Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.035
Filter
1.
Sci Rep ; 14(1): 19383, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169098

ABSTRACT

The diabetic heart is characterised by functional, morphological and metabolic alterations predisposing it to contractile failure. Chronic sympathetic activation is a feature of the pathogenesis of heart failure, however the type 1 diabetic heart shows desensitisation to ß-adrenergic stimulation. Here, we sought to understand the impact of repeated isoprenaline-mediated ß-stimulation upon cardiac mitochondrial respiratory capacity and substrate metabolism in the 90% pancreatectomy (Px) rat model of type 1 diabetes. We hypothesised these hearts would be relatively protected against the metabolic impact of stress-induced cardiomyopathy. We found that individually both Px and isoprenaline suppressed cardiac mitochondrial respiration, but that this was preserved in Px rats receiving isoprenaline. Px and isoprenaline had contrasting effects on cardiac substrate metabolism, with increased reliance upon cardiac fatty acid oxidation capacity and altered ketone metabolism in the hearts of Px rats, but enhanced capacity for glucose uptake and metabolism in isoprenaline-treated rats. Moreover, Px rats were protected against isoprenaline-induced mortality, whilst isoprenaline elevated cGMP and protected myocardial energetic status in Px rat hearts. Our work suggests that adrenergic stimulation may be protective in the type 1 diabetic heart, and underlines the importance of studying pathological features in combination when modeling complex disease in rodents.


Subject(s)
Adrenergic beta-Agonists , Isoproterenol , Animals , Adrenergic beta-Agonists/pharmacology , Rats , Male , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Myocardium/metabolism , Myocardium/pathology , Diabetes Mellitus, Type 1/metabolism , Glucose/metabolism , Disease Models, Animal , Heart/drug effects
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 886-892, 2024 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-39170023

ABSTRACT

Objective: To investigate the effect of the loss of myeloid-derived growth factor (Mydgf) on the transformation of cardiac fibroblasts into myofibroblasts after myocardial infarction (MI). Methods: Two adult mouse groups, including a wild-type (WT) group and another group with Mydgf knockout (Mydgf-KO), were examined in the study. The mice in these two groups were tested for their cardiac function by measuring left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) (n=10). Quantitative real-time PCR (qRT-PCR) (n=3) was performed to determine the mRNA expression levels of myofibroblast markers, including α-smooth muscle actin (α-SMA), periostin (postn), type Ⅷ collagen (col8al), and connective tissue growth factor (ctgf). Western blot (n=3) was performed to verify the protein expression levels of α-SMA. MI modeling was performed on the WT and the Mydgf-KO mice. Postoperative LVEF and LVFS (n=10) were then measured. The hearts were harvested and Masson staining was performed to determine the infarcted area (n=10). The heart samples of Mydgf-KO and WT mice were collected at d 7 and d 14 after MI, respectively, to verify the expression of myofibroblast markers (n=3). Results: Compared with WT mice, LVEF and LVFS in adult Mydgf-KO mice showed no significant changes (all P>0.05). However, the mRNA levels of α-SMA and postn were upregulated, and α-SMA protein expression was also increased (all P<0.05). After MI, compared with WT mice, LVEF and LVFS in Mydgf-KO mice decreased, and the infarcted area increased significantly (all P<0.05). Furthermore, mRNA levels of α-SMA, col8al, postn, and ctgf were increased in Mydgf-KO mice. In addition, the α-SMA protein expression level was upregulated and α-SMA-positive fibroblasts were increased (P<0.05). Conclusion: Mydgf deletion promotes the transformation of cardiac fibroblasts into myofibroblasts and aggravates myocardial fibrosis after MI.


Subject(s)
Connective Tissue Growth Factor , Fibrosis , Mice, Knockout , Myocardial Infarction , Myofibroblasts , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Mice , Myofibroblasts/metabolism , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Actins/metabolism , Actins/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Myocardium/metabolism , Myocardium/pathology , Mice, Inbred C57BL , Male , Fibroblasts/metabolism
3.
BMC Pharmacol Toxicol ; 25(1): 55, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175070

ABSTRACT

BACKGROUND: Metamizole is banned in some countries because of its toxicity, although it is widely used in some European countries. In addition, there is limited information on its safety profile, and it is still debated whether it is toxic to the heart, lungs, liver, kidneys, and stomach. AIMS: Our study investigated the effects of metamizole on the heart, lung, liver, kidney, and stomach tissues of rats. METHODS: Eighteen rats were divided into three groups, wassix healthy (HG), 500 mg/kg metamizole (MT-500), and 1000 mg/kg metamizole (MT-1000). Metamizole was administered orally twice daily for 14 days. Meanwhile, the HG group received pure water orally. Biochemical, histopathologic, and macroscopic examinations were performed on blood samples and tissues. RESULTS: Malondialdehyde (MDA), total glutathione (tGSH), superoxide dismutase (SOD), and catalase (CAT) in the lung and gastric tissues of MT-500 and MT-1000 groups were almost the same as those of the HG (p > 0.05). However, MDA levels in the heart and liver tissues of MT-500 and MT-1000 groups were higher (p < 0.05) compared to the HG, while tGSH levels and SOD, and CAT activities were lower (p < 0.05). MDA levels of MT-500 and MT-1000 groups in the kidney tissue increased the most (p < 0.001), and tGSH levels and SOD and CAT activities decreased the most (p < 0.001) compared to HG. Metamizole did not cause oxidative damage in the lung and gastric tissue. While metamizole did not change troponin levels, it significantly increased alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine levels compared to HG. Histopathologically, mild damage was detected in heart tissue, moderate damage in liver tissue, and severe damage in renal tissue. However, no histopathologic damage was found in any groups' lung and gastric tissues. CONCLUSION: Metamizole should be used under strict control in patients with cardiac and liver diseases and it would be more appropriate not to use it in patients with renal disease.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Dipyrone , Heart , Kidney , Liver , Lung , Stomach , Animals , Dipyrone/toxicity , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Lung/drug effects , Lung/pathology , Lung/metabolism , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Male , Rats , Heart/drug effects , Stomach/drug effects , Stomach/pathology , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Glutathione/metabolism , Catalase/metabolism , Myocardium/pathology , Myocardium/metabolism
4.
Bull Exp Biol Med ; 177(2): 190-196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39096448

ABSTRACT

This study aimed to investigate the cardioprotective effect of quinacrine in an in vivo model of myocardial ischemia/reperfusion injury. A 30-min regional myocardial ischemia followed by a 2-h reperfusion was modeled in anesthetized Wistar rats. Starting at the last minute of ischemia and during the first 9 min of reperfusion the rats in the control (n=8) and experimental (n=9) groups were injected with 0.9% NaCl and quinacrine solution (5 mg/kg), respectively. The area at risk and infarct size were evaluated by "double staining" with Evans blue and triphenyltetrazolium chloride. To assess vascular permeability in the area at risk zone, indocyanine green (ICG) and thioflavin S (ThS) were injected intravenously at the 90th and 120th minutes of reperfusion, respectively, to assess the no-reflow zone. The images of ICG and ThS fluorescence in transverse sections of rat hearts were obtained using a FLUM multispectral fluorescence organoscope. HR tended to decrease by 13% after intravenous administration of quinacrine and then recovered within 50 min. Quinacrine reduced the size of the necrotic zone (p=0.01), vascular permeability in the necrosis region, and the no-reflow area (p=0.027); at the same time, the area at risk did not significantly differ between the groups. Intravenous administration of quinacrine at the beginning of reperfusion of the rat myocardium reduces no-reflow phenomenon and infarct size.


Subject(s)
Cardiotonic Agents , Myocardial Reperfusion Injury , Quinacrine , Rats, Wistar , Animals , Quinacrine/pharmacology , Quinacrine/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Rats , Male , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Disease Models, Animal , Capillary Permeability/drug effects , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardium/pathology
5.
Sci Rep ; 14(1): 18308, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112681

ABSTRACT

Late gadolinium enhancement (LGE) is a widely used magnetic resonance imaging method for assessing cardiac disease. However, the relationship between different LGE signal thresholds and microscopic tissue staining images is unclear. In this study, we performed cardiovascular MRI on myocardial infarction (MI) model rats and evaluated the relationship between LGE with different signal thresholding methods and tissue staining images. We prepared 16 rats that underwent MRI 14-18 days following a surgery to create an MI model. We captured cine and LGE images of the cardiac short-axis and longitudinal two- and four-chamber views. The mean ± 2SD, ± 3SD, and ± 5SD of the pixel values in the non-infarcted area were defined as the LGE area. We compared areas of Sirius red staining, determined by the color tone, with their respective LGE areas at end-diastole and end-systole. We observed that the LGE area calculated as the mean ± 2SD of the non-infarcted area at end-diastole demonstrated a significant positive correlation with the area of Sirius red staining (Pearson's correlation coefficient in both: 0.81 [p < 0.01]). Therefore, the LGE area calculated as the mean ± 2SD of the non-infarcted area at end-diastole best reflected the MI area in tissue staining.


Subject(s)
Contrast Media , Disease Models, Animal , Gadolinium , Magnetic Resonance Imaging , Myocardial Infarction , Animals , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Rats , Magnetic Resonance Imaging/methods , Male , Staining and Labeling/methods , Myocardium/pathology , Rats, Sprague-Dawley
6.
Acta Cir Bras ; 39: e393524, 2024.
Article in English | MEDLINE | ID: mdl-39140524

ABSTRACT

PURPOSE: It has been reported that exhaustive exercise (EE) causes myocyte injury, and eventually damages the function of the myocardia. Albiflorin (AF) has anti-inflammatory, antioxidant, and anti-apoptosis effects. In this study, we determined whether AF could mitigate the EE-induced myocardial injury and research the potential mechanisms. METHODS: The rat model of EE was built by forced treadmill running method. Rats were intraperitoneally injected with AF before EE once daily for one week. The relative factors levels were examined by commercial kits. The apoptosis was appraised using a TdT-mediated dUTP nick end labeling assay kit. The ACSL4, GPX4, Nrf2, pAKT/AKT, and HO-1 contents were assessed by western blot. RESULTS: AF lessened EE-induced cardiac myocytes ischemic/hypoxic injury and reduced the contents of myocardial injury biomarkers in the serum. AF lessened EE-induced cardiac myocyte apoptosis, inflammatory response, oxidative stress, and ferroptosis in myocardial tissues. However, the influences of AF were overturned by the co-treatment of AF and LY294002. AF activated the AKT/Nrf2/HO-1 signaling pathway in myocardial tissues in vivo. CONCLUSIONS: AF could curb cardiac myocytes ferroptosis, thus diminishing the EE-induced myocardial injury through activating the AKT/Nrf2/HO-1 cascade.


Subject(s)
Ferroptosis , Myocytes, Cardiac , NF-E2-Related Factor 2 , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Male , Signal Transduction/drug effects , Ferroptosis/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Rats , Oxidative Stress/drug effects , Apoptosis/drug effects , Disease Models, Animal , Rats, Sprague-Dawley , Heme Oxygenase-1/metabolism , Myocardium/metabolism , Myocardium/pathology , Bridged-Ring Compounds
7.
Biomed Microdevices ; 26(3): 36, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150571

ABSTRACT

Cardiovascular diseases represent a significant public health challenge and are responsible for more than 4 million deaths annually in Europe alone (45% of all deaths). Among these, coronary-related heart diseases are a leading cause of mortality, accounting for 20% of all deaths. Cardiac tissue engineering has emerged as a promising strategy to address the limitations encountered after myocardial infarction. This approach aims to improve regulation of the inflammatory and cell proliferation phases, thereby reducing scar tissue formation and restoring cardiac function. In cardiac tissue engineering, biomaterials serve as hosts for cells and therapeutics, supporting cardiac restoration by mimicking the native cardiac environment. Various bioengineered systems, such as 3D scaffolds, injectable hydrogels, and patches play crucial roles in cardiac tissue repair. In this context, self-healing hydrogels are particularly suitable substitutes, as they can restore structural integrity when damaged. This structural healing represents a paradigm shift in therapeutic interventions, offering a more native-like environment compared to static, non-healable hydrogels. Herein, we sharply review the most recent advances in self-healing hydrogels in cardiac tissue engineering and their potential to transform cardiovascular healthcare.


Subject(s)
Hydrogels , Tissue Engineering , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Animals , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Heart , Myocardium/cytology , Myocardium/metabolism , Myocardium/pathology
8.
Chem Biol Interact ; 400: 111179, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39089415

ABSTRACT

Oxidative stress contributes greatly to doxorubicin (DOX)-induced cardiotoxicity. Down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) is a key factor in DOX-induced myocardial oxidative injury. Recently, we found that mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1)-dependent k48-linked ubiquitination was responsible for down-regulation of myocardial Nrf2 in DOX-treated mice. Micafungin, an antifungal drug, was identified as a potential MALT1 inhibitor. This study aims to explore whether micafungin can reduce DOX-induced myocardial oxidative injury and if its anti-oxidative effect involves a suppression of MALT1-dependent k48-linked ubiquitination of Nrf2. To establish the cardiotoxicity models in vivo and in vitro, mice were treated with a single dose of DOX (15 mg/kg, i.p.) and cardiomyocytes were incubated with DOX (1 µM) for 24 h, respectively. Using mouse model of DOX-induced cardiotoxicity, micafungin (10 or 20 mg/kg) was shown to improve cardiac function, concomitant with suppression of oxidative stress, mitochondrial dysfunction, and cell death in a dose-dependent manner. Similar protective roles of micafungin (1 or 5 µM) were observed in DOX-treated cardiomyocytes. Mechanistically, micafungin weakened the interaction between MALT1 and Nrf2, decreased the k48-linked ubiquitination of Nrf2 while elevated the protein levels of Nrf2 in both DOX-treated mice and cardiomyocytes. Furthermore, MALT1 overexpression counteracted the cardioprotective effects of micafungin. In conclusion, micafungin reduces DOX-induced myocardial oxidative injury via suppression of MALT1, which decreases the k48-linked ubiquitination of Nrf2 and elevates Nrf2 protein levels. Thus, micafungin may be repurposed for treating DOX-induced cardiotoxicity.


Subject(s)
Doxorubicin , Micafungin , Mice, Inbred C57BL , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , NF-E2-Related Factor 2 , Oxidative Stress , Ubiquitination , Animals , NF-E2-Related Factor 2/metabolism , Doxorubicin/toxicity , Ubiquitination/drug effects , Oxidative Stress/drug effects , Mice , Male , Micafungin/pharmacology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cardiotoxicity/prevention & control , Cardiotoxicity/metabolism , Cardiotoxicity/etiology , Myocardium/metabolism , Myocardium/pathology
10.
Article in English | MEDLINE | ID: mdl-39098025

ABSTRACT

PURPOSE: Esaxerenone, a mineralocorticoid receptor blocker, attenuates global ischemia-induced myocardial damage and coronary endothelial dysfunction. This study aimed to determine whether esaxerenone exerted cardioprotective effects against cardioplegic arrest in Wistar rat hearts. METHODS: Isolated male Wistar rat hearts aerobically perfused via the Langendorff method for 20 min were randomly allocated to the Control (n = 6; perfused for an additional 10 min and subjected to no treatment) or Esax (n = 6; perfused with 0.1 µmol/L esaxerenone in perfusate for 10 min before ischemia) groups. Hearts in both groups were perfused with St. Thomas' Hospital No. 2 solution (STH2) for 2 min and subjected to 28 min of global ischemia. The recovery of left ventricular developed pressure (LVDP) and total troponin T leakage were measured after reperfusion. RESULTS: The final recovery of LVDP (expressed as a percentage of pre-ischemic value) in the Control and Esax groups was 50.8 ± 3.5% and 62.1 ± 5.6%, respectively (p <0.05, Esax vs. Control). The total troponin T leakage in the Control and Esax groups was 138.8 ± 18.5 ng/g heart wt and 74.3 ± 18.6 ng/g heart wt, respectively (p <0.05, Esax vs. Control). CONCLUSION: The administration of esaxerenone before cardioplegic arrest enhanced the cardioprotective effect exerted by STH2.


Subject(s)
Disease Models, Animal , Heart Arrest, Induced , Isolated Heart Preparation , Mineralocorticoid Receptor Antagonists , Myocardial Reperfusion Injury , Rats, Wistar , Sulfones , Troponin T , Ventricular Function, Left , Ventricular Pressure , Animals , Male , Ventricular Function, Left/drug effects , Mineralocorticoid Receptor Antagonists/pharmacology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/physiopathology , Troponin T/blood , Time Factors , Sulfones/pharmacology , Ventricular Pressure/drug effects , Recovery of Function , Myocardium/metabolism , Myocardium/pathology , Cardioplegic Solutions/pharmacology , Pyrroles
11.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125850

ABSTRACT

Diabetic cardiomyopathy (DbCM) is a common complication in individuals with type 2 diabetes mellitus (T2DM), and its exact pathogenesis is still debated. It was hypothesized that chronic hyperglycemia and insulin resistance activate critical cellular pathways that are responsible for numerous functional and anatomical perturbations in the heart. Interstitial inflammation, oxidative stress, myocardial apoptosis, mitochondria dysfunction, defective cardiac metabolism, cardiac remodeling, hypertrophy and fibrosis with consequent impaired contractility are the most common mechanisms implicated. Epigenetic changes also have an emerging role in the regulation of these crucial pathways. The aim of this review was to highlight the increasing knowledge on the molecular mechanisms of DbCM and the new therapies targeting specific pathways.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Oxidative Stress , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/complications , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/etiology , Animals , Insulin Resistance , Epigenesis, Genetic , Myocardium/metabolism , Myocardium/pathology , Apoptosis/genetics
12.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125899

ABSTRACT

Pericardial fluid (PF) has been suggested as a reservoir of molecular targets that can be modulated for efficient repair after myocardial infarction (MI). Here, we set out to address the content of this biofluid after MI, namely in terms of microRNAs (miRs) that are important modulators of the cardiac pathological response. PF was collected during coronary artery bypass grafting (CABG) from two MI cohorts, patients with non-ST-segment elevation MI (NSTEMI) and patients with ST-segment elevation MI (STEMI), and a control group composed of patients with stable angina and without previous history of MI. The PF miR content was analyzed by small RNA sequencing, and its biological effect was assessed on human cardiac fibroblasts. PF accumulates fibrotic and inflammatory molecules in STEMI patients, namely causing the soluble suppression of tumorigenicity 2 (ST-2), which inversely correlates with the left ventricle ejection fraction. Although the PF of the three patient groups induce similar levels of fibroblast-to-myofibroblast activation in vitro, RNA sequencing revealed that PF from STEMI patients is particularly enriched not only in pro-fibrotic miRs but also anti-fibrotic miRs. Among those, miR-22-3p was herein found to inhibit TGF-ß-induced human cardiac fibroblast activation in vitro. PF constitutes an attractive source for screening diagnostic/prognostic miRs and for unveiling novel therapeutic targets in cardiac fibrosis.


Subject(s)
Fibrosis , MicroRNAs , Myocardial Infarction , Pericardial Fluid , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Male , Pericardial Fluid/metabolism , Female , Myocardium/metabolism , Myocardium/pathology , Middle Aged , Fibroblasts/metabolism , Aged , Transforming Growth Factor beta/metabolism , ST Elevation Myocardial Infarction/metabolism , ST Elevation Myocardial Infarction/pathology , ST Elevation Myocardial Infarction/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics
13.
BMC Cardiovasc Disord ; 24(1): 409, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103770

ABSTRACT

BACKGROUND: This study evaluated the effects of concurrent isolated training (T) or training combined with the antioxidant N-acetylcysteine (NAC) on cardiac remodeling and oxidative stress in spontaneously hypertensive rats (SHR). METHODS: Six-month-old male SHR were divided into sedentary (S, n = 12), concurrent training (T, n = 13), sedentary supplemented with NAC (SNAC, n = 13), and concurrent training with NAC supplementation (TNAC, n = 14) groups. T and TNAC rats were trained three times a week on a treadmill and ladder; NAC supplemented groups received 120 mg/kg/day NAC in rat chow for eight weeks. Myocardial antioxidant enzyme activity and lipid hydroperoxide concentration were assessed by spectrophotometry. Gene expression of NADPH oxidase subunits Nox2, Nox4, p22 phox, and p47 phox was evaluated by real time RT-PCR. Statistical analysis was performed using ANOVA and Bonferroni or Kruskal-Wallis and Dunn. RESULTS: Echocardiogram showed concentric remodeling in TNAC, characterized by increased relative wall thickness (S 0.40 ± 0.04; T 0.39 ± 0.03; SNAC 0.40 ± 0.04; TNAC 0.43 ± 0.04 *; * p < 0.05 vs T and SNAC) and diastolic posterior wall thickness (S 1.50 ± 0.12; T 1.52 ± 0.10; SNAC 1.56 ± 0.12; TNAC 1.62 ± 0.14 * mm; * p < 0.05 vs T), with improved contractile function (posterior wall shortening velocity: S 39.4 ± 5.01; T 36.4 ± 2.96; SNAC 39.7 ± 3.44; TNAC 41.6 ± 3.57 * mm/s; * p < 0.05 vs T). Myocardial lipid hydroperoxide concentration was lower in NAC treated groups (S 210 ± 48; T 182 ± 43; SNAC 159 ± 33 *; TNAC 110 ± 23 *# nmol/g tissue; * p < 0.05 vs S, # p < 0.05 vs T and SNAC). Nox 2 and p22 phox expression was higher and p47 phox lower in T than S [S 1.37 (0.66-1.66); T 0.78 (0.61-1.04) *; SNAC 1.07 (1.01-1.38); TNAC 1.06 (1.01-1.15) arbitrary units; * p < 0.05 vs S]. NADPH oxidase subunits did not differ between TNAC, SNAC, and S groups. CONCLUSION: N-acetylcysteine supplementation alone reduces oxidative stress in untreated spontaneously hypertensive rats. The combination of N-acetylcysteine and concurrent exercise further decreases oxidative stress. However, the lower oxidative stress does not translate into improved cardiac remodeling and function in untreated spontaneously hypertensive rats.


Subject(s)
Acetylcysteine , Hypertension , NADPH Oxidases , Oxidative Stress , Rats, Inbred SHR , Ventricular Remodeling , Animals , Male , Oxidative Stress/drug effects , Acetylcysteine/pharmacology , Ventricular Remodeling/drug effects , Hypertension/physiopathology , Hypertension/drug therapy , Hypertension/metabolism , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Rats , Antioxidants/pharmacology , Physical Conditioning, Animal , Disease Models, Animal , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Myocardium/metabolism , Myocardium/pathology , Lipid Peroxides/metabolism , Ventricular Function, Left/drug effects , Dietary Supplements , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/prevention & control , Hypertrophy, Left Ventricular/metabolism
14.
Int J Nanomedicine ; 19: 7997-8014, 2024.
Article in English | MEDLINE | ID: mdl-39130683

ABSTRACT

Purpose: Mitochondrial damage may lead to uncontrolled oxidative stress and massive apoptosis, and thus plays a pivotal role in the pathological processes of myocardial ischemia-reperfusion (I/R) injury. However, it is difficult for the drugs such as puerarin (PUE) to reach the mitochondrial lesion due to lack of targeting ability, which seriously affects the expected efficacy of drug therapy for myocardial I/R injury. Methods: We prepared triphenylphosphonium (TPP) cations and ischemic myocardium-targeting peptide (IMTP) co-modified puerarin-loaded liposomes (PUE@T/I-L), which effectively deliver the drug to mitochondria and improve the effectiveness of PUE in reducing myocardial I/R injury. Results: In vitro test results showed that PUE@T/I-L had sustained release and excellent hemocompatibility. Fluorescence test results showed that TPP cations and IMTP double-modified liposomes (T/I-L) enhanced the intracellular uptake, escaped lysosomal capture and promoted drug targeting into the mitochondria. Notably, PUE@T/I-L inhibited the opening of the mitochondrial permeability transition pore, reduced intracellular reactive oxygen species (ROS) levels and increased superoxide dismutase (SOD) levels, thereby decreasing the percentage of Hoechst-positive cells and improving the survival of hypoxia-reoxygenated (H/R)-injured H9c2 cells. In a mouse myocardial I/R injury model, PUE@T/I-L showed a significant myocardial protective effect against myocardial I/R injury by protecting mitochondrial integrity, reducing myocardial apoptosis and decreasing infarct size. Conclusion: This drug delivery system exhibited excellent mitochondrial targeting and reduction of myocardial apoptosis, which endowed it with good potential extension value in the precise treatment of myocardial I/R injury.


Subject(s)
Isoflavones , Liposomes , Myocardial Reperfusion Injury , Organophosphorus Compounds , Animals , Liposomes/chemistry , Myocardial Reperfusion Injury/drug therapy , Isoflavones/chemistry , Isoflavones/pharmacology , Isoflavones/administration & dosage , Isoflavones/pharmacokinetics , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/administration & dosage , Organophosphorus Compounds/pharmacokinetics , Male , Mice , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cations/chemistry , Myocardium/pathology , Myocardium/metabolism , Oxidative Stress/drug effects , Peptides/chemistry , Peptides/pharmacology , Peptides/administration & dosage , Drug Delivery Systems/methods
16.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(8): 906-913, 2024 Aug 24.
Article in Chinese | MEDLINE | ID: mdl-39143782

ABSTRACT

Objective: To investigate the value of myocardium scar area in predicting adverse cardiovascular events (MACEs) after coronary artery bypass grafting (CABG) in patients with ischemic cardiomyopathy (ICM). Methods: The first part of this study was a retrospective study. Patients diagnosed with ICM and undergoing CABG surgery at Beijing Anzhen Hospital, Capital Medical University from January 2017 to December 2022 were enrolled as the discovery cohort. All patients underwent cardiac magnetic resonance-late gadolinium enhancement (CMR-LGE) before surgery. According to the occurrence of postoperative MACEs, the patients were divided into MACEs group and MACEs-free group. Preoperative clinical and imaging data, intraoperative and postoperative data were collected and compared between the two groups. The primary endpoint was postoperative MACEs. Univariate and multifactor regression analyses were used to analyze the risk factors for MACEs. Receiver operating characteristic (ROC) curves were constructed to evaluate the predictive efficacy and optimal cut-off value of myocardial scar area for endpoint events. The second part of this study was a prospective study. Patients with ICM who received CABG at Beijing Anzhen Hospital, Capital Medical University from January 2023 to June 2023 were enrolled as a validation cohort, and were divided into MACEs group and MACEs-free group according to whether MACEs occurred after surgery. Preoperative clinical and imaging data, intraoperative and postoperative data were collected and compared between the two groups. Verify the reliability of the cut-off value obtained by ROC curve in the validation cohort. Results: A total of 120 patients with ICM (30 patients in MACEs group and 90 patients in MACEs-free group), aged (61.6±8.7) years, including 93 males, were included in the discovery cohort. A total of 22 ICM patients (5 patients in MACEs group and 17 patients in MACEs-free group), aged (59.5±8.2) years, including 18 males, were included in the validation cohort. Multivariate Cox regression showed that myocardial scar area (HR=1.258, 95%CI 1.096-1.444, P=0.001) was an independent risk factor for the primary endpoint event. The area under ROC curve of myocardial scar area for predicting postoperative MACEs was 0.90 (95%CI 0.83-0.95), and myocardial scar area≥36.0% was the optimal cut-off value for predicting postoperative MACEs, and its sensitivity, specificity and accuracy were 96.7%, 72.2% and 78.3%, respectively. In the validation cohort, the sensitivity, specificity and accuracy of myocardial scar area in predicting postoperative MACEs in patients with ICM after CABG were 80.0%, 82.4% and 81.8%, respectively. Conclusion: Myocardial scar area is an independent risk factor for MACEs after CABG in patients with ICM, and myocardial scar area≥36.0% is the optimal cut-off value for predicting MACEs after CABG. Myocardial scar area can help to identify patients at high risk of surgery and provide a basis for risk stratification of patients.


Subject(s)
Cardiomyopathies , Cicatrix , Coronary Artery Bypass , Myocardial Ischemia , Humans , Coronary Artery Bypass/adverse effects , Coronary Artery Bypass/methods , Retrospective Studies , Myocardial Ischemia/etiology , Cicatrix/etiology , Cardiomyopathies/etiology , Risk Factors , Female , Male , Prospective Studies , Postoperative Complications/etiology , ROC Curve , Middle Aged , Myocardium/pathology
17.
J Cell Mol Med ; 28(15): e18582, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39107876

ABSTRACT

Catheter ablation (CA) is an essential method for the interventional treatment of atrial fibrillation (AF), and it is very important to reduce long-term recurrence after CA. The mechanism of recurrence after CA is still unclear. We established a long-term model of beagle canines after circumferential pulmonary vein ablation (CPVA). The transcriptome and proteome were obtained using high-throughput sequencing and TMT-tagged LC-MS/LC analysis, respectively. Differentially expressed genes and proteins were screened and enriched, and the effect of fibrosis was found and verified in tissues. A downregulated protein, neuropeptide Y (NPY), was selected for validation and the results suggest that NPY may play a role in the long-term reinduction of AF after CPVA. Then, the molecular mechanism of NPY was further investigated. The results showed that the atrial effective refractory period (AERP) was shortened and fibrosis was increased after CPVA. Atrial myocyte apoptosis was alleviated by NPY intervention, and Akt activation was inhibited in cardiac fibroblasts. These results suggest that long-term suppression of NPY after CPVA may lead to induction of AF through promoting cardiomyocyte apoptosis and activating the Akt pathway in cardiac fibroblasts, which may make AF more likely to reinduce.


Subject(s)
Apoptosis , Atrial Fibrillation , Catheter Ablation , Myocardium , Neuropeptide Y , Pulmonary Veins , Animals , Dogs , Apoptosis/drug effects , Atrial Fibrillation/metabolism , Atrial Fibrillation/surgery , Atrial Fibrillation/pathology , Catheter Ablation/methods , Disease Models, Animal , Fibrosis , Heart Atria/metabolism , Heart Atria/pathology , Multiomics , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Neuropeptide Y/metabolism , Proteome/metabolism , Proteomics/methods , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Veins/metabolism , Pulmonary Veins/surgery , Transcriptome
18.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125973

ABSTRACT

Altered ankyrin-R (AnkR; encoded by ANK1) expression is associated with diastolic function, left ventricular remodeling, and heart failure with preserved ejection fraction (HFpEF). First identified in erythrocytes, the role of AnkR in other tissues, particularly the heart, is less studied. Here, we identified the expression of both canonical and small isoforms of AnkR in the mouse myocardium. We demonstrate that cardiac myocytes primarily express small AnkR (sAnkR), whereas cardiac fibroblasts predominantly express canonical AnkR. As canonical AnkR expression in cardiac fibroblasts is unstudied, we focused on expression and localization in these cells. AnkR is expressed in both the perinuclear and cytoplasmic regions of fibroblasts with considerable overlap with the trans-Golgi network protein 38, TGN38, suggesting a potential role in trafficking. To study the role of AnkR in fibroblasts, we generated mice lacking AnkR in activated fibroblasts (Ank1-ifKO mice). Notably, Ank1-ifKO mice fibroblasts displayed reduced collagen compaction, supportive of a novel role of AnkR in normal fibroblast function. At the whole animal level, in response to a heart failure model, Ank1-ifKO mice displayed an increase in fibrosis and T-wave inversion compared with littermate controls, while preserving cardiac ejection fraction. Collagen type I fibers were decreased in the Ank1-ifKO mice, suggesting a novel function of AnkR in the maturation of collagen fibers. In summary, our findings illustrate the novel expression of AnkR in cardiac fibroblasts and a potential role in cardiac function in response to stress.


Subject(s)
Ankyrins , Fibroblasts , Heart Failure , Mice, Knockout , Animals , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/genetics , Ankyrins/metabolism , Ankyrins/genetics , Mice , Fibroblasts/metabolism , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Fibrosis , Mice, Inbred C57BL
19.
Int J Mol Sci ; 25(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39126079

ABSTRACT

Individuals with type 2 diabetes mellitus (T2DM) are at an increased risk for heart failure, yet preventive cardiac care is suboptimal in this population. Pyridoxamine (PM), a vitamin B6 analog, has been shown to exert protective effects in metabolic and cardiovascular diseases. In this study, we aimed to investigate whether PM limits adverse cardiac remodeling and dysfunction in rats who develop T2DM. Male rats received a standard chow diet or Western diet (WD) for 18 weeks to induce prediabetes. One WD group received additional PM (1 g/L) via drinking water. Glucose tolerance was assessed with a 1 h oral glucose tolerance test. Cardiac function was evaluated using echocardiography and hemodynamic measurements. Histology on left ventricular (LV) tissue was performed. Treatment with PM prevented the increase in fasting plasma glucose levels compared to WD-fed rats (p < 0.05). LV cardiac dilation tended to be prevented using PM supplementation. In LV tissue, PM limited an increase in interstitial collagen deposition (p < 0.05) seen in WD-fed rats. PM tended to decrease 3-nitrotyrosine and significantly lowered 4-hydroxynonenal content compared to WD-fed rats. We conclude that PM alleviates interstitial fibrosis and oxidative stress in the hearts of WD-induced prediabetic rats.


Subject(s)
Diet, Western , Fibrosis , Oxidative Stress , Prediabetic State , Pyridoxamine , Animals , Oxidative Stress/drug effects , Male , Rats , Prediabetic State/drug therapy , Prediabetic State/metabolism , Prediabetic State/etiology , Pyridoxamine/pharmacology , Diet, Western/adverse effects , Myocardium/metabolism , Myocardium/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Blood Glucose/metabolism
20.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125651

ABSTRACT

Myocardial damage significantly impacts the prognosis of patients with cancer; however, the mechanisms of myocardial damage induced by cancer and its treatment remain unknown. We previously reported that medium-chain fatty acids (MCFAs) improve cancer-induced myocardial damage but did not evaluate the differences in effect according to MCFA type. Therefore, this study investigated the role of inflammatory cytokines in cancer-induced myocardial damage and the effects of three types of MCFAs (caprylic acid [C8], capric acid [C10], and lauric acid [C12]). In a mouse model, the C8 diet showed a greater effect on improving myocardial damage compared with C10 and C12 diets. Myocardial tubes differentiated from H9C2 cardiomyoblasts demonstrated increased mitochondrial oxidative stress, decreased membrane potential and mitochondrial volume, and inhibited myocardial tube differentiation following treatment with high-mobility group box-1 (HMGB1) but not interleukin-6 and tumor necrosis factor-α cytokines. However, HMGB1 treatment combined with C8 improved HMGB1-induced mitochondrial damage, enhanced autophagy, and increased mitochondrial biogenesis and maturation. However, these effects were only partial when combined with beta-hydroxybutyrate, a C8 metabolite. Thus, HMGB1 may play an important role in cancer-related myocardial damage. C8 counteracts HMGB1's effects and improves cancer-related myocardial damage. Further clinical studies are required to investigate the effects of C8.


Subject(s)
Caprylates , HMGB1 Protein , Animals , HMGB1 Protein/metabolism , Mice , Caprylates/pharmacology , Oxidative Stress/drug effects , Myocardium/metabolism , Myocardium/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Male , Lauric Acids/pharmacology , Cell Line , Cytokines/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Cell Differentiation/drug effects , Decanoic Acids/pharmacology , 3-Hydroxybutyric Acid/pharmacology , Autophagy/drug effects , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL