Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.687
Filter
1.
FASEB J ; 38(13): e23797, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38963344

ABSTRACT

The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.


Subject(s)
Cell Differentiation , Endoplasmic Reticulum Chaperone BiP , Muscle, Skeletal , Myoblasts , Receptor, IGF Type 1 , Signal Transduction , Tunicamycin , Animals , Mice , Glycosylation , Myoblasts/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Tunicamycin/pharmacology , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Muscle, Skeletal/metabolism , Muscle Development/physiology , Cell Line , Mice, Transgenic , Endoplasmic Reticulum Stress , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics
2.
Cell Death Dis ; 15(7): 470, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956034

ABSTRACT

The present study aims to develop and characterize a controlled-release delivery system for protein therapeutics in skeletal muscle regeneration following an acute injury. The therapeutic protein, a membrane-GPI anchored protein called Cripto, was immobilized in an injectable hydrogel delivery vehicle for local administration and sustained release. The hydrogel was made of poly(ethylene glycol)-fibrinogen (PEG-Fibrinogen, PF), in the form of injectable microspheres. The PF microspheres exhibited a spherical morphology with an average diameter of approximately 100 micrometers, and the Cripto protein was uniformly entrapped within them. The release rate of Cripto from the PF microspheres was controlled by tuning the crosslinking density of the hydrogel, which was varied by changing the concentration of poly(ethylene glycol) diacrylate (PEG-DA) crosslinker. In vitro experiments confirmed a sustained-release profile of Cripto from the PF microspheres for up to 27 days. The released Cripto was biologically active and promoted the in vitro proliferation of mouse myoblasts. The therapeutic effect of PF-mediated delivery of Cripto in vivo was tested in a cardiotoxin (CTX)-induced muscle injury model in mice. The Cripto caused an increase in the in vivo expression of the myogenic markers Pax7, the differentiation makers eMHC and Desmin, higher numbers of centro-nucleated myofibers and greater areas of regenerated muscle tissue. Collectively, these results establish the PF microspheres as a potential delivery system for the localized, sustained release of therapeutic proteins toward the accelerated repair of damaged muscle tissue following acute injuries.


Subject(s)
Delayed-Action Preparations , Muscle, Skeletal , Polyethylene Glycols , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/injuries , Muscle, Skeletal/drug effects , Mice , Polyethylene Glycols/chemistry , Microspheres , Fibrinogen/metabolism , Hydrogels/chemistry , Regeneration/drug effects , Myoblasts/metabolism , Myoblasts/drug effects , Humans , Cell Proliferation/drug effects , PAX7 Transcription Factor/metabolism , Male , Mice, Inbred C57BL , Muscular Diseases/drug therapy , Muscular Diseases/pathology , Muscular Diseases/metabolism
3.
Zool Res ; 45(4): 951-960, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39021083

ABSTRACT

Tumor necrosis factor α (TNFα) exhibits diverse biological functions; however, its regulatory roles in myogenesis are not fully understood. In the present study, we explored the function of TNFα in myoblast proliferation, differentiation, migration, and myotube fusion in primary myoblasts and C2C12 cells. To this end, we constructed TNFα muscle-conditional knockout ( TNFα-CKO) mice and compared them with flox mice to assess the effects of TNFα knockout on skeletal muscles. Results indicated that TNFα-CKO mice displayed phenotypes such as accelerated muscle development, enhanced regenerative capacity, and improved exercise endurance compared to flox mice, with no significant differences observed in major visceral organs or skeletal structure. Using label-free proteomic analysis, we found that TNFα-CKO altered the distribution of several muscle development-related proteins, such as Hira, Casz1, Casp7, Arhgap10, Gas1, Diaph1, Map3k20, Cfl2, and Igf2, in the nucleus and cytoplasm. Gene set enrichment analysis (GSEA) further revealed that TNFα deficiency resulted in positive enrichment in oxidative phosphorylation and MyoD targets and negative enrichment in JAK-STAT signaling. These findings suggest that TNFα-CKO positively regulates muscle growth and development, possibly via these newly identified targets and pathways.


Subject(s)
Mice, Knockout , Muscle Development , Muscle, Skeletal , Regeneration , Tumor Necrosis Factor-alpha , Animals , Muscle Development/physiology , Mice , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Cell Line , Cell Differentiation , Myoblasts/metabolism , Myoblasts/physiology
4.
FASEB J ; 38(14): e23808, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38994637

ABSTRACT

Muscle development is a multistep process regulated by diverse gene networks, and circRNAs are considered novel regulators mediating myogenesis. Here, we systematically analyzed the role and underlying regulatory mechanisms of circRBBP7 in myoblast proliferation and differentiation. Results showed that circRBBP7 has a typical circular structure and encodes a 13 -kDa protein. By performing circRBBP7 overexpression and RNA interference, we found that the function of circRBBP7 was positively correlated with the proliferation and differentiation of myoblasts. Using RNA sequencing, we identified 1633 and 532 differentially expressed genes (DEGs) during myoblast proliferation or differentiation, respectively. The DEGs were found mainly enriched in cell cycle- and skeletal muscle development-related pathways, such as the MDM2/p53 and PI3K-Akt signaling pathways. Further co-IP and IF co-localization analysis revealed that VEGFR-1 is a target of circRBBP7 in myoblasts. qRT-PCR and WB analysis further confirmed the positive correlation between VEGFR-1 and circRBBP7. Moreover, we found that in vivo transfection of circRBBP7 into injured muscle tissues significantly promoted the regeneration and repair of myofibers in mice. Therefore, we speculate that circRBBP7 may affect the activity of MDM2 by targeting VEGFR-1, altering the expression of muscle development-related genes by mediating p53 degradation, and ultimately promoting myoblast development and muscle regeneration. This study provides essential evidence that circRBBP7 can serve as a potential target for myogenesis regulation and a reference for the application of circRBBP7 in cattle genetic breeding and muscle injury treatment.


Subject(s)
Cell Differentiation , Cell Proliferation , Muscle Development , Myoblasts , RNA, Circular , Animals , Male , Mice , Cell Line , Mice, Inbred C57BL , Muscle Development/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Myoblasts/metabolism , Myoblasts/cytology , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
5.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000437

ABSTRACT

Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme originally found in the brain. Our previous work revealed that UCHL1 was also expressed in skeletal muscle and affected myoblast differentiation and metabolism. In this study, we further tested the role of UCHL1 in myogenesis and muscle regeneration following muscle ischemia-reperfusion (IR) injury. In the C2C12 myoblast, UCHL1 knockdown upregulated MyoD and myogenin and promoted myotube formation. The skeletal muscle-specific knockout (smKO) of UCHL1 increased muscle fiber sizes in young mice (1 to 2 months old) but not in adult mice (3 months old). In IR-injured hindlimb muscle, UCHL1 was upregulated. UCHL1 smKO ameliorated tissue damage and injury-induced inflammation. UCHL1 smKO also upregulated myogenic factors and promoted functional recovery in IR injury muscle. Moreover, UCHL1 smKO increased Akt and Pink1/Parkin activities. The overall results suggest that skeletal muscle UCHL1 is a negative factor in skeletal muscle development and recovery following IR injury and therefore is a potential therapeutic target to improve muscle regeneration and functional recovery following injuries.


Subject(s)
Mice, Knockout , Muscle Development , Muscle, Skeletal , Ubiquitin Thiolesterase , Animals , Male , Mice , Cell Differentiation , Cell Line , Mice, Inbred C57BL , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/injuries , Myoblasts/metabolism , Regeneration , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Female
6.
Cells ; 13(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38995013

ABSTRACT

Skeletal muscle regeneration after injury is a complex process involving inflammatory signaling and myoblast activation. Pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) are key mediators, but their effects on gene expression in proliferating myoblasts are unclear. We performed the RNA sequencing of TNF-α treated C2C12 myoblasts to elucidate the signaling pathways and gene networks regulated by TNF-α during myoblast proliferation. The TNF-α (10 ng/mL) treatment of C2C12 cells led to 958 differentially expressed genes compared to the controls. Pathway analysis revealed significant regulation of TNF-α signaling, along with the chemokine and IL-17 pathways. Key upregulated genes included cytokines (e.g., IL-6), chemokines (e.g., CCL7), and matrix metalloproteinases (MMPs). TNF-α increased myogenic factor 5 (Myf5) but decreased MyoD protein levels and stimulated the release of MMP-9, MMP-10, and MMP-13. TNF-α also upregulates versican and myostatin mRNA. Overall, our study demonstrates the TNF-α modulation of distinct gene expression patterns and signaling pathways that likely contribute to enhanced myoblast proliferation while suppressing premature differentiation after muscle injury. Elucidating the mechanisms involved in skeletal muscle regeneration can aid in the development of regeneration-enhancing therapeutics.


Subject(s)
Cell Proliferation , Myoblasts , Signal Transduction , Tumor Necrosis Factor-alpha , Myoblasts/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Cell Proliferation/drug effects , Animals , Mice , Cell Line , Chemokines/metabolism , Chemokines/genetics , Cytokines/metabolism , Cytokines/genetics , Gene Expression Regulation/drug effects
7.
Biomed Res ; 45(4): 173-177, 2024.
Article in English | MEDLINE | ID: mdl-39010193

ABSTRACT

Sarcopenia is a common complication of chronic kidney disease (CKD) and has a detrimental effect on prognosis. Previous studies have explored the role of secondary calciprotein particles (CPP2) in determining the progression of complications and poor outcomes in patients with CKD. However, no study has demonstrated that CPP2 impairs skeletal myogenesis. Our study revealed that CPP2 exposure inhibits skeletal myogenesis by suppressing myotube formation and expression of skeletal muscle-specific myosin heavy chain and actin in human primary myoblasts. Moreover, CPP2 exposure altered the expression patterns of lineage-determinative transcription factors responsible for regulating myotube differentiation marker genes. This study first demonstrated that CPP2 interferes with myoblast differentiation and myotube formation in vitro.


Subject(s)
Cell Differentiation , Muscle Development , Myoblasts , Humans , Myoblasts/metabolism , Myoblasts/cytology , Cells, Cultured , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Gene Expression Regulation
8.
Nat Cell Biol ; 26(7): 1212-1224, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961283

ABSTRACT

Despite the demonstrated importance of DNA G-quadruplexes (G4s) in health and disease, technologies to readily manipulate specific G4 folding for functional analysis and therapeutic purposes are lacking. Here we employ G4-stabilizing protein/ligand in conjunction with CRISPR to selectively facilitate single or multiple targeted G4 folding within specific genomic loci. We demonstrate that fusion of nucleolin with a catalytically inactive Cas9 can specifically stabilize G4s in the promoter of oncogene MYC and muscle-associated gene Itga7 as well as telomere G4s, leading to cell proliferation arrest, inhibition of myoblast differentiation and cell senescence, respectively. Furthermore, CRISPR can confer intra-G4 selectivity to G4-binding compounds pyridodicarboxamide and pyridostatin. Compared with traditional G4 ligands, CRISPR-guided biotin-conjugated pyridodicarboxamide enables a more precise investigation into the biological functionality of de novo G4s. Our study provides insights that will enhance understanding of G4 functions and therapeutic interventions.


Subject(s)
CRISPR-Cas Systems , G-Quadruplexes , Nucleolin , RNA-Binding Proteins , Humans , Ligands , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Picolinic Acids/pharmacology , Picolinic Acids/chemistry , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Animals , Cellular Senescence/drug effects , Cellular Senescence/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Promoter Regions, Genetic , Telomere/metabolism , Telomere/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Pyridines/pharmacology , Pyridines/chemistry , DNA/metabolism , DNA/genetics , Mice , Clustered Regularly Interspaced Short Palindromic Repeats , HEK293 Cells , Myoblasts/metabolism , Myoblasts/cytology , Aminoquinolines
9.
Mol Biol Rep ; 51(1): 840, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042282

ABSTRACT

BACKGROUND: MiR-486-5p has been identified as a crucial regulator of the PI3K/AKT signalling pathway, which plays a significant role in skeletal muscle development. Its host gene, sANK1, is also essential for skeletal muscle development. However, the understanding of porcine miR-486-5p and sANK1 has been limited. METHODS AND RESULTS: In this study, PCR analyses revealed a positive correlation between the expression of miR-486-5p and sANK1 in the longissimus dorsi muscle of the Bama mini-pig and Landrace-pig, as well as during myoblast differentiation. Furthermore, the expression of miR-486-5p/sANK1 was higher in the Bama mini-pig compared to the Landrace-pig. There was a total of 18 single nucleotide polymorphisms (SNP) present in the sANK1 promoter region. Among these SNPs, 14 of them resulted in alterations in transcription factor binding sites (TFBs). Additionally, the promoter fluorescence assay demonstrated that the activity of the sANK1 promoter derived from the Bama mini-pig was significantly higher compared to Landrace-pig. It is worth noting that ten regulatory SNPs have the potential to influence the activity of the sANK1 promoter. A nuclear mutation A-G located at position - 401 (relative to the transcription start site) in the Bama mini-pig was identified, which creates a putative TFB motif for MyoD. CONCLUSIONS: The findings presented in this study offer fundamental molecular knowledge and expression patterns of miR-486-5p/sANK1, which can be valuable for gaining a deeper understanding of the gene's involvement in porcine skeletal muscle development, and meat quality.


Subject(s)
MicroRNAs , Muscle, Skeletal , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Swine/genetics , Muscle, Skeletal/metabolism , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Muscle Development/genetics , Cell Differentiation/genetics , Myoblasts/metabolism , Gene Expression Regulation/genetics , Binding Sites , MyoD Protein/genetics , MyoD Protein/metabolism , Signal Transduction/genetics
10.
Sci Rep ; 14(1): 15696, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977909

ABSTRACT

As the largest organ in the human body, skeletal muscle is essential for breathing support, movement initiation, and maintenance homeostasis. It has been shown that programmed cell death (PCD), which includes autophagy, apoptosis, and necrosis, is essential for the development of skeletal muscle. A novel form of PCD called ferroptosis is still poorly understood in relation to skeletal muscle. In this study, we observed that the activation of ferroptosis significantly impeded the differentiation of C2C12 myoblasts into myotubes and concurrently suppressed the expression of OTUB1, a crucial deubiquitinating enzyme. OTUB1-silenced C2C12 mouse myoblasts were used to investigate the function of OTUB1 in ferroptosis. The results show that OTUB1 knockdown in vitro significantly increased C2C12 ferroptosis and inhibited myogenesis. Interestingly, the induction of ferroptosis resulting from OTUB1 knockdown was concomitant with the activation of autophagy. Furthermore, OTUB1 interacted with the P62 protein and stabilized its expression by deubiquitinating it, thereby inhibiting autophagy-dependent ferroptosis and promoting myogenesis. All of these findings demonstrate the critical role that OTUB1 plays in controlling ferroptosis, and we suggest that focusing on the OTUB1-P62 axis may be a useful tactic in the treatment and prevention of disorders involving the skeletal muscle.


Subject(s)
Autophagy , Cell Differentiation , Cysteine Endopeptidases , Ferroptosis , Muscle Development , Muscle Fibers, Skeletal , Myoblasts , Animals , Mice , Muscle Fibers, Skeletal/metabolism , Ferroptosis/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Myoblasts/metabolism , Myoblasts/cytology , Cell Line , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/genetics , Ubiquitination , Humans , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics
11.
J Agric Food Chem ; 72(28): 15530-15540, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38963795

ABSTRACT

The skeletal muscle is the major muscle tissue in animals, and its production is subject to a complex and strict regulation. The proliferation and differentiation of myoblasts are important factors determining chicken muscle development. Circular RNAs (circRNAs) are endogenous RNAs that are widely present in various tissues of organisms. Recent studies have shown that circRNA plays key roles in the development of skeletal muscles. The solute carrier (SLC) family functions in the transport of metabolites such as amino acids, glucose, nucleotides, and essential nutrients and is widely involved in various basic physiological metabolic processes within the body. In this study, we have cloned a novel chicken circular RNA circSLC2A13 generated from the solute carrier family 2 member 13 gene (SLC2A13). Also, circSLC2A1 was confirmed by sequencing verification, RNase R treatment, and reverse transcription analysis. Currently, our results show that circSLC2A13 promoted the proliferation and differentiation of chicken myoblasts. The double luciferase reporter system revealed that circSLC2A13 regulated the proliferation and differentiation of myoblasts by competitive binding with miR-34a-3p. In addition, results indicated that circSLC2A13 acts as a miR-34a-3p sponge to relieve its inhibitory effect on the target SMAD3 gene. In summary, this study found that chicken circSLC2A13 can bind to miR-34a-3p and weaken its inhibitory effect on the SMAD family member 3 gene (SMAD3), thereby promoting the proliferation and differentiation of myoblasts. This study laid foundations for broiler industry and muscle development research.


Subject(s)
Cell Differentiation , Cell Proliferation , Chickens , MicroRNAs , Muscle Development , Muscle, Skeletal , Myoblasts , RNA, Circular , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Chickens/genetics , Chickens/growth & development , Chickens/metabolism , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Myoblasts/metabolism , Myoblasts/cytology
12.
Nat Commun ; 15(1): 5403, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926363

ABSTRACT

Idiopathic inflammatory myopathies (IIMs) are severe autoimmune diseases with poorly understood pathogenesis and unmet medical needs. Here, we examine the role of interferon γ (IFNγ) using NOD female mice deficient in the inducible T cell co-stimulator (Icos), which have previously been shown to develop spontaneous IFNγ-driven myositis mimicking human disease. Using muscle proteomic and spatial transcriptomic analyses we reveal profound myofiber metabolic dysregulation in these mice. In addition, we report muscle mitochondrial abnormalities and oxidative stress in diseased mice. Supporting a pathogenic role for oxidative stress, treatment with a reactive oxygen species (ROS) buffer compound alleviated myositis, preserved muscle mitochondrial ultrastructure and respiration, and reduced inflammation. Mitochondrial anomalies and oxidative stress were diminished following anti-IFNγ treatment. Further transcriptomic analysis in IIMs patients and human myoblast in vitro studies supported the link between IFNγ and mitochondrial dysfunction observed in mice. These results suggest that mitochondrial dysfunction, ROS and inflammation are interconnected in a self-maintenance loop, opening perspectives for mitochondria therapy and/or ROS targeting drugs in myositis.


Subject(s)
Interferon-gamma , Myositis , Oxidative Stress , Reactive Oxygen Species , Animals , Interferon-gamma/metabolism , Myositis/metabolism , Myositis/pathology , Myositis/genetics , Humans , Female , Reactive Oxygen Species/metabolism , Mice , Mice, Inbred NOD , Mitochondria/metabolism , Mitochondria/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Disease Models, Animal , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Mice, Knockout , Myoblasts/metabolism
13.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928510

ABSTRACT

The decline in the function and mass of skeletal muscle during aging or other pathological conditions increases the incidence of aging-related secondary diseases, ultimately contributing to a decreased lifespan and quality of life. Much effort has been made to surmise the molecular mechanisms underlying muscle atrophy and develop tools for improving muscle function. Enhancing mitochondrial function is considered critical for increasing muscle function and health. This study is aimed at evaluating the effect of an aqueous extract of Gloiopeltis tenax (GTAE) on myogenesis and muscle atrophy caused by dexamethasone (DEX). The GTAE promoted myogenic differentiation, accompanied by an increase in peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) expression and mitochondrial content in myoblast cell culture. In addition, the GTAE alleviated the DEX-mediated myotube atrophy that is attributable to the Akt-mediated inhibition of the Atrogin/MuRF1 pathway. Furthermore, an in vivo study using a DEX-induced muscle atrophy mouse model demonstrated the efficacy of GTAE in protecting muscles from atrophy and enhancing mitochondrial biogenesis and function, even under conditions of atrophy. Taken together, this study suggests that the GTAE shows propitious potential as a nutraceutical for enhancing muscle function and preventing muscle wasting.


Subject(s)
Dexamethasone , Muscle Development , Muscular Atrophy , Plant Extracts , Animals , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Dexamethasone/adverse effects , Dexamethasone/pharmacology , Muscle Development/drug effects , Mice , Plant Extracts/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Cell Differentiation/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Cell Line , Muscle Proteins/metabolism , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Mice, Inbred C57BL , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Rhodophyta
14.
Ecotoxicol Environ Saf ; 281: 116607, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908055

ABSTRACT

Deoxynivalenol (DON), commonly known as vomitoxin, is a mycotoxin produced by fungi and is frequently found as a contaminant in various cereal-based food worldwide. While the harmful effects of DON have been extensively studied in different tissues, its specific impact on the proliferation of skeletal muscle cells remains unclear. In this study, we utilized murine C2C12 myoblasts as a model to explore the influence of DON on their proliferation. Our observations indicated that DON exhibits dose-dependent toxicity, significantly inhibiting the proliferation of C2C12 cells. Through the application of RNA-seq analysis combined with gene set enrichment analysis, we identified a noteworthy downregulation of genes linked to the extracellular matrix (ECM) and condensed chromosome. Concurrently with the reduced expression of ECM genes, immunostaining analysis revealed notable changes in the distribution of fibronectin, a vital ECM component, condensing into clusters and punctate formations. Remarkably, the exposure to DON induced the formation of multipolar spindles, leading to the disruption of the normal cell cycle. This, in turn, activated the p53-p21 signaling pathway and ultimately resulted in apoptosis. These findings contribute significant insights into the mechanisms through which DON induces toxicity within skeletal muscle cells.


Subject(s)
Apoptosis , Myoblasts , Trichothecenes , Animals , Trichothecenes/toxicity , Apoptosis/drug effects , Mice , Myoblasts/drug effects , Cell Line , Mitosis/drug effects , Cell Proliferation/drug effects , Signal Transduction/drug effects , Extracellular Matrix/drug effects
15.
FASEB J ; 38(12): e23742, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38865203

ABSTRACT

Mitochondrial disease is a devastating genetic disorder, with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and m.3243A>G being the most common phenotype and genotype, respectively. The treatment for MELAS patients is still less effective. Here, we performed transcriptomic and proteomic analysis in muscle tissue of MELAS patients, and discovered that the expression of molecules involved in serine catabolism were significantly upregulated, and serine hydroxymethyltransferase 2 (SHMT2) increased significantly in both the mRNA and protein levels. The SHMT2 protein level was also increased in myoblasts with m.3243A>G mutation, which was transdifferentiated from patients derived fibroblasts, accompanying with the decreased nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) ratio and cell viability. After treating with SHMT2 inhibitor (SHIN1), the NAD+/NADH ratio and cell viability in MELAS myoblasts increased significantly. Taken together, our study indicates that enhanced serine catabolism plays an important role in the pathogenesis of MELAS and that SHIN1 can be a potential small molecule for the treatment of this disease.


Subject(s)
Glycine Hydroxymethyltransferase , MELAS Syndrome , Serine , Humans , MELAS Syndrome/metabolism , MELAS Syndrome/genetics , MELAS Syndrome/pathology , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/genetics , Serine/metabolism , Myoblasts/metabolism , NAD/metabolism , Male , Proteomics/methods , Female , Transcriptome , Multiomics
16.
Nutrients ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38892515

ABSTRACT

Fructose is a commonly consumed monosaccharide implicated in developing several metabolic diseases. Previously, elevated branched-chain amino acids (BCAA) have been correlated with the severity of insulin resistance. Most recently, the effect of fructose consumption on the downregulation of BCAA catabolic enzymes was observed. Thus, this mechanistic study investigated the effects of physiologically attainable levels of fructose, both with and without concurrent insulin resistance, in a myotube model of skeletal muscle. METHODS: C2C12 mouse myoblasts were treated with fructose at a concentration of 100 µM (which approximates physiologically attainable concentrations in peripheral circulation) both with and without hyperinsulinemic-mediated insulin resistance. Gene expression was assessed by qRT-PCR, and protein expression was assessed by Western blot. Oxygen consumption rate and extracellular acidification rate were used to assess mitochondrial oxidative and glycolytic metabolism, respectively. Liquid chromatography-mass spectrometry was utilized to analyze leucine, isoleucine and valine concentration values. RESULTS: Fructose significantly reduced peak glycolytic and peak mitochondrial metabolism without altering related gene or protein expression. Similarly, no effect of fructose on BCAA catabolic enzymes was observed; however, fructose treatment resulted in elevated total extracellular BCAA in insulin-resistant cells. DISCUSSION: Collectively, these observations demonstrate that fructose at physiologically attainable levels does not appear to alter insulin sensitivity or BCAA catabolic potential in cultured myotubes. However, fructose may depress peak cell metabolism and BCAA utilization during insulin resistance.


Subject(s)
Amino Acids, Branched-Chain , Fructose , Insulin Resistance , Muscle Fibers, Skeletal , Animals , Fructose/pharmacology , Amino Acids, Branched-Chain/metabolism , Mice , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Cell Line , Mitochondria/metabolism , Mitochondria/drug effects , Glycolysis/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Oxygen Consumption/drug effects
17.
Int J Med Sci ; 21(8): 1461-1471, 2024.
Article in English | MEDLINE | ID: mdl-38903922

ABSTRACT

Dasatinib is one of the second-generation tyrosine kinase inhibitors used to treat chronic myeloid leukemia and has a broad target spectrum, including KIT, PDGFR, and SRC family kinases. Due to its broad drug spectrum, dasatinib has been reported at the basic research level to improve athletic performance by eliminating senescent cell removal and to have an effect on muscle diseases such as Duchenne muscular dystrophy, but its effect on myoblasts has not been investigated. In this study, we evaluated the effects of dasatinib on skeletal muscle both under normal conditions and in the regenerating state. Dasatinib suppressed the proliferation and promoted the fusion of C2C12 myoblasts. During muscle regeneration, dasatinib increased the gene expressions of myogenic-related genes (Myod, Myog, and Mymx), and caused abnormally thin muscle fibers on the CTX-induced muscle injury mouse model. From these results, dasatinib changes the closely regulated gene expression pattern of myogenic regulatory factors during muscle differentiation and disrupts normal muscle regeneration. Our data suggest that when using dasatinib, its effects on skeletal muscle should be considered, particularly at regenerating stages.


Subject(s)
Cell Differentiation , Dasatinib , Muscle Development , Muscle, Skeletal , Myoblasts , Regeneration , Dasatinib/pharmacology , Animals , Mice , Regeneration/drug effects , Cell Differentiation/drug effects , Muscle Development/drug effects , Muscle Development/genetics , Muscle, Skeletal/drug effects , Myoblasts/drug effects , Myoblasts/metabolism , Myoblasts/cytology , Cell Proliferation/drug effects , Humans , Cell Line , Protein Kinase Inhibitors/pharmacology
18.
FASEB J ; 38(11): e23702, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38837439

ABSTRACT

Pyruvate kinase is a glycolytic enzyme that converts phosphoenolpyruvate and ADP into pyruvate and ATP. There are two genes that encode pyruvate kinase in vertebrates; Pkm and Pkl encode muscle- and liver/erythrocyte-specific forms, respectively. Each gene encodes two isoenzymes due to alternative splicing. Both muscle-specific enzymes, PKM1 and PKM2, function in glycolysis, but PKM2 also has been implicated in gene regulation due to its ability to phosphorylate histone 3 threonine 11 (H3T11) in cancer cells. Here, we examined the roles of PKM1 and PKM2 during myoblast differentiation. RNA-seq analysis revealed that PKM2 promotes the expression of Dpf2/Baf45d and Baf250a/Arid1A. DPF2 and BAF250a are subunits that identify a specific sub-family of the mammalian SWI/SNF (mSWI/SNF) of chromatin remodeling enzymes that is required for the activation of myogenic gene expression during differentiation. PKM2 also mediated the incorporation of DPF2 and BAF250a into the regulatory sequences controlling myogenic gene expression. PKM1 did not affect expression but was required for nuclear localization of DPF2. Additionally, PKM2 was required not only for the incorporation of phosphorylated H3T11 in myogenic promoters but also for the incorporation of phosphorylated H3T6 and H3T45 at myogenic promoters via regulation of AKT and protein kinase C isoforms that phosphorylate those amino acids. Our results identify multiple unique roles for PKM2 and a novel function for PKM1 in gene expression and chromatin regulation during myoblast differentiation.


Subject(s)
Cell Differentiation , Histones , Myoblasts , Pyruvate Kinase , Animals , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Mice , Phosphorylation , Histones/metabolism , Histones/genetics , Myoblasts/metabolism , Myoblasts/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Thyroid Hormone-Binding Proteins , Humans , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Thyroid Hormones/metabolism , Thyroid Hormones/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Isoenzymes/metabolism , Isoenzymes/genetics
19.
Gene ; 927: 148717, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38908457

ABSTRACT

Fibroblast growth factor receptors (Fgfrs) are involved in cell proliferation, differentiation, and migration via complex signaling pathways in different tissues. Our previous studies showed that fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL) for growth traits. However, studies focusing on the function of fgfr4 on the growth of bony fish are still limited. In this study, we identified seven fgfr genes in spotted sea bass (Lateolabrax maculatus) genome, namely fgfr1a, fgfr1b, fgfr2, fgfr3, fgfr4, fgfr5a, and fgfr5b. Phylogenetic analysis, syntenic analysis and gene structure analysis were conducted to further support the accuracy of our annotation and classification results. Additionally, fgfr4 showed the highest expression levels among fgfrs during the proliferation and differentiation stages of spotted sea bass myoblasts. To further study the function of fgfr4 in myogenesis, dual-fluorescence in situ hybridization (ISH) assay was conducted, and the results showed co-localization of fgfr4 with marker gene of skeletal muscle satellite cells. By treating differentiating myoblasts cultured in vitro with BLU-554, the mRNA expressions of myogenin (myog) and the numbers of myotubes formed by myoblasts increased significantly compared to negative control group. These results indicated that Fgfr4 inhibits the differentiation of myoblasts in spotted sea bass. Our findings contributed to filling a research gap on fgfr4 in bony fish myogenesis and the theoretical understanding of growth trait regulation of spotted sea bass.


Subject(s)
Bass , Cell Differentiation , Phylogeny , Receptor, Fibroblast Growth Factor, Type 4 , Animals , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Cell Differentiation/genetics , Bass/genetics , Bass/metabolism , Myoblasts/metabolism , Myoblasts/cytology , Muscle Development/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Cell Proliferation
20.
Food Funct ; 15(13): 7224-7237, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38812412

ABSTRACT

Yak-Kong (YK) is a small black soybean widely cultivated in Korea. It is considered to have excellent health functionality, as it has been reported to have better antioxidant efficacy than conventional black or yellow soybeans. Since YK has been described as good for the muscle health of the elderly in old oriental medicine books, this study sought to investigate the effect of fermented YK with Bifidobacterium animalis subsp. lactis LDTM 8102 (FYK) on muscle atrophy. In C2C12 mouse myoblasts, FYK elevated the expression of MyoD, total MHC, phosphorylated AKT, and PGC1α. In addition, two kinds of in vivo studies were conducted using both an induced and normal aging mouse model. The behavioral test results showed that in the induced aging mouse model, FYK intake alleviated age-related muscle weakness and loss of exercise performance. In addition, FYK alleviated muscle mass decrease and improved the expression of biomarkers including total MHC, myf6, phosphorylated AKT, PGC1α, and Tfam, which are related to myoblast differentiation, muscle protein synthesis, and mitochondrial generation in the muscle. In the normal aging model, FYK consumption did not increase muscle mass, but did upregulate the expression levels of biomarkers related to myoblast differentiation, muscle hypertrophy, and muscle function. Furthermore, it mitigated age-related declines in skeletal muscle force production and functional limitation by enhancing exercise performance and grip strength. Taken together, the results suggest that FYK has the potential to be a new functional food material that can alleviate the loss of muscle mass and strength caused by aging and prevent sarcopenia.


Subject(s)
Aging , Bifidobacterium animalis , Muscular Atrophy , Animals , Mice , Muscular Atrophy/metabolism , Male , Bifidobacterium animalis/physiology , Fermentation , Disease Models, Animal , Republic of Korea , Muscle, Skeletal/metabolism , Probiotics , Intestines/microbiology , Soy Foods , Humans , Myoblasts/metabolism , Glycine max/chemistry , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL