Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.445
Filter
1.
Article in English | MEDLINE | ID: mdl-39087887

ABSTRACT

Artemia is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. Artemia franciscana and Artemia salina species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present Artemia genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of Artemia for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using Artemia genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.


Subject(s)
Artemia , Ecotoxicology , Mutagenicity Tests , Artemia/drug effects , Animals , DNA Damage , Water Pollutants, Chemical/toxicity , Mutagens/toxicity
2.
Drug Chem Toxicol ; 47(4): 404-415, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949608

ABSTRACT

Although the presence of nitro groups in chemicals can be recognized as structural alerts for mutagenicity and carcinogenicity, nitroaromatic compounds have attracted considerable interest as a class of agents that can serve as source of potential new anticancer agents. In the present study, the in vitro cytotoxicity, genotoxicity, and mutagenicity of three synthetic ortho-nitrobenzyl derivatives (named ON-1, ON-2 and ON-3) were evaluated by employing human breast and ovarian cancer cell lines. A series of biological assays was carried out with and without metabolic activation. Complementarily, computational predictions of the pharmacokinetic properties and druglikeness of the compounds were performed in the Swiss ADME platform. The MTT assay showed that the compounds selectively affected selectively the cell viability of cancer cells in comparison with a nontumoral cell line. Additionally, the metabolic activation enhanced cytotoxicity, and the compounds affected cell survival, as demonstrated by the clonogenic assay. The comet assay, the cytokinesis-block micronucleus assay, and the immunofluorescence of the γ-H2AX foci formation assay have that the compounds caused chromosomal damage to the cancer cells, with and without metabolic activation. The results obtained in the present study showed that the compounds assessed were genotoxic and mutagenic, inducing double-strand breaks in the DNA structure. The high selectivity indices observed for the compounds ON-2 and ON-3, especially after metabolic activation with the S9 fraction, must be highlighted. These experimental biological results, as well as the theoretical properties predicted for the compounds have shown that they are promising anticancer candidates to be exploited in additional studies.


Subject(s)
Activation, Metabolic , Antineoplastic Agents , Cell Survival , DNA Damage , Humans , Cell Survival/drug effects , Antineoplastic Agents/toxicity , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , DNA Damage/drug effects , Cell Line, Tumor , Micronucleus Tests , Mutagens/toxicity , Comet Assay , Mutagenicity Tests , Female , Nitrobenzenes/toxicity , Nitrobenzenes/chemistry , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Dose-Response Relationship, Drug
3.
Molecules ; 29(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39064836

ABSTRACT

Genotoxic substances widely exist in the environment and the food supply, posing serious health risks due to their potential to induce DNA damage and cancer. Traditional genotoxicity assays, while valuable, are limited by insufficient sensitivity, specificity, and efficiency, particularly when applied to complex food matrices. This study introduces a multiparametric high-content analysis (HCA) for the detection of genotoxic substances in complex food matrices. The developed assay measures three genotoxic biomarkers, including γ-H2AX, p-H3, and RAD51, which enhances the sensitivity and accuracy of genotoxicity screening. Moreover, the assay effectively distinguishes genotoxic compounds with different modes of action, which not only offers a more comprehensive assessment of DNA damage and the cellular response to genotoxic stress but also provides new insights into the exploration of genotoxicity mechanisms. Notably, the five tested food matrices, including coffee, tea, pak choi, spinach, and tomato, were found not to interfere with the detection of these biomarkers under proper dilution ratios, validating the robustness and reliability of the assay for the screening of genotoxic compounds in the food industry. The integration of multiple biomarkers with HCA provides an efficient method for detecting and assessing genotoxic substances in the food supply, with potential applications in toxicology research and food safety.


Subject(s)
DNA Damage , Mutagenicity Tests , Mutagens , Mutagens/analysis , Mutagens/toxicity , Mutagenicity Tests/methods , Humans , Food Analysis/methods , Tea/chemistry , Biomarkers , Solanum lycopersicum/chemistry , Histones/metabolism , Histones/analysis , Coffee/chemistry , Spinacia oleracea/chemistry , Rad51 Recombinase/metabolism
4.
Bull Exp Biol Med ; 177(1): 30-34, 2024 May.
Article in English | MEDLINE | ID: mdl-38954304

ABSTRACT

Topotecan administered intraperitoneally at single doses of 0.25, 0.5, and 1 mg/kg induced chromosomal aberrations in bone marrow cells of F1(CBA×C57BL/6) hybrid mice in a dose-dependent manner. A tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitor, an usnic acid derivative OL9-116 was inactive in a dose range of 20-240 mg/kg, but enhanced the cytogenetic effect of topotecan (0.25 mg/kg) at a dose of 40 mg/kg (per os). The TDP1 inhibitor, a coumarin derivative TX-2552 (at doses of 20, 40, 80, and 160 mg/kg per os), increased the level of aberrant metaphases induced by topotecan (0.25 mg/kg) by 2.1-2.6 times, but was inactive at a dose of 10 mg/kg. The results indicate that TDP1 inhibitors enhance the clastogenic activity of topotecan in mouse bone marrow cells in vivo and are characterized by different dose profiles of the co-mutagenic effects.


Subject(s)
Bone Marrow Cells , Phosphoric Diester Hydrolases , Topotecan , Animals , Topotecan/pharmacology , Mice , Phosphoric Diester Hydrolases/metabolism , Bone Marrow Cells/drug effects , Male , Chromosome Aberrations/drug effects , Chromosome Aberrations/chemically induced , Phosphodiesterase Inhibitors/pharmacology , Topoisomerase I Inhibitors/pharmacology , Mice, Inbred C57BL , Mutagens/toxicity
6.
Article in English | MEDLINE | ID: mdl-39054004

ABSTRACT

Genetic toxicology, strategically located at the intersection of genetics and toxicology, aims to demystify the complex interplay between exogenous agents and our genetic blueprint. Telomeres, the protective termini of chromosomes, play instrumental roles in cellular longevity and genetic stability. Traditionally karyotyping and fluorescence in situ hybridisation (FISH), have been indispensable tools for chromosomal analysis following exposure to genotoxic agents. However, their scope in discerning nuanced molecular dynamics is limited. Peptide Nucleic Acids (PNAs) are synthetic entities that embody characteristics of both proteins and nucleic acids and have emerged as potential game-changers. This perspective report comprehensively examines the vast potential of PNAs in genetic toxicology, with a specific emphasis on telomere research. PNAs' superior resolution and precision make them a favourable choice for genetic toxicological assessments. The integration of PNAs in contemporary analytical workflows heralds a promising evolution in genetic toxicology, potentially revolutionizing diagnostics, prognostics, and therapeutic avenues. In this timely review, we attempted to assess the limitations of current PNA-FISH methodology and recommend refinements.


Subject(s)
In Situ Hybridization, Fluorescence , Peptide Nucleic Acids , Telomere , Telomere/drug effects , Telomere/genetics , Humans , In Situ Hybridization, Fluorescence/methods , Animals , Mutagens/toxicity , Karyotyping/methods
7.
Article in English | MEDLINE | ID: mdl-39054009

ABSTRACT

The human in vitro organotypic air-liquid-interface (ALI) airway tissue model is structurally and functionally similar to the human large airway epithelium and, as a result, is being used increasingly for studying the toxicity of inhaled substances. Our previous research demonstrated that DNA damage and mutagenesis can be detected in human airway tissue models under conditions used to assess general and respiratory toxicity endpoints. Expanding upon our previous proof-of-principle study, human airway epithelial tissue models were treated with 6.25-100 µg/mL ethyl methanesulfonate (EMS) for 28 days, followed by a 28-day recovery period. Mutagenesis was evaluated by Duplex Sequencing (DS), and clonal expansion of bronchial-cancer-specific cancer-driver mutations (CDMs) was investigated by CarcSeq to determine if both mutation-based endpoints can be assessed in the same system. Additionally, DNA damage and tissue-specific responses were analyzed during the treatment and following the recovery period. EMS exposure led to time-dependent increases in mutagenesis over the 28-day treatment period, without expansion of clones containing CDMs; the mutation frequencies remained elevated following the recovery. EMS also produced an increase in DNA damage measured by the CometChip and MultiFlow assays and the elevated levels of DNA damage were reduced (but not eliminated) following the recovery period. Cytotoxicity and most tissue-function changes induced by EMS treatment recovered to control levels, the exception being reduced proliferating cell frequency. Our results indicate that general, respiratory-tissue-specific and genotoxicity endpoints increased with repeat EMS dosing; expansion of CDM clones, however, was not detected using this repeat treatment protocol. DISCLAIMER: This article reflects the views of its authors and does not necessarily reflect those of the U.S. Food and Drug Administration. Any mention of commercial products is for clarification only and is not intended as approval, endorsement, or recommendation.


Subject(s)
DNA Damage , Ethyl Methanesulfonate , Mutation , Humans , Ethyl Methanesulfonate/pharmacology , Ethyl Methanesulfonate/toxicity , Mutation/drug effects , DNA Damage/drug effects , Mutagenesis/drug effects , Mutagens/toxicity , Bronchi/drug effects , Bronchi/cytology
8.
Article in English | MEDLINE | ID: mdl-39054003

ABSTRACT

Micronucleus (MN) cell counting emerged in 1973-1975 as a valid alternative for characterizing chromosomal damage caused by different agents. It was first described in mammals, but its application was rapidly extended to other vertebrates, mainly fish. However, it was not until 28 years later that this test was implemented in studies on reptiles. Nowadays, reptiles are found to be excellent non-target species from environmental contamination exposure and MN test has become a fundamental tool for analyzing genotoxic effects induced by various xenobiotics. In this article we provide an updated review of the application of the MN test in reptile species, from an ecotoxicological perspective. Therefore, we present (I) a bibliometric analysis of the available research on genotoxic-induced MN formation in reptile species; (II) the use of reptiles as sentinel organisms in ecotoxicological studies; and (III) the strength and weakness of the application of the MN test in this group. With this review, we aim to provide a comprehensive view on the use of the MN test in ecotoxicology and to encourage further studies involving reptile species.


Subject(s)
Micronucleus Tests , Reptiles , Animals , Reptiles/genetics , Micronucleus Tests/methods , Mutagens/toxicity , Ecotoxicology/methods , DNA Damage/drug effects , Sentinel Species/genetics
9.
Article in English | MEDLINE | ID: mdl-39054005

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) comprise many chemicals with strong carbon-carbon and carbon-fluorine bonds and have extensive industrial applications in manufacturing several consumer products. The solid covalent bonding makes them more persistent in the environment and stays away from all types of degradation, naming them 'forever chemicals.' Zebrafish (Danio rerio) was used to evaluate the genotoxic and cytotoxic effects of legacy PFAS, Perfluorooctane sulfonate (PFOS), and its alternatives, such as Perfluoro-2-methyl-3-oxahexanoic acid ammonium (GenX) and 7H-Perfluoro-3,6-dioxa-4-methyl-octane-1-sulfonic acid (Nafion by-product 2 [NBP2]) upon single and combined exposure at an environmental concentration of 10 µg/L for 48-h. Erythrocyte micronucleus cytome assay (EMNCA) revealed an increased frequency of micronuclei (MN) in fish erythrocytes with a significant increase in NBP2-treated fish. The order of genotoxicity noticed was NBP2 > PFOS > Mixture > GenX in D. rerio. Fish exposed to PFOS and its alternatives in single and combined experiments did not cause any significant difference in nuclear abnormalities. However, PFOS and combined exposure positively inhibit cytokinesis, resulting in an 8.16 and 7.44-fold-change increase of binucleated cells. Besides, statistically, increased levels of reactive oxygen species (ROS) and malondialdehyde (MDA) content indicate oxidative stress in D. rerio. In addition, 'forever chemicals' resulted in cytotoxicity, as evident through changes in nucleus width to the erythrocyte length in NBP2 and mixture exposure groups. The findings revealed that PFAS alternative NBP2 is more toxic than PFOS in inducing DNA damage and cytotoxicity. In addition, all three tested 'forever chemicals' induced ROS and lipid peroxidation after individual and combined exposure. The present work is the first to concern the genotoxicity and cytotoxicity of 'forever chemicals' in the aquatic vertebrate D. rerio.


Subject(s)
Alkanesulfonic Acids , DNA Damage , Fluorocarbons , Micronucleus Tests , Water Pollutants, Chemical , Zebrafish , Animals , Fluorocarbons/toxicity , Micronucleus Tests/methods , Alkanesulfonic Acids/toxicity , DNA Damage/drug effects , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Erythrocytes/drug effects , Reactive Oxygen Species/metabolism , Mutagens/toxicity
10.
Article in English | MEDLINE | ID: mdl-39054008

ABSTRACT

Bioassays are widely used in assessment of mutagenicity. Alternative methods have also been developed, including "intelligent evaluation", which depends on the quality of data, strategies, and techniques. CISOC-PSMT is an Ames test prediction system. The strategies and techniques for intelligent evaluation and four applications of CISOC-PSMT are presented; roles in pesticide management, environmental protection, drug discovery, and safety management of chemicals are introduced.


Subject(s)
Mutagenicity Tests , Mutagens , Mutagenicity Tests/methods , Mutagens/toxicity , Humans , Pesticides/toxicity , Drug Discovery/methods , Animals , Biological Assay/methods
11.
Ecotoxicol Environ Saf ; 280: 116585, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38875821

ABSTRACT

Neonicotinoids form a class of insecticides that are chemically related to nicotine and are widely used in crop protection. They have adverse effects on the neuronal nicotinic acetylcholine receptors (nAChRs). One of the neonicotinoids approved for control of the invasive pest Drosophila suzukii is acetamiprid. Despite concerns regarding its genotoxicity and data indicating the presence of small amounts of this substance in fruits intended for consumption, effects of its low doses on nerve cells are yet to be investigated. To determine whether the neurotoxic effects are species-specific and vary depending on the insecticide present in diet, multigenerational cultures of Drosophila melanogaster and D. suzukii were prepared, in this study, in media supplemented with different concentrations (below the LC50) of acetamiprid and nicotine. Acetamiprid, analogous to nicotine, caused damage to the DNA of neuroblasts in both species, at sublethal concentrations, along with a decrease in mobility, which remained at a similar level over subsequent generations. D. suzukii was found to be more sensitive to nicotine and acetamiprid, due to which the genotoxic effects were stronger even at lower doses of toxins. The results collectively indicated that even low concentrations of acetamiprid affect the stem cells of developing fly brain, and that long-term response to the tested insecticides is species-specific.


Subject(s)
DNA Damage , Drosophila melanogaster , Insecticides , Neonicotinoids , Nicotine , Animals , Neonicotinoids/toxicity , Nicotine/toxicity , Drosophila melanogaster/drug effects , Insecticides/toxicity , Drosophila/drug effects , Species Specificity , Mutagens/toxicity , Neural Stem Cells/drug effects , Dose-Response Relationship, Drug , Female
12.
Methods Mol Biol ; 2825: 309-331, 2024.
Article in English | MEDLINE | ID: mdl-38913318

ABSTRACT

Across eukaryotes, genome stability is essential for normal cell function, physiology, and species survival. Aberrant expression of key genes or exposure to genotoxic agents can have detrimental effects on genome stability and contribute to the development of various diseases, including cancer. Chromosome instability (CIN), or ongoing changes in chromosome complements, is a frequent form of genome instability observed in cancer and is a driver of genetic and cell-to-cell heterogeneity that can be rapidly detected and quantitatively assessed using surrogate markers of CIN. For example, single cell quantitative imaging microscopy (QuantIM) can be used to simultaneously identify changes in nuclear areas and micronucleus formation. While changes in nuclear areas are often associated with large-scale changes in chromosome complements (i.e., ploidy), micronuclei are small extra-nuclear bodies found outside the primary nucleus that have previously been employed as a measure of genotoxicity of test compounds. Here, we present a facile QuantIM approach that allows for the rapid assessment and quantification of CIN associated phenotypes and genotoxicity. First, we provide protocols to optimize and execute CIN and genotoxicity assays. Secondly, we present the critical imaging settings, optimization steps, downstream statistical analyses, and data visualization strategies employed to obtain high quality and robust data. These approaches can be easily applied to assess the prevalence of CIN associated phenotypes and genotoxic stress for a myriad of experimental and clinical contexts ranging from direct tests to large-scale screens of various genetic contexts (i.e., aberrant gene expression) or chemical compounds. In summary, this QuantIM approach facilitates the identification of novel CIN genes and/or genotoxic agents that will provide greater insight into the aberrant genes and pathways underlying CIN and genotoxicity.


Subject(s)
Chromosomal Instability , DNA Damage , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Microscopy/methods , Mutagenicity Tests/methods , Cell Nucleus/metabolism , Cell Nucleus/drug effects , Mutagens/toxicity , Micronucleus Tests/methods
13.
Chem Biol Interact ; 397: 111088, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38823534

ABSTRACT

Tris(2-butoxyethyl) phosphate (TBOEP) is an organophosphorus flame retardant ubiquitously present in the environment and even the human body. TBOEP is toxic in multiple tissues, which forms dealkylated and hydroxylated metabolites under incubation with human hepatic microsomes; however, the impact of TBOEP metabolism on its toxicity, particularly mutagenicity (typically requiring metabolic activation), is left unidentified. In this study, the mutagenicity of TBOEP in human hepatoma cell lines (HepG2 and C3A) and the role of specific CYPs were studied. Through molecular docking, TBOEP bound to human CYP1A1, 1B1, 2B6 and 3A4 with energies and conformations favorable for catalyzing reactions, while the conformations of its binding with human CYP1A2 and 2E1 appeared unfavorable. In C3A cells (endogenous CYPs being substantial), TBOEP exposing for 72 h (2-cell cycle) at low micromolar levels induced micronucleus, which was abolished by 1-aminobenzotriazole (inhibitor of CYPs); in HepG2 cells (CYPs being insufficient) TBOEP did not induce micronucleus, whose effect was however potentiated by pretreating the cells with PCB126 (CYP1A1 inducer) or rifampicin (CYP3A4 inducer). TBOEP induced micronucleus in Chinese hamster V79-derived cell lines genetically engineered for stably expressing human CYP1A1 and 3A4, but not in cells expressing the other CYPs. In C3A cells, TBOEP selectively induced centromere protein B-free micronucleus (visualized by immunofluorescence) and PIG-A gene mutations, and elevated γ-H2AX rather than p-H3 (by Western blot) which indicated specific double-strand DNA breaks. Therefore, this study suggests that TBOEP may induce DNA/chromosome breaks and gene mutations in human cells, which requires metabolic activation by CYPs, primarily CYP1A1 and 3A4.


Subject(s)
Cytochrome P-450 Enzyme System , Flame Retardants , Molecular Docking Simulation , Animals , Humans , Flame Retardants/toxicity , Cricetinae , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Mutagens/toxicity , Organophosphorus Compounds/toxicity , Cricetulus , Organophosphates/toxicity , Hep G2 Cells , Micronucleus Tests
14.
PDA J Pharm Sci Technol ; 78(3): 237-311, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942479

ABSTRACT

This article describes the development of a representative dataset of extractables and leachables (E&L) from the combined Extractables and Leachables Safety Information Exchange (ELSIE) Consortium and the Product Quality Research Institute (PQRI) published datasets, representing a total of 783 chemicals. A chemical structure-based clustering of the combined dataset identified 142 distinct chemical classes with two or more chemicals across the combined dataset. The majority of these classes (105 chemical classes out of 142) contained chemicals from both datasets, whereas 8 classes contained only chemicals from the ELSIE dataset and 29 classes contain only chemicals from the PQRI dataset. This evaluation also identified classes containing chemicals that were flagged as potentially mutagenic as well as potent (strong or extreme) dermal sensitizers by in silico tools. The prevalence of alerting structures in the E&L datasets was approximately 9% (69 examples) for mutagens and 3% (25 examples) for potent sensitizers. This analysis showed that most (80%; 20 of 25) E&L predicted to be strong or extreme dermal sensitizers were also flagged as potential mutagens. Only two chemical classes, each containing three chemicals (alkyl bromides and isothiocyanates), were uniquely identified in the PQRI dataset and contained chemicals predicted to be potential mutagens and/or potent dermal sensitizers.


Subject(s)
Computer Simulation , Mutagens , Risk Assessment/methods , Mutagens/toxicity , Humans , Drug Contamination/prevention & control , Pharmaceutical Preparations/chemistry , Drug Packaging/standards
15.
J Ethnopharmacol ; 333: 118426, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38844250

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Realgar (As2S2 or As4S4) is a traditional Chinese medicine (TCM) containing arsenic. Existing studies have shown that it has genotoxicity under long-term use with large doses. Niuhuang Jiedu (NHJD) is a Chinese medicine prescription containing realgar and seven other TCMs. Whether the multiple TCMs combination in NHJD can reduce the genotoxicity induced by realgar in equivalent doses is still unknown. AIM OF THE STUDY: To research the effect of NHJD on realgar's genotoxicity and the possible mechanism involved based on the arsenic methylation metabolic pathway. MATERIAL AND METHODS: Six groups (control, realgar (0.8 g/kg), NHJD (12.48 g/kg), as well as Glycyrrhiza uralensis Fisch (GU), Scutellaria baicalensis Georg (SB), Rheum palmatum L (RP) plus equivalent doses of realgar, respectively) were set up. ICR mice were intragastric administered for 12 weeks. First, genotoxicology tests were conducted to evaluate the effect of NHJD, GU, SB, and RP on reducing realgar's genotoxicity. The inorganic arsenic (iAs), dimethyl arsenic acid (DMA), and monomethyl arsenic acid (MMA) were determined by HPLC-AFS, and the iAs%, MMA%, DMA%, primary methylation index (PMI), etc. Were calculated. Meanwhile, the S-adenosyl methionine (SAM) and arsenate reductase (ARR) levels, the arsenic (+3)methyltransferase (As3MT), purine-nucleoside phosphorylase (PNP), glutathione S-transfer omega1 (GSTO1) gene expression were detected, aimed to explore the possible alleviation mechanisms of NHJD. RESULTS: The combination of multiple TCMs in NHJD decreased the levels of MN‰, SPA%, and DNA damage caused by realgar, with similar effects observed when SB, RP, and GU were used separately with realgar. Notably, the iAs% significantly decreased, while DMA% and PMI notably increased in the NHJD and realgar + SB (or RP) groups compared to the realgar-only group (P < 0.05). Increases in SAM and ARR levels were observed across various groups, but only the ARR increase in the NHJD group was statistically significant. Moreover, significant increases in As3MT mRNA and GSTO1 mRNA were noted in the NHJD group, and PNP mRNA levels significantly rose in the realgar + SB group. CONCLUSIONS: This study revealed that NHJD could attenuate the genotoxic effects of realgar. The botanicals SB, RP, and GU within NHJD may be key contributors to this effect. Enhancements in arsenic methylation capabilities through increased levels of SAM and ARR and elevated gene expressions of As3MT, PNP, and GSTO1 suggest potential mechanisms behind these findings.


Subject(s)
Arsenicals , Drugs, Chinese Herbal , Mice, Inbred ICR , Sulfides , Animals , Drugs, Chinese Herbal/pharmacology , Sulfides/pharmacology , Sulfides/toxicity , Male , Mice , DNA Damage/drug effects , Mutagens/toxicity , Liver/drug effects , Liver/metabolism , Biological Products
16.
Regul Toxicol Pharmacol ; 151: 105669, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936796

ABSTRACT

Potentially mutagenic impurities are likely to be formed in any drug substance, since their synthesis requires reactive intermediates which may also react with DNA. The ICH M7 guideline, which defines how to risk assess and control mutagenic impurities, was first published in 2014 and is not to be applied retrospectively; however, some impurities have been found above the permitted limits in drug products which were already on the market. This study assessed the implications of applying ICH M7 retrospectively to anti-hypertensive drugs marketed in Brazil by performing a risk assessment and establishing control strategies. The manufacturing processes of 15 drug substances were evaluated and 262 impurities were identified, from which 21% were classified as potentially mutagenic. Most of the impurities were identified below ICH M7 acceptable limits, except for impurities described in a pharmacopoeial monograph. Compendial specifications are defined based on scientific evidence and play an important role in setting quality and safety standards for pharmaceuticals, however there are opportunities for further alignment with ICH guidelines, aiming for a holistic assessment of the impurities profile to ensure the safety of medicines.


Subject(s)
Antihypertensive Agents , Drug Contamination , Mutagens , Brazil , Risk Assessment , Antihypertensive Agents/toxicity , Mutagens/toxicity , Mutagens/analysis , Retrospective Studies , Humans , Guidelines as Topic
17.
Regul Toxicol Pharmacol ; 151: 105670, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936798

ABSTRACT

Given the widespread applications in industrial and agricultural production, the health effects of rare earth elements (REEs) have garnered public attention, and the genotoxicity of REEs remains unclear. In this study, we evaluated the genetic effects of lanthanum nitrate, a typical representative of REEs, with guideline-compliant in vivo and in vitro methods. Genotoxicity assays, including the Ames test, comet assay, mice bone marrow erythrocyte micronucleus test, spermatogonial chromosomal aberration test, and sperm malformation assay were conducted to assess mutagenicity, chromosomal damage, DNA damage, and sperm malformation. In the Ames test, no statistically significant increase in bacterial reverse mutation frequencies was found as compared with the negative control. Mice exposed to lanthanum nitrate did not exhibit a statistically significant increase in bone marrow erythrocyte micronucleus frequencies, spermatogonial chromosomal aberration frequencies, or sperm malformation frequencies compared to the negative control (P > 0.05). Additionally, after a 24-h treatment with lanthanum nitrate at concentrations of 1.25, 5, and 20 µg/ml, no cytotoxicity was observed in CHL cells. Furthermore, the comet assay results indicate no significant DNA damage was observed even after exposure to high doses of lanthanum nitrate (20 µg/ml). In conclusion, our findings suggest that lanthanum nitrate does not exhibit genotoxicity.


Subject(s)
Chromosome Aberrations , Comet Assay , DNA Damage , Lanthanum , Micronucleus Tests , Mutagenicity Tests , Spermatozoa , Lanthanum/toxicity , Animals , Male , Mice , DNA Damage/drug effects , Mutagenicity Tests/methods , Chromosome Aberrations/chemically induced , Chromosome Aberrations/drug effects , Comet Assay/methods , Micronucleus Tests/methods , Spermatozoa/drug effects , Mutagens/toxicity , Dose-Response Relationship, Drug , Mice, Inbred ICR , Cell Line
18.
Comput Biol Med ; 178: 108731, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38870727

ABSTRACT

Non-sugar sweeteners (NSSs) or artificial sweeteners have long been used as food chemicals since World War II. NSSs, however, also raise a concern about their mutagenicity. Evaluating the mutagenic ability of NSSs is crucial for food safety; this step is needed for every new chemical registration in the food and pharmaceutical industries. A computational assessment provides less time, money, and involved animals than the in vivo experiments; thus, this study developed a novel computational method from an ensemble convolutional deep neural network and read-across algorithms, called DeepRA, to classify the mutagenicity of chemicals. The mutagenicity data were obtained from the curated Ames test data set. The DeepRA model was developed using both molecular descriptors and molecular fingerprints. The obtained DeepRA model provides accurate and reliable mutagenicity classification through an independent test set. This model was then used to examine the NSSs-related chemicals, enabling the evaluation of mutagenicity from the NSSs-like substances. Finally, this model was publicly available at https://github.com/taraponglab/deepra for further use in chemical regulation and risk assessment.


Subject(s)
Deep Learning , Mutagens , Mutagens/toxicity , Sweetening Agents/toxicity , Mutagenicity Tests , Algorithms , Neural Networks, Computer
19.
Toxicol In Vitro ; 99: 105874, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851604

ABSTRACT

Amantadine (AMA) is a useful drug in neuronal disorders, but few studies have been performed to access its toxicological profile. Conversely, doxorubicin (Dox) is a well-known antineoplastic drug that has shown neurotoxic effects leading to cognitive impairment. The aims of this study are to evaluate the cytotoxic, genotoxic, and mutagenic effects of AMA, as well as its possible protective actions against deleterious effects of Dox. The Salmonella/microsome assay was performed to assess mutagenicity while cytotoxicity and genotoxicity were evaluated in SH-SY5Y cells using MTT and comet assays. Possible modulating effects of AMA on the cytotoxicity, genotoxicity, and mutagenicity induced by Dox were evaluated through cotreatment procedures. Amantadine did not induce mutations in the Salmonella/microsome assay and decreased Dox-induced mutagenicity in the TA98 strain. AMA reduced cell viability and induced DNA damage in SH-SY5Y cells. In cotreatment with Dox, AMA attenuated the cytotoxicity of Dox and showed an antigenotoxic effect. In conclusion, AMA does not induce gene mutations, although it has shown a genotoxic effect. Furthermore, AMA decreases frameshift mutations induced by Dox as well as the cytotoxic and genotoxic effects of Dox in SH-SY5Y cells, suggesting that AMA can interfere with Dox mutagenic activity and attenuate its neurotoxic effects.


Subject(s)
Amantadine , Cell Survival , DNA Damage , Doxorubicin , Humans , Doxorubicin/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Amantadine/pharmacology , Amantadine/toxicity , Amantadine/analogs & derivatives , DNA Damage/drug effects , Mutagens/toxicity , Antibiotics, Antineoplastic/toxicity , Mutagenicity Tests
20.
J Pharm Biomed Anal ; 248: 116274, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38852298

ABSTRACT

There is an increasing scientific interest in the detection of genotoxic impurities (GTIs), with nitrobenzene compounds being considered potential genotoxic impurities due to their structural alerts, which demonstrates a threat to drug safety for patient. While current reports on the detection of nifedipine impurity primarily focus on general impurities in nifedipine. In this study, an effective and simple gas chromatography-mass spectrometry (GC-MS) method was established and verified for the separation and quantification of 2-nitrotoluene, 2-nitrobenzyl alcohol, 2-nitrobenzaldehyde, 3-nitrobenzaldehyde, 4-nitrobenzaldehyde, and 2-nitrobenzyl bromide in nifedipine, which have not been previously reported. The validation of this GC-MS method was conducted following the International Conference of Harmonization (ICH) guidelines, exhibiting good linearity within the range of 2-40 µg/g and accuracy between 84.6 % and 107.8 %, the RSD% of intra-day and inter-day precision was in the range of 1.77-4.55 %, stability and robustness also met acceptance criteria. This method filled the gap in detection method for nitrobenzene compounds in nifedipine, offering a novel method and technical support for nifedipine quality control.


Subject(s)
Drug Contamination , Gas Chromatography-Mass Spectrometry , Nifedipine , Nitrobenzenes , Nifedipine/analysis , Nifedipine/chemistry , Gas Chromatography-Mass Spectrometry/methods , Nitrobenzenes/analysis , Nitrobenzenes/chemistry , Reproducibility of Results , Mutagens/analysis , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL