Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.017
Filter
1.
PeerJ ; 12: e17435, 2024.
Article in English | MEDLINE | ID: mdl-38827309

ABSTRACT

Background: This work explored the characteristics of the WRKY transcription factor family in Rhododendron henanense subsp. lingbaoense (Rhl) and the expression patterns of these genes under abiotic stress by conducting bioinformatics and expression analyses. Methods: RhlWRKY genes were identified from a gene library of Rhl. Various aspects of these genes were analyzed, including genetic structures, conserved sequences, physicochemical properties, cis-acting elements, and chromosomal location. RNA-seq was employed to analyze gene expression in five different tissues of Rhl: roots, stems, leaves, flowers, and hypocotyls. Additionally, qRT-PCR was used to detect changes in the expression of five RhlWRKY genes under abiotic stress. Result: A total of 65 RhlWRKY genes were identified and categorized into three subfamilies based on their structural characteristics: Groups I, II, and III. Group II was further divided into five subtribes, with shared similar genetic structures and conserved motifs among members of the same subtribe. The physicochemical properties of these proteins varied, but the proteins are generally predicted to be hydrophilic. Most proteins are predicted to be in the cell nucleus, and distributed across 12 chromosomes. A total of 84 cis-acting elements were discovered, with many related to responses to biotic stress. Among the identified RhlWRKY genes, there were eight tandem duplicates and 97 segmental duplicates. The majority of duplicate gene pairs exhibited Ka/Ks values <1, indicating purification under environmental pressure. GO annotation analysis indicated that WRKY genes regulate biological processes and participate in a variety of molecular functions. Transcriptome data revealed varying expression levels of 66.15% of WRKY family genes in all five tissue types (roots, stems, leaves, flowers, and hypocotyls). Five RhlWRKY genes were selected for further characterization and there were changes in expression levels for these genes in response to various stresses. Conclusion: The analysis identified 65 RhlWRKY genes, among which the expression of WRKY_42 and WRKY_17 were mainly modulated by the drought and MeJA, and WRKY_19 was regulated by the low-temperature and high-salinity conditions. This insight into the potential functions of certain genes contributes to understanding the growth regulatory capabilities of Rhl.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Plant Proteins , Rhododendron , Stress, Physiological , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Stress, Physiological/genetics , Rhododendron/genetics , Rhododendron/metabolism , Rhododendron/chemistry , Multigene Family/genetics , Gene Expression Profiling , Phylogeny , Genome, Plant/genetics
2.
BMC Genom Data ; 25(1): 39, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693490

ABSTRACT

BACKGROUND: Sunflower (Helianthus annuus) is one of the most important economic crops in oilseed production worldwide. The different cultivars exhibit variability in their resistance genes. The NAC transcription factor (TF) family plays diverse roles in plant development and stress responses. With the completion of the H. annuus genome sequence, the entire complement of genes coding for NACs has been identified. However, the reference genome of a single individual cannot cover all the genetic information of the species. RESULTS: Considering only a single reference genome to study gene families will miss many meaningful genes. A pangenome-wide survey and characterization of the NAC genes in sunflower species were conducted. In total, 139 HaNAC genes are identified, of which 114 are core and 25 are variable. Phylogenetic analysis of sunflower NAC proteins categorizes these proteins into 16 subgroups. 138 HaNACs are randomly distributed on 17 chromosomes. SNP-based haplotype analysis shows haplotype diversity of the HaNAC genes in wild accessions is richer than in landraces and modern cultivars. Ten HaNAC genes in the basal stalk rot (BSR) resistance quantitative trait loci (QTL) are found. A total of 26 HaNAC genes are differentially expressed in response to Sclerotinia head rot (SHR). A total of 137 HaNAC genes are annotated in Gene Ontology (GO) and are classified into 24 functional groups. GO functional enrichment analysis reveals that HaNAC genes are involved in various functions of the biological process. CONCLUSIONS: We identified NAC genes in H. annuus (HaNAC) on a pangenome-wide scale and analyzed S. sclerotiorum resistance-related NACs. This study provided a theoretical basis for further genomic improvement targeting resistance-related NAC genes in sunflowers.


Subject(s)
Ascomycota , Disease Resistance , Helianthus , Phylogeny , Plant Diseases , Helianthus/genetics , Helianthus/microbiology , Ascomycota/genetics , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Proteins/genetics , Transcription Factors/genetics , Genome, Plant , Multigene Family/genetics , Genes, Plant/genetics , Polymorphism, Single Nucleotide/genetics , Haplotypes/genetics
3.
Anim Biotechnol ; 35(1): 2344205, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38651890

ABSTRACT

The heat shock protein 70 (HSP70) gene family plays a crucial role in the response of organisms to environmental stress. However, it has not been systematically characterized in shrimp. In this study, we identified 25 PcHsp70 genes in the Penaeus chinensis genome. The encoded proteins were categorized into six subgroups based on phylogenetic relationships. Tandem duplication was the main driver of amplification in the PcHsp70 family, and the genes have experienced strong purifying selection during evolution. Transcriptome data analysis revealed that the 25 PcHsp70 members have different expression patterns in shrimp under conditions of low temperature, low salinity, and white spot syndrome virus infection. Among them, PcHsp70.11 was significantly induced under all three stress conditions, suggesting that this gene plays an important role in response to environmental stress in P. chinensis. To the best of our knowledge, this is the first study to systematically analyze the Hsp70 gene family in shrimp. The results provide important information on shrimp Hsp70s, contributing to a better understanding of the role of these genes in environmental stress and providing a basis for further functional studies.


Subject(s)
HSP70 Heat-Shock Proteins , Penaeidae , Phylogeny , Stress, Physiological , Animals , Penaeidae/genetics , HSP70 Heat-Shock Proteins/genetics , Stress, Physiological/genetics , Multigene Family/genetics , Gene Expression Profiling , Transcriptome , Salinity
4.
Fungal Genet Biol ; 172: 103892, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636782

ABSTRACT

The soil and indoor fungus Stachybotrys chartarum can induce respiratory disorders, collectively referred to as stachybotryotoxicosis, owing to its prolific production of diverse bioactive secondary metabolites (SMs) or mycotoxins. Although many of these toxins responsible for the harmful effects on animals and humans have been identified in the genus Stachybotrys, however a number of SMs remain elusive. Through in silico analyses, we have identified 37 polyketide synthase (PKS) genes, highlighting that the chemical profile potential of Stachybotrys is far from being fully explored. Additionally, by leveraging phylogenetic analysis of known SMs produced by non-reducing polyketide synthases (NR-PKS) in other filamentous fungi, we showed that Stachybotrys possesses a rich reservoir of untapped SMs. To unravel natural product biosynthesis in S. chartarum, genetic engineering methods are crucial. For this purpose, we have developed a reliable protocol for the genetic transformation of S. chartarum and applied it to the ScPKS14 biosynthetic gene cluster. This cluster is homologous to the already known Claviceps purpurea CpPKS8 BGC, responsible for the production of ergochromes. While no novel SMs were detected, we successfully applied genetic tools, such as the generation of deletionand overexpression strains of single cluster genes. This toolbox can now be readily employed to unravel not only this particular BGC but also other candidate BGCs present in S. chartarum, making this fungus accessible for genetic engineering.


Subject(s)
Multigene Family , Mycotoxins , Polyketide Synthases , Stachybotrys , Stachybotrys/genetics , Stachybotrys/metabolism , Multigene Family/genetics , Polyketide Synthases/genetics , Mycotoxins/genetics , Mycotoxins/metabolism , Phylogeny , Biosynthetic Pathways/genetics , Genetic Engineering/methods , Secondary Metabolism/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism
5.
mSystems ; 9(5): e0025024, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38564716

ABSTRACT

Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20-60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.


Subject(s)
Anti-Bacterial Agents , Genome, Bacterial , Multigene Family , Oxytetracycline , Streptomyces rimosus , Oxytetracycline/biosynthesis , Streptomyces rimosus/genetics , Streptomyces rimosus/metabolism , Anti-Bacterial Agents/biosynthesis , Multigene Family/genetics , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/drug effects
6.
PeerJ ; 12: e17304, 2024.
Article in English | MEDLINE | ID: mdl-38680887

ABSTRACT

The MYB gene family exerts significant influence over various biological processes and stress responses in plants. Despite this, a comprehensive analysis of this gene family in pumpkin remains absent. In this study, the MYB genes of Cucurbita moschata were identified and clustered into 33 groups (C1-33), with members of each group being highly conserved in terms of their motif composition. Furthermore, the distribution of 175 CmoMYB genes across all 20 chromosomes was found to be non-uniform. Examination of the promoter regions of these genes revealed the presence of cis-acting elements associated with phytohormone responses and abiotic/biotic stress. Utilizing quantitative real-time polymerase chain reaction (qRT-PCR), the expression patterns of 13 selected CmoMYB genes were validated, particularly in response to exogenous phytohormone exposure and various abiotic stressors, including ABA, SA, MeJA, and drought treatments. Expression analysis in different tissues showed that CmoMYB genes are expressed at different levels in different tissues, suggesting that they are functionally divergent in regulating growth and abiotic stresses. These results provide a basis for future studies to characterize the function of the MYB gene family under abiotic stresses in pumpkins.


Subject(s)
Cucurbita , Gene Expression Regulation, Plant , Multigene Family , Stress, Physiological , Cucurbita/genetics , Multigene Family/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Genes, myb , Promoter Regions, Genetic/genetics , Phylogeny , Genome-Wide Association Study , Genome, Plant/genetics
7.
PeerJ ; 12: e17249, 2024.
Article in English | MEDLINE | ID: mdl-38685943

ABSTRACT

Ascorbate peroxidase (APX) plays a critical role in molecular mechanisms such as plant development and defense against abiotic stresses. As an important economic crop, hemp (Cannabis sativa L.) is vulnerable to adverse environmental conditions, such as drought, cold, salt, and oxidative stress, which lead to a decline in yield and quality. Although APX genes have been characterized in a variety of plants, members of the APX gene family in hemp have not been completely identified. In this study, we (1) identified eight members of the CsAPX gene family in hemp and mapped their locations on the chromosomes using bioinformatics analysis; (2) examined the physicochemical characteristics of the proteins encoded by these CsAPX gene family members; (3) investigated their intraspecific collinearity, gene structure, conserved domains, conserved motifs, and cis-acting elements; (4) constructed a phylogenetic tree and analyzed interspecific collinearity; and (5) ascertained expression differences in leaf tissue subjected to cold, drought, salt, and oxidative stresses using quantitative real-time-PCR (qRT-PCR). Under all four stresses, CsAPX6, CsAPX7, and CsAPX8 consistently exhibited significant upregulation, whereas CsAPX2 displayed notably higher expression levels under drought stress than under the other stresses. Taken together, the results of this study provide basic genomic information on the expression of the APX gene family and pave the way for studying the role of APX genes in abiotic stress.


Subject(s)
Ascorbate Peroxidases , Cannabis , Gene Expression Regulation, Plant , Phylogeny , Stress, Physiological , Cannabis/genetics , Cannabis/enzymology , Cannabis/metabolism , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Stress, Physiological/genetics , Multigene Family/genetics , Droughts , Plant Proteins/genetics , Plant Proteins/metabolism , Oxidative Stress/genetics , Chromosome Mapping , Genome, Plant/genetics , Chromosomes, Plant/genetics
8.
J Biosci Bioeng ; 137(5): 354-359, 2024 May.
Article in English | MEDLINE | ID: mdl-38458885

ABSTRACT

Myxobacteria have comparatively large genomes that contain many biosynthetic genes with the potential to produce secondary metabolites. Based on genome mining, we discovered a new biosynthetic gene cluster of class III lanthipeptide in the genome of the myxobacterium Melittangium boletus. The biosynthetic gene cluster contained a precursor peptide-coding gene bolA, and a class III lanthipeptide synthetase-coding gene bolKC. The expression vector containing bolA and bolKC was constructed using synthetic DNA with codon-optimized sequences based on the commercially available vector pET29b. Co-expression of the two genes in the host Escherichia coli BL21(DE3) yielded a new class III lanthipeptide named boletupeptin. The structure of boletupeptin was proposed to have one unit of labionin, as determined by mass spectrometry experiments after reductive cleavage. This is the first report of a class III lanthipeptide from a myxobacterial origin.


Subject(s)
Myxococcales , Myxococcales/genetics , Myxococcales/metabolism , Peptides/metabolism , Multigene Family/genetics
9.
Fungal Genet Biol ; 172: 103889, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513939

ABSTRACT

Trichoderma is an excellent biocontrol agent, but most Trichoderma genomes remained at the scaffold level, which greatly limits the research of biocontrol mechanism. Here, we reported the chromosome-level genome of Trichoderma harzianum CGMCC20739 (Tha739), T. asperellum CGMCC11653 (Tas653) and T. atroviride CGMCC40488 (Tat488), they were assembled into 7 chromosomes, genome size were 40 Mb (10,611 genes), 37.3 Mb (10,102 genes) and 36.3 Mb (9,896 genes), respectively. The positive selected genes of three strains were associated to response to stimulus, signaling transduction, immune system and localization. Furthermore, the number of transcription factors in Tha739, Tas653 and Tat488 strains had significant difference, which may contribute to the differential biocontrol function and stress tolerance. The genes related to signal transduction and gene clusters related to antimicrobial compounds in Tha739 were more than those in Tas653 and Tat488, which showed Tha739 may keenly sense other fungi and quickly secret antimicrobial compounds to inhibit other fungi. Tha739 also contained more genes associated to detoxification, antioxidant and nutrition utilization, indicating it had higher stress-tolerance to hostile environments. And the substrate for synthesizing IAA in Tha739 was mainly 3-indole acetonitrile and indole acetaldehyde, but in Tat488, it was indole-3-acetamide, moreover, Tha739 secreted more phosphatase and phytase and was more related to soil phosphorus metabolism, Tat488 secreted more urease and was more related to soil nitrogen metabolism. These candidate genes related to biocontrol function and stress-tolerance laid foundations for construction of functional strains. All above proved the difference in biocontrol function of Tha739, Tas653 and Tat488 strains, however, the defects in individual strains could be compensated for through Trichoderma-biome during the commercial application process of biocontrol Trichoderma strains.


Subject(s)
Genome, Fungal , Trichoderma , Genome, Fungal/genetics , Trichoderma/genetics , Transcription Factors/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Multigene Family/genetics , Hypocreales/genetics
10.
mSystems ; 9(4): e0126323, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38470142

ABSTRACT

Bacterial secondary metabolites serve as an important source of molecules for drug discovery. They also play an important function in mediating the interactions of microbial producers with their living environment and surrounding organisms. However, little is known about the genetic novelty, distribution, and community-level impacts of soil bacterial biosynthetic potential on a large geographic scale. Here, we constructed the first catalog of 11,149 biosynthetic gene clusters (BGCs) from agricultural soils across China and unearthed hidden biosynthetic potential for new natural product discovery from the not-yet-cultivated soil bacteria. Notably, we revealed soil pH as the strongest environmental driver of BGC biogeography and predicted that soil acidification and global climate change could damage the biosynthetic potential of the soil microbiome. The co-occurrence network of bacterial genomes revealed two BGC-rich species, i.e., Nocardia niigatensis from Actinobacteriota and PSRF01 from Acidobacteriota, as the module hub and connector, respectively, indicating their keystone positions in the soil microbial communities. We also uncovered a dominant role of BGC-inferred biotic interactions over environmental drivers in structuring the soil microbiome. Overall, this study achieved novel insights into the BGC landscape in agricultural soils of China, substantially expanding our understanding of the diversity and novelty of bacterial secondary metabolism and the potential role of secondary metabolites in microbiota assembly.IMPORTANCEBacterial secondary metabolites not only serve as the foundation for numerous therapeutics (e.g., antibiotics and anticancer drugs), but they also play critical ecological roles in mediating microbial interactions (e.g., competition and communication). However, our knowledge of bacterial secondary metabolism is limited to only a small fraction of cultured strains, thus restricting our comprehensive understanding of their diversity, novelty, and potential ecological roles in soil ecosystems. Here, we used culture-independent metagenomics to explore biosynthetic potentials in agricultural soils of China. Our analyses revealed a high degree of genetic diversity and novelty within biosynthetic gene clusters in agricultural soil environments, offering valuable insights for biochemists seeking to synthesize novel bioactive products. Furthermore, we uncovered the pivotal role of BGC-rich species in microbial communities and the significant relationship between BGC richness and microbial phylogenetic turnover. This information emphasizes the importance of biosynthetic potential in the assembly of microbial communities.


Subject(s)
Microbiota , Soil , Soil/chemistry , Phylogeny , Soil Microbiology , Microbiota/genetics , Bacteria/genetics , Multigene Family/genetics
11.
Proc Natl Acad Sci U S A ; 121(3): e2311245121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38194448

ABSTRACT

Psychoactive mushrooms in the genus Psilocybe have immense cultural value and have been used for centuries in Mesoamerica. Despite the recent surge of interest in these mushrooms due to the psychotherapeutic potential of their natural alkaloid psilocybin, their phylogeny and taxonomy remain substantially incomplete. Moreover, the recent elucidation of the psilocybin biosynthetic gene cluster is known for only five of ~165 species of Psilocybe, four of which belong to only one of two major clades. We set out to improve the phylogeny of Psilocybe using shotgun sequencing of fungarium specimens, from which we obtained 71 metagenomes including from 23 types, and conducting phylogenomic analysis of 2,983 single-copy gene families to generate a fully supported phylogeny. Molecular clock analysis suggests the stem lineage of Psilocybe arose ~67 mya and diversified ~56 mya. We also show that psilocybin biosynthesis first arose in Psilocybe, with 4 to 5 possible horizontal transfers to other mushrooms between 40 and 9 mya. Moreover, predicted orthologs of the psilocybin biosynthetic genes revealed two distinct gene orders within the biosynthetic gene cluster that corresponds to a deep split within the genus, possibly a signature of two independent acquisitions of the cluster within Psilocybe.


Subject(s)
Agaricales , Psilocybe , Psilocybe/genetics , Agaricales/genetics , Phylogeny , Psilocybin/genetics , Multigene Family/genetics
12.
Nature ; 625(7994): 312-320, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200293

ABSTRACT

The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.


Subject(s)
Asian , European People , Genome, Human , Selection, Genetic , Humans , Affect , Agriculture/history , Alleles , Alzheimer Disease/genetics , Asia/ethnology , Asian/genetics , Diabetes Mellitus/genetics , Europe/ethnology , European People/genetics , Farmers/history , Genetic Loci/genetics , Genetic Predisposition to Disease , Genome, Human/genetics , History, Ancient , Human Migration , Hunting/history , Multigene Family/genetics , Phenotype , UK Biobank , Multifactorial Inheritance/genetics
14.
Hum Cell ; 37(1): 297-309, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37914903

ABSTRACT

Receptor tyrosine kinases (RTKs) serve as molecular targets for the development of novel personalized therapies in many malignancies. In the present study, expression pattern of receptor tyrosine kinases and its clinical significance in orbital RMS has been explored. Eighteen patients with histopathologically confirmed orbital RMS formed part of this study. Comprehensive q-PCR gene expression profiles of 19 RTKs were generated in the cases and controls. The patients were followed up for 59.53 ± 20.93 years. Clustering and statistical analysis tools were applied to identify the significant combination of RTKs associated with orbital rhabdomyosarcoma patients. mRNA overexpression of RTKs which included MET, AXL, EGFR was seen in 60-80% of cases; EGFR3, IGFR2, FGFR1, RET, PDGFR1, VEGFR2, PDGFR2 in 30-60% of cases; and EGFR4, FGFR3,VEGFR3 and ROS,IGFR1, EGFR1, FGFR2, VEGFR1 in 10-30% of cases. Immunoexpression of MET was seen in 89% of cases. A significant association was seen between MET mRNA and its protein expression. In all the cases MET gene expression was associated with worst overall survival (P = 0.03).There was a significant correlation of MET mRNA expression with RET, ROS, AXL, FGFR1, FGFR3, PDGFR1, IGFR1, VEGFR2, and EGFR3 genes. Association between MET gene and collective expression of RTKs was further evaluated by semi-supervised gene cluster analysis and Principal component analysis, which showed well-separated tumor clusters. MET gene overexpression could be a useful biomarker for identifying high risk orbital rhabdomyosarcoma patients. Well-separated tumor clusters confirmed the association between MET gene and collective expression of RTK genes. Therefore, the therapeutic potential of multi-kinase inhibitors targeting MET and the 9 other significant RTKs needs to be explored.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-met , Receptor Protein-Tyrosine Kinases , Rhabdomyosarcoma, Alveolar , Humans , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Rhabdomyosarcoma, Alveolar/diagnosis , Rhabdomyosarcoma, Alveolar/enzymology , Rhabdomyosarcoma, Alveolar/pathology , Proto-Oncogene Proteins c-met/genetics , Biomarkers, Tumor/genetics , Drug Delivery Systems , Survival Analysis , Male , Female , Infant , Child, Preschool , Child , Adolescent , Multigene Family/genetics , Principal Component Analysis , Gene Expression Profiling
15.
Nucleic Acids Res ; 52(D1): D579-D585, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37994699

ABSTRACT

The human microbiome has emerged as a rich source of diverse and bioactive natural products, harboring immense potential for therapeutic applications. To facilitate systematic exploration and analysis of its biosynthetic landscape, we present ABC-HuMi: the Atlas of Biosynthetic Gene Clusters (BGCs) in the Human Microbiome. ABC-HuMi integrates data from major human microbiome sequence databases and provides an expansive repository of BGCs compared to the limited coverage offered by existing resources. Employing state-of-the-art BGC prediction and analysis tools, our database ensures accurate annotation and enhanced prediction capabilities. ABC-HuMi empowers researchers with advanced browsing, filtering, and search functionality, enabling efficient exploration of the resource. At present, ABC-HuMi boasts a catalog of 19 218 representative BGCs derived from the human gut, oral, skin, respiratory and urogenital systems. By capturing the intricate biosynthetic potential across diverse human body sites, our database fosters profound insights into the molecular repertoire encoded within the human microbiome and offers a comprehensive resource for the discovery and characterization of novel bioactive compounds. The database is freely accessible at https://www.ccb.uni-saarland.de/abc_humi/.


Subject(s)
Biosynthetic Pathways , Databases, Genetic , Microbiota , Multigene Family , Humans , Biosynthetic Pathways/genetics , Computational Biology/instrumentation , Internet , Microbiota/genetics , Multigene Family/genetics , Metagenome/genetics
16.
Food Res Int ; 175: 113777, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129064

ABSTRACT

Histamine is a biogenic amine synthesized through the enzymatic decarboxylation of the amino acid histidine. It can accumulate at high concentrations in foods through the metabolism of certain bacteria, sometimes leading to adverse reactions in consumers. In cheese, histamine can accumulate at toxic levels; Lentilactobacillus parabuchneri has been identified the major cause of this problem. Previous studies have shown some L. parabuchneri strains to form biofilms on different surfaces, posing a contamination risk during cheese production, particularly for cheeses that are processed post-ripening (e.g., grating or slicing). The food contamination they cause can result in economic losses and even foodborne illness if histamine accumulates in the final product. The aim of the present work was to identify the genes of L. parabuchneri involved in biofilm formation, and to determine their function. The genomes of six strains with different biofilm-production capacities (strong, moderate and weak) were sequenced and analysed. A cluster of four genes, similar to those involved in sortase-mediated pilus formation, was identified in the strong biofilm-producers, suggesting it to have a role in surface adhesion. Cloning and heterologous expression in Lactococcus cremoris NZ9000 confirmed its functionality and involvement in adhesion and, therefore, in biofilm formation. PacBio sequencing showed this cluster to be located on a 33.4 kb plasmid, which might increase its chances of horizontal transmission. These findings provide insight into the genetic factors associated with biofilm formation in histamine-producing L. parabuchneri, and into the risks associated with this bacterium in cheese production.


Subject(s)
Food Microbiology , Histamine , Histamine/analysis , Plasmids , Bacteria , Multigene Family/genetics , Biofilms
17.
Semin Cell Dev Biol ; 152-153: 16-23, 2024.
Article in English | MEDLINE | ID: mdl-36670036

ABSTRACT

Hox genes are important regulators in animal development. They often show a mosaic of conserved (e.g., longitudinal axis patterning) and lineage-specific novel functions (e.g., development of skeletal, sensory, or locomotory systems). Despite extensive research over the past decades, it remains controversial at which node in the animal tree of life the Hox cluster evolved. Its presence already in the last common metazoan ancestor has been proposed, although the genomes of both putative earliest extant metazoan offshoots, the ctenophores and the poriferans, are devoid of Hox sequences. The lack of Hox genes in the supposedly "simple"-built poriferans and their low number in cnidarians and the basally branching bilaterians, the xenacoelomorphs, seems to support the classical notion that the number of Hox genes is correlated with the degree of animal complexity. However, the 4-fold increase of the Hox cluster in xiphosurans, a basally branching chelicerate clade, as well as the situation in some teleost fishes that show a multitude of Hox genes compared to, e.g., human, demonstrates, that there is no per se direct correlation between organismal complexity and Hox number. Traditional approaches have tried to base homology on the morphological level on shared expression profiles of individual genes, but recent data have shown that, in particular with respect to Hox and other regulatory genes, complex gene-gene interactions rather than expression signatures of individual genes alone are responsible for shaping morphological traits during ontogeny. Accordingly, for sound homology assessments and reconstructions of character evolution on organ system level, additional independent datasets (e.g., morphological, developmental) need to be included in any such analyses. If supported by solid data, proposed structural homology should be regarded as valid and not be rejected solely on the grounds of non-parsimonious distribution of the character over a given phylogenetic topology.


Subject(s)
Cnidaria , Homeodomain Proteins , Animals , Humans , Phylogeny , Homeodomain Proteins/genetics , Evolution, Molecular , Cnidaria/genetics , Genes, Homeobox/genetics , Multigene Family/genetics
18.
PLoS One ; 18(12): e0289280, 2023.
Article in English | MEDLINE | ID: mdl-38127903

ABSTRACT

Trichoderma is a cosmopolitan genus with diverse lifestyles and nutritional modes, including mycotrophy, saprophytism, and endophytism. Previous research has reported greater metabolic gene repertoires in endophytic fungal species compared to closely-related non-endophytes. However, the extent of this ecological trend and its underlying mechanisms are unclear. Some endophytic fungi may also be mycotrophs and have one or more mycoparasitism mechanisms. Mycotrophic endophytes are prominent in certain genera like Trichoderma, therefore, the mechanisms that enable these fungi to colonize both living plants and fungi may be the result of expanded metabolic gene repertoires. Our objective was to determine what, if any, genomic features are overrepresented in endophytic fungi genomes in order to undercover the genomic underpinning of the fungal endophytic lifestyle. Here we compared metabolic gene cluster and mycoparasitism gene diversity across a dataset of thirty-eight Trichoderma genomes representing the full breadth of environmental Trichoderma's diverse lifestyles and nutritional modes. We generated four new Trichoderma endophyticum genomes to improve the sampling of endophytic isolates from this genus. As predicted, endophytic Trichoderma genomes contained, on average, more total biosynthetic and degradative gene clusters than non-endophytic isolates, suggesting that the ability to create/modify a diversity of metabolites potential is beneficial or necessary to the endophytic fungi. Still, once the phylogenetic signal was taken in consideration, no particular class of metabolic gene cluster was independently associated with the Trichoderma endophytic lifestyle. Several mycoparasitism genes, but no chitinase genes, were associated with endophytic Trichoderma genomes. Most genomic differences between Trichoderma lifestyles and nutritional modes are difficult to disentangle from phylogenetic divergences among species, suggesting that Trichoderma genomes maybe particularly well-equipped for lifestyle plasticity. We also consider the role of endophytism in diversifying secondary metabolism after identifying the horizontal transfer of the ergot alkaloid gene cluster to Trichoderma.


Subject(s)
Endophytes , Trichoderma , Endophytes/genetics , Trichoderma/genetics , Phylogeny , Plants/genetics , Multigene Family/genetics , Fungi/genetics
19.
BMC Genom Data ; 24(1): 66, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37964195

ABSTRACT

BACKGROUND: High-Affinity Potassium ions represent one of the most important and large group of potassium transporters. Although HAK genes have been studied in a variety of plant species, yet, remain unexplored in common bean. RESULTS: In the current study, 20 HAK genes were identified in common bean genome. Super-family "K_trans" domain was found in all PvHAK genes. Signals for localization of PvHAK proteins were detected in cell membrane. Fifty three HAKs genes, across diverse plant species, were divided into 5 groups based on sequential homology. Twelve pairs of orthologs genes were found in various plant species. PvHAKs genes were distributed unequally on 7 chromosomes with maximum number (7) mapped on chromosome 2 while only 1 PvHAK found on each chromosome 1, 4, and 6. Tandem gene duplication was witnessed in 2 paralog pairs while 1 pair exhibited segmental gene duplication. Five groups were made in PvHAK gene family based on Phylogeny. Maximum PvHAKs (10) were detected in Group-V while group-II composed of only 1 PvHAK gene. Variation was witnessed in number and size of motifs, and structure of PvHAKs associated with different groups. Light and hormone responsive elements contributed 57 and 24% share, respectively, to cis regulatory elements. qRT-PCR based results revealed significant increase in expression of all 4 PvHAK genes under low-potassium stress. CONCLUSION: The current study provides valuable information for further functional characterization and uncovering the molecular mechanism associated with Potassium transportation in plants.


Subject(s)
Phaseolus , Phaseolus/genetics , Phaseolus/metabolism , Phylogeny , Plant Proteins/genetics , Multigene Family/genetics , Plants/genetics , Plants/metabolism , Potassium/metabolism
20.
PeerJ ; 11: e16279, 2023.
Article in English | MEDLINE | ID: mdl-37908413

ABSTRACT

Background: Gibberellins (GAs) play important roles in regulating peanut growth and development. GA20ox and GA3ox are key enzymes involved in GA biosynthesis. These enzymes encoded by a multigene family belong to the 2OG-Fe (II) oxygenase superfamily. To date, no genome-wide comparative analysis of peanut AhGA20ox and AhGA3ox-encoding genes has been performed, and the roles of these genes in peanut pod development are not clear. Methods: A whole-genome analysis of AhGA20ox and AhGA3ox gene families in peanut was carried out using bioinformatic tools. The expression of these genes at different stage of pod development was analyzed using qRT-PCR. Results: In this study, a total of 15 AhGA20ox and five AhGA3ox genes were identified in peanut genome, which were distributed on 14 chromosomes. Phylogenetic analysis divided the GA20oxs and GA3oxs into three groups, but AhGA20oxs and AhGA3oxs in two groups. The conserved pattern of gene structure, cis-elements, and protein motifs further confirmed their evolutionary relationship in peanut. AhGA20ox and AhGA3ox genes were differential expressed at different stages of pod development. The strong expression of AhGA20ox1/AhGA20ox4, AhGA20ox12/AhGA20ox15, AhGA3ox1 and AhGA3ox4/AhGA3ox5 in S1-stage indicated that these genes could have a key role in controlling peg elongation. Furthermore, AhGA20ox and AhGA3ox also showed diverse expression patterns in different peanut tissues including leaves, main stems, flowers and inflorescences. Noticeably, AhGA20ox9/AhGA20ox11 and AhGA3o4/AhGA3ox5 were highly expressed in the main stem, whereas the AhGA3ox1 and AhGA20ox10 were strongly expressed in the inflorescence. The expression levels of AhGA20ox2/AhGA20ox3, AhGA20ox5/AhGA20ox6, AhGA20ox7/AhGA20ox8, AhGA20ox13/AhGA20ox14 and AhGA3ox2/AhGA3ox3 were high in the flowers, suggesting their involvement in flower development. These results provide a basis for deciphering the roles of AhGA20ox and AhGA3ox in peanut growth and development, especially in pod development.


Subject(s)
Arachis , Multigene Family , Arachis/genetics , Phylogeny , Multigene Family/genetics , Gibberellins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...