Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35.222
1.
Reprod Domest Anim ; 59(6): e14635, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837470

A 1-year-old European shorthair male cat with a normally developed penis was subjected to genetic, endocrinological and histological studies due to unilateral cryptorchidism. The blood testosterone level was typical for males, while the level of anti-Mullerian hormone (AMH) was very low. Surgical removal of internal reproductive organs was followed by a histological study, which revealed inactive testicles with neoplastic changes and derivatives of Mullerian ducts. Cytogenetic analysis showed a normal XY sex chromosome complement and molecular analysis confirmed the presence of Y-linked genes (SRY and ZFY). Although the level of AMH was low, two normal copies of the AMH gene were found using droplet digital PCR (ddPCR). Analysis of the coding sequences of two candidate genes (AMH and AMHR2) for persistent Mullerian duct syndrome (PMDS) in the affected cat and in control male cats (n = 24) was performed using the Sanger sequencing method. In the affected cat, homozygosity was found for three novel missense variants in Exon 1 (one SNP) and Exon 5 (two SNPs) of AMH, but the same homozygous genotypes were also observed in one and two control cats, respectively, whose sex development was not examined. Three known synonymous variants with homozygous status were found in AMHR2. We conclude that the DNA variants identified in AMH and AMHR2 are not responsible for PMDS in the affected cat.


Anti-Mullerian Hormone , Cat Diseases , Receptors, Peptide , Receptors, Transforming Growth Factor beta , Animals , Cats , Male , Anti-Mullerian Hormone/genetics , Cat Diseases/genetics , Receptors, Peptide/genetics , Receptors, Transforming Growth Factor beta/genetics , Cryptorchidism/genetics , Cryptorchidism/veterinary , Disorder of Sex Development, 46,XY/genetics , Disorder of Sex Development, 46,XY/veterinary , Mutation , Mutation, Missense
3.
Proc Natl Acad Sci U S A ; 121(24): e2319301121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38838011

Alcohol dehydrogenase 1B (ADH1B) is a primate-specific enzyme which, uniquely among the ADH class 1 family, is highly expressed both in adipose tissue and liver. Its expression in adipose tissue is reduced in obesity and increased by insulin stimulation. Interference with ADH1B expression has also been reported to impair adipocyte function. To better understand the role of ADH1B in adipocytes, we used CRISPR/Cas9 to delete ADH1B in human adipose stem cells (ASC). Cells lacking ADH1B failed to differentiate into mature adipocytes manifested by minimal triglyceride accumulation and a marked reduction in expression of established adipocyte markers. As ADH1B is capable of converting retinol to retinoic acid (RA), we conducted rescue experiments. Incubation of ADH1B-deficient preadipocytes with 9-cis-RA, but not with all-transretinol, significantly rescued their ability to accumulate lipids and express markers of adipocyte differentiation. A homozygous missense variant in ADH1B (p.Arg313Cys) was found in a patient with congenital lipodystrophy of unknown cause. This variant significantly impaired the protein's dimerization, enzymatic activity, and its ability to rescue differentiation in ADH1B-deficient ASC. The allele frequency of this variant in the Middle Eastern population suggests that it is unlikely to be a fully penetrant cause of severe lipodystrophy. In conclusion, ADH1B appears to play an unexpected, crucial and cell-autonomous role in human adipocyte differentiation by serving as a necessary source of endogenous retinoic acid.


Adipocytes , Adipogenesis , Alcohol Dehydrogenase , Humans , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Adipogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Tretinoin/metabolism , Cell Differentiation , CRISPR-Cas Systems , Mutation, Missense , Adipose Tissue/metabolism
4.
Virol J ; 21(1): 128, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840203

The envelope (E) protein of the Japanese encephalitis virus (JEV) is a key protein for virus infection and adsorption of host cells, which determines the virulence of the virus and regulates the intensity of inflammatory response. The mutation of multiple aa residues in the E protein plays a critical role in the attenuated strain of JEV. This study demonstrated that the Asp to Gly, Ser, and His mutation of the E389 site, respectively, the replication ability of the viruses in cells was significantly reduced, and the viral neuroinvasiveness was attenuated to different degrees. Among them, the mutation at E389 site enhanced the E protein flexibility contributed to the attenuation of neuroinvasiveness. In contrast, less flexibility of E protein enhanced the neuroinvasiveness of the strain. Our results indicate that the mechanism of attenuation of E389 aa mutation attenuates neuroinvasiveness is related to increased flexibility of the E protein. In addition, the increased flexibility of E protein enhanced the viral sensitivity to heparin inhibition in vitro, which may lead to a decrease in the viral load entering brain. These results suggest that E389 residue is a potential site affecting JEV virulence, and the flexibility of the E protein of aa at this site plays an important role in the determination of neuroinvasiveness.


Encephalitis Virus, Japanese , Viral Envelope Proteins , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/drug effects , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/chemistry , Animals , Cell Line , Virulence , Virus Replication , Encephalitis, Japanese/virology , Humans , Heparin/pharmacology , Amino Acid Substitution , Mutation, Missense , Mice , Mutation , Virulence Factors/genetics , Membrane Glycoproteins
5.
PLoS One ; 19(6): e0304141, 2024.
Article En | MEDLINE | ID: mdl-38843250

Lynch syndrome is caused by inactivating variants in DNA mismatch repair genes, namely MLH1, MSH2, MSH6 and PMS2. We have investigated five MLH1 and one MSH2 variants that we have identified in Turkish and Tunisian colorectal cancer patients. These variants comprised two small deletions causing frameshifts resulting in premature stops which could be classified pathogenic (MLH1 p.(His727Profs*57) and MSH2 p.(Thr788Asnfs*11)), but also two missense variants (MLH1 p.(Asn338Ser) and p.(Gly181Ser)) and two small, in-frame deletion variants (p.(Val647-Leu650del) and p.(Lys678_Cys680del)). For such small coding genetic variants, it is unclear if they are inactivating or not. We here provide clinical description of the variant carriers and their families, and we performed biochemical laboratory testing on the variant proteins to test if their stability or their MMR activity are compromised. Subsequently, we compared the results to in-silico predictions on structure and conservation. We demonstrate that neither missense alteration affected function, while both deletion variants caused a dramatic instability of the MLH1 protein, resulting in MMR deficiency. These results were consistent with the structural analyses that were performed. The study shows that knowledge of protein function may provide molecular explanations of results obtained with functional biochemical testing and can thereby, in conjunction with clinical information, elevate the evidential value and facilitate clinical management in affected families.


Colorectal Neoplasms, Hereditary Nonpolyposis , DNA Mismatch Repair , MutL Protein Homolog 1 , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Humans , Male , MutL Protein Homolog 1/genetics , Female , DNA Mismatch Repair/genetics , Middle Aged , MutS Homolog 2 Protein/genetics , Adult , Tunisia , Pedigree , Turkey , Aged , Mutation, Missense
6.
PLoS One ; 19(6): e0302643, 2024.
Article En | MEDLINE | ID: mdl-38829901

BACKGROUND: The A allele of rs373863828 in CREB3 regulatory factor is associated with high Body Mass Index, but lower odds of type 2 diabetes. These associations have been replicated elsewhere, but to date all studies have been cross-sectional. Our aims were (1) to describe the development of type 2 diabetes and change in fasting glucose between 2010 and 2018 among a longitudinal cohort of adult Samoans without type 2 diabetes or who were not using diabetes medications at baseline, and (2) to examine associations between fasting glucose rate-of-change (mmol/L per year) and the A allele of rs373863828. METHODS: We describe and test differences in fasting glucose, the development of type 2 diabetes, body mass index, age, smoking status, physical activity, urbanicity of residence, and household asset scores between 2010 and 2018 among a cohort of n = 401 adult Samoans, selected to have a ~2:2:1 ratio of GG:AG: AA rs373863828 genotypes. Multivariate linear regression was used to test whether fasting glucose rate-of-change was associated with rs373863828 genotype, and other baseline variables. RESULTS: By 2018, fasting glucose and BMI significantly increased among all genotype groups, and a substantial portion of the sample developed type 2 diabetes mellitus. The A allele was associated with a lower fasting glucose rate-of-change (ß = -0.05 mmol/L/year per allele, p = 0.058 among women; ß = -0.004 mmol/L/year per allele, p = 0.863 among men), after accounting for baseline variables. Mean fasting glucose and mean BMI increased over an eight-year period and a substantial number of individuals developed type 2 diabetes by 2018. However, fasting glucose rate-of-change, and type 2 diabetes development was lower among females with AG and AA genotypes. CONCLUSIONS: Further research is needed to understand the effect of the A allele on fasting glucose and type 2 diabetes development. Based on our observations that other risk factors increased over time, we advocate for the continued promotion for diabetes prevention and treatment programming, and the reduction of modifiable risk factors, in this setting.


Blood Glucose , Diabetes Mellitus, Type 2 , Fasting , Humans , Female , Diabetes Mellitus, Type 2/genetics , Male , Middle Aged , Blood Glucose/metabolism , Adult , Fasting/blood , Mutation, Missense , Polymorphism, Single Nucleotide , Alleles , Samoa , Cohort Studies , Body Mass Index , Genotype , Longitudinal Studies , Cross-Sectional Studies , Aged , Tumor Suppressor Proteins
7.
Sci Rep ; 14(1): 12732, 2024 06 03.
Article En | MEDLINE | ID: mdl-38831004

Single nucleotide substitutions are the most common type of somatic mutations in cancer genome. The goal of this study was to use publicly available somatic mutation data to quantify negative and positive selection in individual lung tumors and test how strength of directional and absolute selection is associated with clinical features. The analysis found a significant variation in strength of selection (both negative and positive) among tumors, with median selection tending to be negative even though tumors with strong positive selection also exist. Strength of selection estimated as the density of missense mutations relative to the density of silent mutations showed only a weak correlation with tumor mutation burden. In the "all histology together" analysis we found that absolute strength of selection was strongly correlated with all clinically relevant features analyzed. In histology-stratified analysis selection was strongest in small cell lung cancer. Selection in adenocarcinoma was somewhat higher compared to squamous cell carcinoma. The study suggests that somatic mutation- based quantifying of directional and absolute selection in individual tumors can be a useful biomarker of tumor aggressiveness.


Lung Neoplasms , Mutation , Selection, Genetic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Biomarkers, Tumor/genetics , Mutation, Missense , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology
8.
Sci Rep ; 14(1): 10551, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719929

Our purpose was to elucidate the genotype and ophthalmological and audiological phenotype in TUBB4B-associated inherited retinal dystrophy (IRD) and sensorineural hearing loss (SNHL), and to model the effects of all possible amino acid substitutions at the hotspot codons Arg390 and Arg391. Six patients from five families with heterozygous missense variants in TUBB4B were included in this observational study. Ophthalmological testing included best-corrected visual acuity, fundus examination, optical coherence tomography, fundus autofluorescence imaging, and full-field electroretinography (ERG). Audiological examination included pure-tone and speech audiometry in adult patients and auditory brainstem response testing in a child. Genetic testing was performed by disease gene panel analysis based on genome sequencing. The molecular consequences of the substitutions of residues 390 and 391 on TUBB4B and its interaction with α-tubulin were predicted in silico on its three-dimensional structure obtained by homology modelling. Two independent patients had amino acid exchanges at position 391 (p.(Arg391His) or p.(Arg391Cys)) of the TUBB4B protein. Both had a distinct IRD phenotype with peripheral round yellowish lesions with pigmented spots and mild or moderate SNHL, respectively. Yet the phenotype was milder with a sectorial pattern of bone spicules in one patient, likely due to a genetically confirmed mosaicism for p.(Arg391His). Three patients were heterozygous for an amino acid exchange at position 390 (p.(Arg390Gln) or p.(Arg390Trp)) and presented with another distinct retinal phenotype with well demarcated pericentral retinitis pigmentosa. All showed SNHL ranging from mild to severe. One additional patient showed a variant distinct from codon 390 or 391 (p.(Tyr310His)), and presented with congenital profound hearing loss and reduced responses in ERG. Variants at codon positions 390 and 391 were predicted to decrease the structural stability of TUBB4B and its complex with α-tubulin, as well as the complex affinity. In conclusion, the twofold larger reduction in heterodimer affinity exhibited by Arg391 substitutions suggested an association with the more severe retinal phenotype, compared to the substitution at Arg390.


Codon , Hearing Loss, Sensorineural , Phenotype , Tubulin , Humans , Female , Tubulin/genetics , Tubulin/chemistry , Male , Adult , Hearing Loss, Sensorineural/genetics , Codon/genetics , Middle Aged , Mutation, Missense , Child , Pedigree , Adolescent , Amino Acid Substitution , Young Adult , Retinitis Pigmentosa/genetics
9.
Chest ; 165(5): e133-e136, 2024 May.
Article En | MEDLINE | ID: mdl-38724151

We describe the case of a young 33-year-old woman that was referred to our clinic for evidence of migrant cavitary nodules at CT scan, dyspnea, and blood sputum. Her physical examination showed translucent and thin skin, evident venous vascular pattern, vermilion of the lip thin, micrognathia, thin nose, and occasional Raynaud phenomenon. We prescribed another CT scan that showed multiple pulmonary nodules in both lungs, some of which had evidence of cavitation. Because bronchoscopy was not diagnostic, we decided to perform surgical lung biopsy. At histologic examination, we found the presence of irregularly shaped, but mainly not dendritic, foci of ossification that often contained bone marrow and were embedded or surrounded by tendinous-like fibrous tissue. After incorporating data from the histologic examination, we decided to perform genetic counseling and genetic testing with the use of whole-exome sequencing. The genetic test revealed a heterozygous de novo missense mutation of COL3A1 gene, which encodes for type III collagen synthesis, and could cause vascular Ehlers-Danlos syndrome.


Collagen Type III , Hemoptysis , Tomography, X-Ray Computed , Humans , Female , Adult , Hemoptysis/etiology , Hemoptysis/diagnosis , Collagen Type III/genetics , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/complications , Ehlers-Danlos Syndrome/genetics , Diagnosis, Differential , Mutation, Missense , Multiple Pulmonary Nodules/diagnosis , Multiple Pulmonary Nodules/diagnostic imaging , Lung/diagnostic imaging , Lung/pathology
10.
Mol Genet Genomic Med ; 12(5): e2431, 2024 May.
Article En | MEDLINE | ID: mdl-38702946

BACKGROUND: Ichthyosis is a common keratotic skin disease with high clinical, etiological and genetic heterogeneity. There are four types of non-syndromic hereditary ichthyoses, among which autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of recessive Mendelian disorders. ARCI present with different phenotypes and ABCA12 pathogenic variants have been shown to cause complex ARCI phenotypes, including harlequin ichthyosis (HI), lamellar ichthyosis (LI) and congenital ichthyosiform erythroderma (CIE). METHODS: A sporadic male patient, clinically diagnosed with CIE, was enrolled in this study. Exome sequencing was combined with Sanger sequencing to confirm the diagnosis and identify the pathogenic variants. In silico predictions were made using multiple software programs, and the identified variants were interpreted using the ACMG guidelines. A review of all literature reported ABCA12 variants was performed to explore genotype-phenotype correlations. RESULTS: Compound heterozygous ABCA12 variants [c.5381+1G>A and c.5485G>C (p.Asp1829His)] (NM_173076) were identified. The two variants were not detected in the public database. c.5381+1G>A is predicted to affect ABCA12 mRNA splicing and Asp1829 is highly conserved among various species. In silico analysis suggested that these two variants were responsible for the phenotype of the patient. Genotype-phenotype correlation analysis showed that biallelic truncation variants and/or exon/amino acid deletions in ABCA12 are the most common causes of HI. Biallelic missense variants are most common in LI and CIE. CONCLUSIONS: The compound heterozygous ABCA12 variants caused the CIE phenotype observed in the patient. The spectrum of ABCA12 pathogenic variants were broaden. Genotype-phenotype correlation analysis provided detailed evidence which can be used in future prenatal diagnosis and can inform the need for genetic counselling for patients with ABCA12-related ARCIs.


ATP-Binding Cassette Transporters , Heterozygote , Ichthyosiform Erythroderma, Congenital , Phenotype , Humans , Male , ATP-Binding Cassette Transporters/genetics , Ichthyosiform Erythroderma, Congenital/genetics , Ichthyosiform Erythroderma, Congenital/pathology , Mutation , Mutation, Missense , Genetic Association Studies , East Asian People
11.
BMC Pediatr ; 24(1): 309, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711130

Schinzel-Giedion syndrome (SGS) is a severe multisystem disorder characterized by distinctive facial features, profound intellectual disability, refractory epilepsy, cortical visual impairment, hearing loss, and various congenital anomalies. SGS is attributed to gain-of-function (GoF) variants in the SETBP1 gene, with reported variants causing canonical SGS located within a 12 bp hotspot region encoding SETBP1 residues aa868-871 (degron). Here, we describe a case of typical SGS caused by a novel heterozygous missense variant, D874V, adjacent to the degron. The female patient was diagnosed in the neonatal period and presented with characteristic facial phenotype (midface retraction, prominent forehead, and low-set ears), bilateral symmetrical talipes equinovarus, overlapping toes, and severe bilateral hydronephrosis accompanied by congenital heart disease, consistent with canonical SGS. This is the first report of a typical SGS caused by a, SETBP1 non-degron missense variant. This case expands the genetic spectrum of SGS and provides new insights into genotype-phenotype correlations.


Abnormalities, Multiple , Carrier Proteins , Hand Deformities, Congenital , Mutation, Missense , Nails, Malformed , Humans , Female , Abnormalities, Multiple/genetics , Carrier Proteins/genetics , Infant, Newborn , Nuclear Proteins/genetics , Intellectual Disability/genetics , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/complications , Clubfoot/genetics , Phenotype , Heart Defects, Congenital/genetics , Heart Defects, Congenital/complications , Degrons
12.
J Clin Invest ; 134(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38690726

Proline substitutions within the coiled-coil rod region of the ß-myosin gene (MYH7) are the predominant mutations causing Laing distal myopathy (MPD1), an autosomal dominant disorder characterized by progressive weakness of distal/proximal muscles. We report that the MDP1 mutation R1500P, studied in what we believe to be the first mouse model for the disease, adversely affected myosin motor activity despite being in the structural rod domain that directs thick filament assembly. Contractility experiments carried out on isolated mutant muscles, myofibrils, and myofibers identified muscle fatigue and weakness phenotypes, an increased rate of actin-myosin detachment, and a conformational shift of the myosin heads toward the more reactive disordered relaxed (DRX) state, causing hypercontractility and greater ATP consumption. Similarly, molecular analysis of muscle biopsies from patients with MPD1 revealed a significant increase in sarcomeric DRX content, as observed in a subset of myosin motor domain mutations causing hypertrophic cardiomyopathy. Finally, oral administration of MYK-581, a small molecule that decreases the population of heads in the DRX configuration, significantly improved the limited running capacity of the R1500P-transgenic mice and corrected the increased DRX state of the myofibrils from patients. These studies provide evidence of the molecular pathogenesis of proline rod mutations and lay the groundwork for the therapeutic advancement of myosin modulators.


Amino Acid Substitution , Distal Myopathies , Proline , Animals , Mice , Humans , Proline/genetics , Proline/metabolism , Distal Myopathies/genetics , Distal Myopathies/metabolism , Distal Myopathies/pathology , Mutation, Missense , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/chemistry , Female , Male , Mice, Transgenic , Muscle Contraction/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology
13.
Sci Rep ; 14(1): 12148, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802532

MPS III is an autosomal recessive lysosomal storage disease caused mainly by missense variants in the NAGLU, GNS, HGSNAT, and SGSH genes. The pathogenicity interpretation of missense variants is still challenging. We aimed to develop unsupervised clustering-based pathogenicity predictor scores using extracted features from eight in silico predictors to predict the impact of novel missense variants of Sanfilippo syndrome. The model was trained on a dataset consisting of 415 uncertain significant (VUS) missense NAGLU variants. Performance The SanfilippoPred tool was evaluated by validation and test datasets consisting of 197-labelled NAGLU missense variants, and its performance was compared versus individual pathogenicity predictors using receiver operating characteristic (ROC) analysis. Moreover, we tested the SanfilippoPred tool using extra-labelled 427 missense variants to assess its specificity and sensitivity threshold. Application of the trained machine learning (ML) model on the test dataset of labelled NAGLU missense variants showed that SanfilippoPred has an accuracy of 0.93 (0.86-0.97 at CI 95%), sensitivity of 0.93, and specificity of 0.92. The comparative performance of the SanfilippoPred showed better performance (AUC = 0.908) than the individual predictors SIFT (AUC = 0.756), Polyphen-2 (AUC = 0.788), CADD (AUC = 0.568), REVEL (AUC = 0.548), MetaLR (AUC = 0.751), and AlphMissense (AUC = 0.885). Using high-confidence labelled NAGLU variants, showed that SanfilippoPred has an 85.7% sensitivity threshold. The poor correlation between the Sanfilippo syndrome phenotype and genotype represents a demand for a new tool to classify its missense variants. This study provides a significant tool for preventing the misinterpretation of missense variants of the Sanfilippo syndrome-relevant genes. Finally, it seems that ML-based pathogenicity predictors and Sanfilippo syndrome-specific prediction tools could be feasible and efficient pathogenicity predictors in the future.


Bayes Theorem , Mucopolysaccharidosis III , Mutation, Missense , Mucopolysaccharidosis III/genetics , Humans , Machine Learning , ROC Curve , Computational Biology/methods , Normal Distribution
14.
Article En | MEDLINE | ID: mdl-38737299

Background: Tremor disorders have various genetic causes. Case report: A 60-year-old female with a family history of tremor presented a combined tremor syndrome, transient episodes of loss of contact and speech disturbances, as well as distal painful symptoms. Genetic screening revealed a novel heterozygous missense variant in the KCNQ2 gene. Discussion: The KCNQ2 protein regulates action potential firing, and mutations in its gene are associated with epilepsy and neuropathic pain. The identified variant, although of uncertain significance, may disrupt KCNQ2 function and also play a role in tremor pathogenesis. This case highlights the importance of genetic screening in combined tremor disorders.


KCNQ2 Potassium Channel , Mutation, Missense , Tremor , Humans , Female , KCNQ2 Potassium Channel/genetics , Middle Aged , Tremor/genetics , Tremor/physiopathology
15.
Elife ; 122024 May 10.
Article En | MEDLINE | ID: mdl-38727583

Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer for cones. Our goal was to learn more of TXNIP's structure-function relationships for cone survival, as well as determine the optimal cell type expression pattern for cone survival. The C-terminal half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-interactor which regulates metabolism, improved the survival of cones alone and was additive for cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP interacts with several proteins in the RPE to indirectly support cone survival, with some of these interactions different from those that lead to cone survival when expressed only in cones.


Carrier Proteins , Disease Models, Animal , Retinal Cone Photoreceptor Cells , Retinitis Pigmentosa , Animals , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Mice , Carrier Proteins/genetics , Carrier Proteins/metabolism , Mutation, Missense , Cell Survival , Alleles , Gene Deletion , Thioredoxins/genetics , Thioredoxins/metabolism , Retinal Pigment Epithelium/metabolism
16.
BMC Med Genomics ; 17(1): 130, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745205

BACKGROUND: Whole exome sequencing allows rapid identification of causative single nucleotide variants and short insertions/deletions in children with congenital anomalies and/or intellectual disability, which aids in accurate diagnosis, prognosis, appropriate therapeutic interventions, and family counselling. Recently, de novo variants in the MED13 gene were described in patients with an intellectual developmental disorder that included global developmental delay, mild congenital heart anomalies, and hearing and vision problems in some patients. RESULTS: Here we describe an infant who carried a de novo p.Pro835Ser missense variant in the MED13 gene, according to whole exome trio sequencing. He presented with congenital heart anomalies, dysmorphic features, hydrocephalic changes, hypoplastic corpus callosum, bilateral optic nerve atrophy, optic chiasm atrophy, brain stem atrophy, and overall a more severe condition compared to previously described patients. CONCLUSIONS: Therefore, we propose to expand the MED13-associated phenotype to include severe complications that could end up with multiple organ failure and neonatal death.


Abnormalities, Multiple , Mediator Complex , Mutation, Missense , Phenotype , Humans , Male , Mediator Complex/genetics , Abnormalities, Multiple/genetics , Infant , Infant, Newborn , Syndrome , Exome Sequencing
17.
Sci Data ; 11(1): 495, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744964

Single amino acid substitutions can profoundly affect protein folding, dynamics, and function. The ability to discern between benign and pathogenic substitutions is pivotal for therapeutic interventions and research directions. Given the limitations in experimental examination of these variants, AlphaMissense has emerged as a promising predictor of the pathogenicity of missense variants. Since heterogenous performance on different types of proteins can be expected, we assessed the efficacy of AlphaMissense across several protein groups (e.g. soluble, transmembrane, and mitochondrial proteins) and regions (e.g. intramembrane, membrane interacting, and high confidence AlphaFold segments) using ClinVar data for validation. Our comprehensive evaluation showed that AlphaMissense delivers outstanding performance, with MCC scores predominantly between 0.6 and 0.74. We observed low performance on disordered datasets and ClinVar data related to the CFTR ABC protein. However, a superior performance was shown when benchmarked against the high quality CFTR2 database. Our results with CFTR emphasizes AlphaMissense's potential in pinpointing functional hot spots, with its performance likely surpassing benchmarks calculated from ClinVar and ProteinGym datasets.


Databases, Protein , Proteins , Humans , Amino Acid Substitution , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Mutation, Missense , Protein Folding , Proteins/chemistry , Proteins/genetics
18.
Hum Genet ; 143(5): 721-734, 2024 May.
Article En | MEDLINE | ID: mdl-38691166

TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.


Genetic Association Studies , Hearing Loss , Membrane Proteins , Serine Endopeptidases , Humans , Female , Male , Serine Endopeptidases/genetics , Adult , Membrane Proteins/genetics , Hearing Loss/genetics , Child , Middle Aged , Adolescent , Child, Preschool , Genotype , Cohort Studies , Phenotype , Mutation, Missense , Cross-Sectional Studies , Young Adult , Retrospective Studies , Aged , Neoplasm Proteins
19.
Mol Cell ; 84(10): 1932-1947.e10, 2024 May 16.
Article En | MEDLINE | ID: mdl-38703769

Mutations in transporters can impact an individual's response to drugs and cause many diseases. Few variants in transporters have been evaluated for their functional impact. Here, we combine saturation mutagenesis and multi-phenotypic screening to dissect the impact of 11,213 missense single-amino-acid deletions, and synonymous variants across the 554 residues of OCT1, a key liver xenobiotic transporter. By quantifying in parallel expression and substrate uptake, we find that most variants exert their primary effect on protein abundance, a phenotype not commonly measured alongside function. Using our mutagenesis results combined with structure prediction and molecular dynamic simulations, we develop accurate structure-function models of the entire transport cycle, providing biophysical characterization of all known and possible human OCT1 polymorphisms. This work provides a complete functional map of OCT1 variants along with a framework for integrating functional genomics, biophysical modeling, and human genetics to predict variant effects on disease and drug efficacy.


Molecular Dynamics Simulation , Humans , HEK293 Cells , Structure-Activity Relationship , Mutation, Missense , Pharmacogenetics , Phenotype , Organic Cation Transporter 1/genetics , Organic Cation Transporter 1/metabolism , Mutation , Protein Conformation , Biological Transport , Octamer Transcription Factor-1
20.
Sci Immunol ; 9(95): eade5705, 2024 May 24.
Article En | MEDLINE | ID: mdl-38787962

Inborn errors of T cell development present a pediatric emergency in which timely curative therapy is informed by molecular diagnosis. In 11 affected patients across four consanguineous kindreds, we detected homozygosity for a single deleterious missense variant in the gene NudC domain-containing 3 (NUDCD3). Two infants had severe combined immunodeficiency with the complete absence of T and B cells (T -B- SCID), whereas nine showed classical features of Omenn syndrome (OS). Restricted antigen receptor gene usage by residual T lymphocytes suggested impaired V(D)J recombination. Patient cells showed reduced expression of NUDCD3 protein and diminished ability to support RAG-mediated recombination in vitro, which was associated with pathologic sequestration of RAG1 in the nucleoli. Although impaired V(D)J recombination in a mouse model bearing the homologous variant led to milder immunologic abnormalities, NUDCD3 is absolutely required for healthy T and B cell development in humans.


Severe Combined Immunodeficiency , V(D)J Recombination , Humans , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Animals , Mice , V(D)J Recombination/immunology , V(D)J Recombination/genetics , Male , Female , Infant , B-Lymphocytes/immunology , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , T-Lymphocytes/immunology , Child, Preschool , Mutation, Missense
...