phosphate synthase (DHBPS) and GTP cyclohydrolase II (GCHII) catalyze the initial steps of both branches of the bacterial riboflavin-biosynthesis pathway. The structures and molecular mechanisms of DHBPS and GCHII as separate polypeptides are known; however, their organization and molecular mechanism as a bifunctional enzyme are unknown to date. Here, the crystal structure of an essential bifunctional DHBPS/GCHII enzyme from Mycobacterium tuberculosis (Mtb-ribA2) is reported at 3.0 Šresolution. The crystal structure revealed two conformationally different molecules of Mtb-ribA2 in the asymmetric unit that form a dimer via their GCHII domains. Interestingly, analysis of the crystal packing revealed a long `helical-like oligomer' formed by DHBPS and GCHII functional homodimers, thus generating an `open-ended' unit-cell lattice. However, size-exclusion chromatography studies suggest that Mtb-ribA2 exists as a dimer in solution. To understand the discrepancy between the oligomerization observed in solution and in the crystal structure, the DHBPS (Mtb-DHBPS) and GCHII (Mtb-GCHII) domains of Mtb-ribA2 have been cloned, expressed and purified as His-tagged proteins. Size-exclusion chromatography studies indicated that Mtb-GCHII is a dimer while Mtb-DHBPS exists as a monomer in solution. Moreover, kinetic studies revealed that the GCHII activities of Mtb-ribA2 and Mtb-GCHII are similar, while the DHBPS activity of Mtb-ribA2 is much higher than that of Mtb-DHBPS alone. Taken together, the results strongly suggest that Mtb-ribA2 exists as a dimer formed through its GCHII domains and requires full-length Mtb-ribA2 for optimal DHBPS activity.


Subject(s)
Bacterial Proteins/chemistry , GTP Cyclohydrolase/chemistry , Intramolecular Transferases/chemistry , Multifunctional Enzymes/chemistry , Mycobacterium tuberculosis/enzymology , Amino Acid Sequence , Bacterial Proteins/physiology , Crystallography, X-Ray , GTP Cyclohydrolase/physiology , Intramolecular Transferases/physiology , Multifunctional Enzymes/physiology , Protein Multimerization , Protein Structure, Tertiary , Sequence Alignment
18.
Carcinogenesis ; 32(3): 427-33, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21156972

ABSTRACT

The causal metabolic pathways underlying associations between folate and risk for colorectal cancer (CRC) have yet to be established. Folate-mediated one-carbon metabolism is required for the de novo synthesis of purines, thymidylate and methionine. Methionine is converted to S-adenosylmethionine (AdoMet), the major one-carbon donor for cellular methylation reactions. Impairments in folate metabolism can modify DNA synthesis, genomic stability and gene expression, characteristics associated with tumorigenesis. The Mthfd1 gene product, C1-tetrahydrofolate synthase, is a trifunctional enzyme that generates one-carbon substituted tetrahydrofolate cofactors for one-carbon metabolism. In this study, we use Mthfd1(gt/+) mice, which demonstrate a 50% reduction in C1-tetrahydrofolate synthase, to determine its influence on tumor development in two mouse models of intestinal cancer, crosses between Mthfd1(gt/+) and Apc(min)(/+) mice and azoxymethane (AOM)-induced colon cancer in Mthfd1(gt/+) mice. Mthfd1 hemizygosity did not affect colon tumor incidence, number or load in Apc(min/+) mice. However, Mthfd1 deficiency increased tumor incidence 2.5-fold, tumor number 3.5-fold and tumor load 2-fold in AOM-treated mice. DNA uracil content in the colon was lower in Mthfd1(gt/+) mice, indicating that thymidylate biosynthesis capacity does not play a significant role in AOM-induced colon tumorigenesis. Mthfd1 deficiency-modified cellular methylation potential, as indicated by the AdoMet: S-adenosylhomocysteine ratio and gene expression profiles, suggesting that changes in the transcriptome and/or decreased de novo purine biosynthesis and associated mutability cause cellular transformation in the AOM CRC model. This study emphasizes the impact and complexity of gene-nutrient interactions with respect to the relationships among folate metabolism and colon cancer initiation and progression.


Subject(s)
Aminohydrolases/physiology , Colonic Neoplasms/genetics , DNA, Neoplasm/metabolism , Formate-Tetrahydrofolate Ligase/physiology , Methenyltetrahydrofolate Cyclohydrolase/physiology , Methylenetetrahydrofolate Dehydrogenase (NADP)/physiology , Multienzyme Complexes/physiology , Multifunctional Enzymes/physiology , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/metabolism , Aminohydrolases/genetics , Animals , Apoptosis , Azoxymethane/toxicity , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Blotting, Western , Carcinogens/toxicity , Cell Proliferation , Colonic Neoplasms/chemically induced , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Disease Models, Animal , Female , Formate-Tetrahydrofolate Ligase/genetics , Gene Expression Profiling , Immunoenzyme Techniques , Male , Methenyltetrahydrofolate Cyclohydrolase/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Multienzyme Complexes/genetics , Multifunctional Enzymes/genetics , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Uracil/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL