Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.536
Filter
1.
J Environ Sci (China) ; 147: 36-49, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003054

ABSTRACT

Anaerobic digestion (AD) is widely employed for sludge stabilization and waste reduction. However, the slow hydrolysis process hinders methane production and leads to prolonged sludge issues. In this study, an efficient and eco-friendly lysozyme pre-treatment method was utilized to address these challenges. By optimizing lysozyme dosage, hydrolysis and cell lysis were maximized. Furthermore, lysozyme combined with hydrothermal pretreatment enhanced overall efficiency. Results indicate that: (1) When lysozyme dosage reached 90 mg/g TS after 240 min of pretreatment, SCOD, soluble polysaccharides, and protein content reached their maxima at 855.00, 44.09, and 204.86 mg/L, respectively. This represented an increase of 85.87%, 365.58%, and 259.21% compared to the untreated sludge. Three-dimensional fluorescence spectroscopy revealed the highest fluorescence intensity in the IV region (soluble microbial product), promoting microbial metabolic activity. (2) Lysozyme combined with hydrothermal pretreatment significantly increased SCOD, soluble proteins, and polysaccharide release from sludge, reducing SCOD release time. Orthogonal experiments identified Group 3 as the most effective for SCOD and soluble polysaccharide release, while Group 9 released the most soluble proteins. The significance order of factors influencing SCOD, soluble proteins, and polysaccharide release is hydrothermal temperature > hydrothermal time > enzymatic digestion time.(3) The lysozyme-assisted hydrothermal pretreatment group exhibited the fastest release and the highest SCOD concentration of 8,135.00 mg/L during anaerobic digestion. Maximum SCOD consumption and cumulative gas production increased by 95.89% and 130.58%, respectively, compared to the control group, allowing gas production to conclude 3 days earlier.


Subject(s)
Muramidase , Sewage , Waste Disposal, Fluid , Muramidase/metabolism , Sewage/chemistry , Anaerobiosis , Waste Disposal, Fluid/methods , Methane , Hydrolysis
2.
J Chem Phys ; 161(5)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39092954

ABSTRACT

The dynamics of lysozyme is probed by attaching -SCN to all alanine residues. The one-dimensional infrared spectra exhibit frequency shifts in the position of the maximum absorption of 4 cm-1, which is consistent with experiments in different solvents and indicates moderately strong interactions of the vibrational probe with its environment. Isotopic substitution 12C → 13C leads to a redshift by -47 cm-1, which agrees quantitatively with experiments for CN-substituted copper complexes in solution. The low-frequency, far-infrared part of the protein spectra contains label-specific information in the difference spectra when compared with the wild type protein. Depending on the position of the labels, local structural changes are observed. For example, introducing the -SCN label at Ala129 leads to breaking of the α-helical structure with concomitant change in the far-infrared spectrum. Finally, changes in the local hydration of SCN-labeled alanine residues as a function of time can be related to the reorientation of the label. It is concluded that -SCN is potentially useful for probing protein dynamics, both in the high-frequency part (CN-stretch) and in the far-infrared part of the spectrum.


Subject(s)
Muramidase , Muramidase/chemistry , Muramidase/metabolism , Alanine/chemistry , Spectrophotometry, Infrared , Protein Conformation
3.
Proc Natl Acad Sci U S A ; 121(34): e2315510121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39133851

ABSTRACT

Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, consequently altering their stability, folding patterns, and self-assembling behavior. Despite much scientific progress, our current understanding of the effects of ultrasound on the self-assembly of amyloidogenic proteins remains limited. In the present study, we demonstrate that when the amplitude of the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, which is sufficient for primary nucleation; this has been revealed by MD. These ultrasound-induced structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from natively folded monomeric lysozyme protein, in a controlled manner, until it reaches a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed either under the action of sound or from natively fibrillated lysozyme, share identical structural characteristics. Thus, these results provide insights into the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential use of sound energy in protein chemistry.


Subject(s)
Amyloid , Muramidase , Amyloid/chemistry , Amyloid/metabolism , Muramidase/chemistry , Muramidase/metabolism , Protein Folding , Temperature , Ultrasonic Waves , Molecular Dynamics Simulation
4.
Phys Chem Chem Phys ; 26(27): 18943-18952, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38952218

ABSTRACT

The hallmark of amyloidosis, such as Alzheimer's disease and Parkinson's disease, is the deposition of amyloid fibrils in various internal organs. The onset of the disease is related to the strength of cytotoxicity caused by toxic amyloid species. Furthermore, amyloid fibrils show polymorphism, where some types of fibrils are cytotoxic while others are not. It is thus essential to understand the molecular mechanism of cytotoxicity, part of which is caused by the interaction between amyloid polymorphic fibrils and cell membranes. Here, using amyloid polymorphs of hen egg white lysozyme, which is associated with hereditary systemic amyloidosis, showing different levels of cytotoxicity and liposomes of DMPC and DMPG, changes in the secondary structure of the polymorphs and the structural state of phospholipid membranes caused by the interaction were investigated using vacuum-ultraviolet circular dichroism (VUVCD) and Laurdan fluorescence measurements, respectively. Analysis has shown that the more cytotoxic polymorph increases the antiparallel ß-sheet content and causes more disorder in the membrane structure while the other less cytotoxic polymorph shows the opposite structural changes and causes less structural disorder in the membrane. These results suggest a close correlation between the structural properties of amyloid fibrils and the degree of structural disorder of phospholipid membranes, both of which are involved in the fundamental process leading to amyloid cytotoxicity.


Subject(s)
Amyloid , Circular Dichroism , Muramidase , Phospholipids , Muramidase/chemistry , Muramidase/metabolism , Amyloid/chemistry , Phospholipids/chemistry , Animals , Protein Structure, Secondary , Dimyristoylphosphatidylcholine/chemistry , Phosphatidylglycerols/chemistry , Liposomes/chemistry , Chickens , Vacuum
5.
Anal Chem ; 96(29): 12102-12111, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39001808

ABSTRACT

The development of abiotic protein affinity adsorbents remains challenging for the accurate acquisition and analysis of specific protein species. Inspired by bacterial cell walls, a hierarchical hybrid framework is fabricated through the oriented growth of an Fe-based metal organic framework (MOF) on V2C MXene for the efficient separation of lysozyme (Lys). After directed evolution of adsorptive materials, the MXene@MOF composite rich in hydroxyl groups (termed as MX@MOF-DH) is found exerting exceptional affinity for Lys. Benefiting from hydrogen-bonding, coordination, and electrostatic interaction-mediated multimodal and multivalent affinity, MX@MOF-DH reveals rapid adsorption rate (5 min), superb enrichment factor (83.1), and favorable binding capacity (609.7 mg g-1), which outperforms other latest adsorbents. Moreover, femtomolar sensitivity is achieved even in the presence of high-abundant interfering proteins, as confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analysis. This work not only provides an efficient approach for selective enrichment of lysozyme but also paves an avenue to construct the protein affinity reagents for specific biological medicine and analysis applications.


Subject(s)
Metal-Organic Frameworks , Muramidase , Muramidase/chemistry , Muramidase/metabolism , Muramidase/isolation & purification , Metal-Organic Frameworks/chemistry , Adsorption , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
ACS Appl Mater Interfaces ; 16(28): 37248-37254, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38957146

ABSTRACT

Gas cluster ion beam (GCIB)-assisted deposition is used to build multilayered protein-based structures. In this process, Ar3000-5000+ clusters bombard and sputter molecules from a reservoir (target) to a collector, an operation that can be sequentially repeated with multiple targets. The process occurs under a vacuum, making it adequate for further sample conservation in the dry state, since many proteins do not have long-term storage stability in the aqueous state. First of all, the stability in time and versatility in terms of molecule selection are demonstrated with the fabrication of peptide multilayers featuring a clear separation. Then, lysozyme and trypsin are used as protein models to show that the activity remaining on the collector after deposition is linearly proportional to the argon ion dose. The energy per atom (E/n) of the Ar clusters is a parameter that was also changed for lysozyme deposition, and its increase negatively affects activity. The intact detection of larger protein molecules by SDS-PAGE gel electrophoresis and a bioassay (trypsin at ≈25 kDa and glucose oxidase (GOx) at ≈80 kDa) is demonstrated. Finally, GOx and horseradish peroxidase, two proteins involved in the same enzymatic cascade, are successively deposited on ß-d-glucose to build an on-demand release material in which the enzymes and the substrate (ß-d-glucose) are combined in a dry trilayer, and the reaction occurs only upon reintroduction in aqueous medium.


Subject(s)
Glucose Oxidase , Horseradish Peroxidase , Muramidase , Trypsin , Muramidase/chemistry , Muramidase/metabolism , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Trypsin/chemistry , Trypsin/metabolism , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Peptides/chemistry , Animals , Glucose/chemistry
7.
J Phys Chem B ; 128(28): 6716-6729, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38975731

ABSTRACT

Reactive molecular dynamics (MD) simulations were conducted to investigate the soft and reactive landing of hyperthermal velocity proteins transferred to a vacuum using large argon clusters. Experimentally, the interaction of argon cluster ion beams (Ar1000-5000+) with a target biofilm was previously used in such a manner to transfer lysozymes onto a collector with the retention of their bioactivity, paving the way to a new solvent-free method for complex biosurface nanofabrication. However, the experiments did not give access to a microscopic view of the interactions needed for their full understanding, which can be provided by the MD model. Our reactive force field simulations clarify the landing mechanisms of the lysozymes and their fragments on collectors with different natures (gold- and hydrogen-terminated graphite). The results highlight the conditions of soft and reactive landing on rigid surfaces, the effects of the protein structure, energy, and incidence angle before landing, and the adhesion forces with the collector substrate. Many of the obtained results can be generalized to other soft and reactive landing approaches used for biomolecules such as electrospray ionization and matrix-assisted laser desorption ionization.


Subject(s)
Argon , Molecular Dynamics Simulation , Argon/chemistry , Muramidase/chemistry , Muramidase/metabolism , Graphite/chemistry , Gold/chemistry , Surface Properties
8.
Biophys Chem ; 312: 107286, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964115

ABSTRACT

1H-1H nuclear cross-relaxation experiments have been carried out with lysozyme in variable glycerol viscosity to study intramolecular motion, self-diffusion, and isotropic rigid-body rotational tumbling at 298 K, pH 3.8. Dynamics of intramolecular 1H-1H cross-relaxation rates, the increase in internuclear spatial distances, and lateral and rotational diffusion coefficients all show fractional viscosity dependence with a power law exponent κ in the 0.17-0.83 range. The diffusion coefficient of glycerol Ds with the bulk viscosity itself is non-Stokesian, having a fractional viscosity dependence on the medium viscosity (Ds âˆ¼ Î·-κ, κ ≈ 0.71). The concurrence and close similarity of the fractional viscosity dependence of glycerol diffusion on the one hand, and diffusion and intramolecular cross-relaxation rates of the protein on the other lead to infer that relaxation of glycerol slaves protein relaxations. Glycerol-transformed native lysozyme to a quasi-native state does not affect the conclusion that both global and internal fluctuations are slaved to glycerol relaxation.


Subject(s)
Glycerol , Muramidase , Muramidase/chemistry , Muramidase/metabolism , Glycerol/chemistry , Viscosity , Proton Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Diffusion , Animals , Chickens
9.
J Phys Chem B ; 128(29): 7199-7207, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38992922

ABSTRACT

In this paper, we quantify weak protein-protein interactions in solution using cross-interaction chromatography (CIC) and surface plasmon resonance (SPR) and demonstrate that they can be modulated by the addition of millimolar concentrations of free amino acids. With CIC, we determined the second osmotic virial cross-interaction coefficient (B23) as a proxy for the interaction strength between two different proteins. We perform SPR experiments to establish the binding affinity between the same proteins. With CIC, we show that the amino acids proline, glutamine, and arginine render the protein cross-interactions more repulsive or equivalently less attractive. Specifically, we measured B23 between lysozyme (Lys) and bovine serum albumin (BSA) and between Lys and protein isolates (whey and canola). We find that B23 increases when amino acids are added to the solution even at millimolar concentrations, corresponding to protein/ligand stoichiometric ratios as low as 1:1. With SPR, we show that the binding affinity between proteins can change by 1 order of magnitude when 10 mM glutamine is added. In the case of Lys and one whey protein isolate (WPI), it changes from the mM to the M range, thus by 3 orders of magnitude. Interestingly, this efficient modulation of the protein cross-interactions does not alter the protein's secondary structure. The capacity of amino acids to modulate protein cross-interactions at mM concentrations is remarkable and may have an impact across fields in particular for specific applications in the food or pharmaceutical industries.


Subject(s)
Amino Acids , Muramidase , Protein Binding , Serum Albumin, Bovine , Surface Plasmon Resonance , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Muramidase/chemistry , Muramidase/metabolism , Animals , Cattle
10.
Phys Chem Chem Phys ; 26(31): 21040-21051, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39054918

ABSTRACT

In biomedical and biotechnological domains, liquid protein formulations are vital tools, offering versatility across various fields. However, maintaining protein stability in a liquid form presents challenges due to environmental factors, driving research to refine formulations for broader applications. In our recent study, we investigated the relationship between deep eutectic solvents (DESs) and the natural presence of osmolytes in specific combinations, showcasing the effectiveness of a bioinspired osmolyte-based DES in stabilizing a model protein. Recognizing the need for a more nuanced understanding of osmolyte-based DES stabilization capabilities under different storage conditions, here we broadened the scope of our osmolyte-based DES experimental screening, and delved deeper into structural changes in the enzyme under these conditions. We subjected lysozyme solutions in DESs based on various kosmotropic osmolytes (TMAO, betaine, sarcosine, DMSP, ectoine, GPC, proline, sorbitol and taurine) paired either with another kosmotropic (glycerol) or with chaotropic osmolyte urea to rigorous conditions: heat shock (at 80 °C) and repetitive freeze-thaw cycles (at -20 and -80 °C). Changes in enzyme activity, colloidal stability, and conformational alterations were then monitored using bioassays, aggregation tests, and spectroscopic techniques (FT-IR and CD). Our results demonstrate the remarkable effectiveness of osmolyte-based DES in stabilizing lysozyme under stress conditions, with sarcosine- and betaine-based DESs containing glycerol as a hydrogen bond donor showing the highest efficacy, even at high enzyme loadings up to 200 mg ml-1. Investigation of the individual and combined effects of the DES components on enzyme stability confirmed the synergistic behavior of the kosmotrope-urea mixtures and the cumulative effects in kosmotrope-glycerol mixtures. Additionally, we have shown that the interplay between the enzyme's active and stable (but inactive) states is highly influenced by the water content in DESs. Finally, toxicity assessments of osmolyte-based DESs using cell lines (Caco-2, HaCaT, and HeLa) revealed no risks to human health.


Subject(s)
Muramidase , Solvents , Muramidase/chemistry , Muramidase/metabolism , Solvents/chemistry , Humans , Hot Temperature , Glycerol/chemistry , Cold Temperature , Protein Stability , Enzyme Stability , Animals , Biocompatible Materials/chemistry
11.
Microb Ecol ; 87(1): 93, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008123

ABSTRACT

Huanglongbing, also known as citrus greening, is currently the most devastating citrus disease with limited success in prevention and mitigation. A promising strategy for Huanglongbing control is the use of antimicrobials fused to a carrier protein (phloem protein of 16 kDa or PP16) that targets vascular tissues. This study investigated the effects of genetically modified citrus trees expressing Citrus sinensis PP16 (CsPP16) fused to human lysozyme and ß-defensin-2 on the soil microbiome diversity using 16S amplicon analysis. The results indicated that there were no significant alterations in alpha diversity, beta diversity, phylogenetic diversity, differential abundance, or functional prediction between the antimicrobial phloem-overexpressing plants and the control group, suggesting minimal impact on microbial community structure. However, microbiota diversity analysis revealed distinct bacterial assemblages between the rhizosphere soil and root environments. This study helps to understand the ecological implications of crops expressing phloem-targeted antimicrobials for vascular disease management, with minimal impact on soil microbiota.


Subject(s)
Bacteria , Citrus , Microbiota , Phloem , Plant Diseases , Rhizosphere , Soil Microbiology , Phloem/microbiology , Phloem/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Plant Diseases/microbiology , Citrus/microbiology , Plants, Genetically Modified/microbiology , Plants, Genetically Modified/genetics , Phylogeny , Metagenomics , Muramidase/metabolism , Muramidase/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , beta-Defensins/genetics , RNA, Ribosomal, 16S/genetics , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Citrus sinensis/microbiology , Plant Roots/microbiology
12.
Langmuir ; 40(31): 16145-16150, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39054779

ABSTRACT

As a common pathological hallmark, protein aggregation into amyloids is a highly complicated phenomenon, attracting extensive research interest for elucidating its structural details and formation mechanisms. Membrane deposition and disulfide-driven protein misfolding play critical roles in amyloid-type aggregation, yet the underlying molecular process remains unclear. Here, we employed sum frequency generation (SFG) vibrational spectroscopy to comprehensively investigate the remodeling process of lysozyme, as the model protein, into amyloid-type aggregates at the cell membrane interface. It was discovered that disulfide reduction concurrently induced the transition of membrane-bound lysozyme from predominantly α-helical to antiparallel ß-sheet structures, under a mode switch of membrane interaction from electrostatic to hydrophobic, and subsequent oligomeric aggregation. These findings shed light on the systematic understanding of dynamic molecular mechanisms underlying membrane-interactive amyloid oligomer formation.


Subject(s)
Amyloid , Disulfides , Hydrophobic and Hydrophilic Interactions , Muramidase , Disulfides/chemistry , Muramidase/chemistry , Muramidase/metabolism , Amyloid/chemistry , Protein Aggregates , Animals , Static Electricity
13.
Circ Res ; 135(5): 596-613, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39056179

ABSTRACT

BACKGROUND: Macrophages are key players in obesity-associated cardiovascular diseases, which are marked by inflammatory and immune alterations. However, the pathophysiological mechanisms underlying macrophage's role in obesity-induced cardiac inflammation are incompletely understood. Our study aimed to identify the key macrophage population involved in obesity-induced cardiac dysfunction and investigate the molecular mechanism that contributes to the inflammatory response. METHODS: In this study, we used single-cell RNA-sequencing analysis of Cd45+CD11b+F4/80+ cardiac macrophages to explore the heterogeneity of cardiac macrophages. The CCR2+ (C-C chemokine receptor 2) macrophages were specifically removed by a dual recombinase approach, and the macrophage CCR2 was deleted to investigate their functions. We also performed cleavage under target and tagmentation analysis, chromatin immunoprecipitation-polymerase chain reaction, luciferase assay, and macrophage-specific lentivirus transfection to define the impact of lysozyme C in macrophages on obesity-induced inflammation. RESULTS: We find that the Ccr2 cluster undergoes a functional transition from homeostatic maintenance to proinflammation. Our data highlight specific changes in macrophage behavior during cardiac dysfunction under metabolic challenge. Consistently, inducible ablation of CCR2+CX3CR1+ macrophages or selective deletion of macrophage CCR2 prevents obesity-induced cardiac dysfunction. At the mechanistic level, we demonstrate that the obesity-induced functional shift of CCR2-expressing macrophages is mediated by the CCR2/activating transcription factor 3/lysozyme 1/NF-κB (nuclear factor kappa B) signaling. Finally, we uncover a noncanonical role for lysozyme 1 as a transcription activator, binding to the RelA promoter, driving NF-κB signaling, and strongly promoting inflammation and cardiac dysfunction in obesity. CONCLUSIONS: Our findings suggest that lysozyme 1 may represent a potential target for the diagnosis of obesity-induced inflammation and the treatment of obesity-induced heart disease.


Subject(s)
Macrophages , Muramidase , Obesity , Receptors, CCR2 , Animals , Obesity/complications , Obesity/metabolism , Macrophages/metabolism , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Mice , Muramidase/metabolism , Muramidase/genetics , Mice, Inbred C57BL , Male , Mice, Knockout , Signal Transduction , Inflammation/metabolism , Inflammation/genetics , Heart Diseases/etiology , Heart Diseases/metabolism , Heart Diseases/genetics
14.
J Phys Chem Lett ; 15(31): 8032-8041, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39083215

ABSTRACT

Human lysozyme undergoes a phase-separation process to form insoluble amyloid-architects that cause several pathologies including systemic amyloidosis. Here we have tailored 6-gingerol by extending its molecular framework with active functional groups to specifically target lysozyme phase-transition events. Aggregation assay revealed that tailored 6-gingerol with 4-aromatic moieties (MTV4) substantially suppressed the conversion of the lysozyme low-density liquid phase (LDLP) to solid-phase structured amyloids. The data obtained from biophysical, computational, and microscopic imaging tools suggest direct intervention of MTV4 with the liquid-liquid phase separation. The CD data suggest that MTV4 was able to retain the native conformation of lysozyme. Both biomolecular and computational data reveal the interference of MTV4 with the aggregation-prone hydrophobic stretches within the lysozyme, thereby retaining the native structure and reversing the misfolded intermediates to active monomers. Also, MTV4 was able to induce rapid dissolution of preformed-toxic amyloid fibrils. These results reinforce the importance of the aromatic-aromatic interaction in preventing human lysozyme phase separation.


Subject(s)
Amyloid , Catechols , Fatty Alcohols , Muramidase , Muramidase/chemistry , Muramidase/metabolism , Fatty Alcohols/chemistry , Humans , Catechols/chemistry , Amyloid/chemistry , Amyloid/metabolism , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Phase Transition , Protein Aggregates , Phase Separation
15.
Fish Shellfish Immunol ; 152: 109769, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39025167

ABSTRACT

Lysozymes are hydrolytic enzymes, and they are ubiquitous among all living organisms. They are mostly associated with antibacterial properties through their muramidase activity, while other properties such as iso-peptidase activity are also common. Invertebrate-type (i-type) lysozymes include the enzyme Destabilase, which is present in the salivary secretions of the medicinal leach Hirundo medicinalis. Destabilase has the ability to hydrolyse the ε-(γ-glutamyl)-lysine iso-peptide bonds formed by transglutaminase in fibrin of vertebrate blood, thereby destabilising blood clots. We have identified an i-type lysozyme from the hemocytes of the freshwater crayfish Pacifastacus leniusculus, which was found to be upregulated at the protein level in response to an injection of the ß-1,3-glucan laminarin. Based on its sequence we predicted that this lysozyme would lack muramidase activity, and therefore we decided to determine its putative immune function. The P. leniusculus i-type lysozyme (Pl-ilys), is a protein with 159 amino acid residues, including a 29 residue signal peptide, with a predicted molecular weight of 16 kDa and a predicted pI of 5.6. It is expressed primarily in the hemocytes and to a lesser extent in the hematopoietic tissue. A recombinant mature Pl-ilys using an E. coli expression system was produced, and we could ascertain that this enzyme was deficient of muramidase activity. Moreover, no iso-peptidase activity could be detected against the substrate l-γ-glutamine-p-nitroanilide. Analysis of the conserved domains in Pl-ilys showed a putative destabilase domain, and thus we tested the clot dissolving activity of this enzyme. We could show that the purified P. leniusculus clotting protein which had been coagulated and clotted with transglutaminase was dissolved by the addition of Pl-ilys. Taken together our results indicate that Pl-ilys has a clot dissolving or destabilising activity in crustacean blood.


Subject(s)
Arthropod Proteins , Astacoidea , Muramidase , Animals , Muramidase/immunology , Muramidase/metabolism , Muramidase/chemistry , Muramidase/genetics , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Astacoidea/immunology , Astacoidea/genetics , Amino Acid Sequence , Phylogeny , Sequence Alignment/veterinary , Immunity, Innate , Hemocytes/immunology , Base Sequence , Blood Coagulation/drug effects , Gene Expression Profiling/veterinary
16.
Curr Microbiol ; 81(9): 264, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001894

ABSTRACT

One of the main interests in the food industry is the preservation of food from spoilage by microorganisms or lipid oxidation. A novel alternative is the development of additives of natural origin with dual activity. In the present study, a chemically modified lysozyme (Lys) with epigallocatechin gallate (EGCG) was developed to obtain a conjugate (Lys-EGCG) with antibacterial/antioxidant activity to improve its properties and increase its application potential. The modification reaction was carried out using a free radical grafting method for the Lys modification reaction, using ascorbic acid and hydrogen peroxide as radical initiators in an aqueous medium. The synthesis of Lys-EGCG conjugate was confirmed by spectroscopic (FT-IR, 1H-RMN, and XPS) and calorimetry differential scanning (DSC) analyses. The EGCG binding to the Lys biomolecule was quantified by the Folin-Ciocalteu method; the antibacterial activity was evaluated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MCB) against Staphylococcus aureus and Pseudomonas fluorescens; the antioxidant activity was evaluated by ABTS, DPPH, and FRAP. The spectroscopic results showed that the Lys-EGCG conjugate was successfully obtained, and the DSC analysis revealed a 20 °C increase (P < 0.05) in the denaturation temperature of Lys due to EGCG modification. The EGCG concentration in Lys-EGCG was 97.97 ± 4.7 µmol of EGCG/g of sample. The antibacterial and antioxidant activity of the Lys-EGCG conjugate was higher (P < 0.05) than pure EGCG and Lys. The chemical modification of Lys with EGCG allows for the bioconjugate with a dual function (antibacterial/antioxidant), broadening the range of Lys and EGCG applications to different areas such as food, cosmetic, and pharmaceutical industries.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Catechin , Microbial Sensitivity Tests , Muramidase , Pseudomonas fluorescens , Staphylococcus aureus , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/pharmacology , Muramidase/pharmacology , Muramidase/chemistry , Muramidase/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Pseudomonas fluorescens/drug effects
17.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891953

ABSTRACT

This work unfolds functionalized ABSs composed of FILs ([C2C1Im][C4F9SO3] and [N1112(OH)][C4F9SO3]), mere fluoro-containing ILs ([C2C1Im][CF3SO3] and [C4C1Im][CF3SO3]), known globular protein stabilizers (sucrose and [N1112(OH)][C4F9SO3]), low-molecular-weight carbohydrate (glucose), and even high-charge density salt (K3PO4). The ternary phase diagrams were determined, stressing that FILs highly increased the ability for ABS formation. The functionalized ABSs (FILs vs. mere fluoro-containing ILs) were used to extract lysozyme (Lys). The ABSs' biphasic regions were screened in terms of protein biocompatibility, analyzing the impact of ABS phase-forming components in Lys by UV-VIS spectrophotometry, CD spectroscopy, fluorescence spectroscopy, DSC, and enzyme assay. Lys partition behavior was characterized in terms of extraction efficiency (% EE). The structure, stability, and function of Lys were maintained or improved throughout the extraction step, as evaluated by CD spectroscopy, DSC, enzyme assay, and SDS-PAGE. Overall, FIL-based ABSs are more versatile and amenable to being tuned by the adequate choice of the phase-forming components and selecting the enriched phase. Binding studies between Lys and ABS phase-forming components were attained by MST, demonstrating the strong interaction between Lys and FILs aggregates. Two of the FIL-based ABSs (30 %wt [C2C1Im][C4F9SO3] + 2 %wt K3PO4 and 30 %wt [C2C1Im][C4F9SO3] + 25 %wt sucrose) allowed the simultaneous purification of Lys and BSA in a single ABS extraction step with high yield (extraction efficiency up to 100%) for both proteins. The purity of both recovered proteins was validated by SDS-PAGE analysis. Even with a high-charge density salt, the FIL-based ABSs developed in this work seem more amenable to be tuned. Lys and BSA were purified through selective partition to opposite phases in a single FIL-based ABS extraction step. FIL-based ABSs are proposed as an improved extraction step for proteins, based on their biocompatibility, customizable properties, and selectivity.


Subject(s)
Ionic Liquids , Muramidase , Ionic Liquids/chemistry , Muramidase/chemistry , Muramidase/isolation & purification , Muramidase/metabolism , Halogenation , Water/chemistry , Proteins/chemistry , Proteins/isolation & purification , Animals
18.
Drug Discov Ther ; 18(3): 194-198, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38925960

ABSTRACT

Staphylococcus aureus, a Gram-positive bacterium, causes inflammatory skin diseases, such as atopic dermatitis, and serious systemic diseases, such as sepsis. In the skin and nasal environment, peptidoglycan (PGN)-degrading enzymes, including lysozyme and lysostaphin, affects S. aureus PGN. However, the effects of PGN-degrading enzymes on the acute innate immune-inducing activity of S. aureus have not yet been investigated. In this study, we demonstrated that PGN-degrading enzymes induce acute silkworm hemolymph melanization by S. aureus. Insoluble fractions of S. aureus treated with lysozyme, lysostaphin, or both enzymes, were prepared. Melanization of the silkworm hemolymph caused by the injection of these insoluble fractions was higher than that of S. aureus without enzyme treatment. These results suggest that structural changes in S. aureus PGN caused by PGN-degrading enzymes affect the acute innate immune response in silkworms.


Subject(s)
Bombyx , Hemolymph , Immunity, Innate , Muramidase , Peptidoglycan , Staphylococcus aureus , Animals , Staphylococcus aureus/drug effects , Hemolymph/metabolism , Peptidoglycan/pharmacology , Muramidase/metabolism , Immunity, Innate/drug effects , Melanins/metabolism
19.
J Mass Spectrom ; 59(7): e5058, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38842112

ABSTRACT

Analysis of noncovalent interactions between natural products and proteins is important for rapid screening of active ingredients and understanding their pharmacological activities. In this work, the intensity fading MALDI-TOF mass spectrometry (IF-MALDI-MS) method with improved reproducibility was implemented to investigate the binding interactions between saponins from Panax notoginseng and lysozyme. The benchmark IF-MALDI-MS experiment was established using N,N',N″-triacetylchitotriose-lysozyme as a model system. The reproducibility of ion intensities in IF-MALDI-MS was improved by scanning the whole sample deposition with a focused laser beam. The relative standard deviation (RSD) of deposition scanning IF-MALDI-MS is 5.7%. Similar decay trends of the relative intensities of notoginseng saponins against increasing amounts of lysozyme were observed for all six notoginseng saponins. The half-maximal fading concentration (FC50) was calculated to quantitatively characterize the binding affinity of each ligand based on the decay curve. According to the FC50 values obtained, the binding affinities of the six notoginseng saponins were evaluated in the following order: notoginsenoside S > notoginsenoside Fc > ginsenoside Rb1 > ginsenoside Rd > notoginsenoside Ft1 > ginsenoside Rg1. The binding order was in accordance with molecular docking studies, which showed hydrogen bonding might play a key role in stabilizing the binding interaction. Our results demonstrated that deposition scanning IF-MALDI-MS can provide valuable information on the noncovalent interactions between ligands and proteins.


Subject(s)
Muramidase , Panax notoginseng , Saponins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Muramidase/chemistry , Muramidase/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Saponins/chemistry , Saponins/analysis , Saponins/metabolism , Panax notoginseng/chemistry , Protein Binding , Molecular Docking Simulation , Reproducibility of Results , Animals , Trisaccharides
20.
Microb Cell Fact ; 23(1): 179, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890717

ABSTRACT

BACKGROUND: Human lysozyme (hLYZ) is a natural antibacterial protein with broad applications in food and pharmaceutical industries. Recombinant production of hLYZ in Komagataella phaffii (K. phaffii) has attracted considerable attention, but there are very limited strategies for its hyper-production in yeast. RESULTS: Here through Atmospheric and Room Temperature Plasma (ARTP)-based mutagenesis and transcriptomic analysis, the expression of two genes MYO1 and IQG1 encoding the cytokinesis core proteins was identified downregulated along with higher hLYZ production. Deletion of either gene caused severe cytokinesis defects, but significantly enhanced hLYZ production. The highest hLYZ yield of 1,052,444 ± 23,667 U/mL bioactivity and 4.12 ± 0.11 g/L total protein concentration were obtained after high-density fed-batch fermentation in the Δmyo1 mutant, representing the best production of hLYZ in yeast. Furthermore, O-linked mannose glycans were characterized on this recombinant hLYZ. CONCLUSIONS: Our work suggests that cytokinesis-based morphology engineering is an effective way to enhance the production of hLYZ in K. phaffii.


Subject(s)
Muramidase , Recombinant Proteins , Saccharomycetales , Muramidase/metabolism , Muramidase/genetics , Muramidase/biosynthesis , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomycetales/metabolism , Saccharomycetales/genetics , Humans , Fermentation , Cytokinesis , Metabolic Engineering/methods , Batch Cell Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL