Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 856
Filter
1.
Int J Mol Sci ; 25(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39201399

ABSTRACT

Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.


Subject(s)
Mechanotransduction, Cellular , Mesenchymal Stem Cells , Myofibroblasts , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Myofibroblasts/metabolism , Myofibroblasts/cytology , Animals , Mesenchymal Stem Cell Transplantation/methods , Regeneration , Cell Differentiation , Epigenesis, Genetic
2.
FASEB J ; 38(15): e23848, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39092889

ABSTRACT

Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-ß pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.


Subject(s)
Cell Transdifferentiation , Dexamethasone , Glaucoma , Myofibroblasts , Rho Guanine Nucleotide Exchange Factors , Trabecular Meshwork , Dexamethasone/pharmacology , Trabecular Meshwork/drug effects , Trabecular Meshwork/metabolism , Trabecular Meshwork/cytology , Cell Transdifferentiation/drug effects , Animals , Humans , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/cytology , Mice , Rho Guanine Nucleotide Exchange Factors/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Glaucoma/pathology , Glaucoma/metabolism , Cells, Cultured , Glucocorticoids/pharmacology , Mice, Inbred C57BL , Male
3.
J Invest Dermatol ; 144(9): 1923-1934, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39078357

ABSTRACT

During the physiological healing of skin wounds, fibroblasts recruited from the uninjured adjacent dermis and deeper subcutaneous fascia layers are transiently activated into myofibroblasts to first secrete and then contract collagen-rich extracellular matrix into a mechanically resistant scar. Scar tissue restores skin integrity after damage but comes at the expense of poor esthetics and loss of tissue function. Stiff scar matrix also mechanically activates various precursor cells into myofibroblasts in a positive feedback loop. Persistent myofibroblast activation results in pathologic accumulation of fibrous collagen and hypertrophic scarring, called fibrosis. Consequently, the mechanisms of fibroblast-to-myofibroblast activation and persistence are studied to develop antifibrotic and prohealing treatments. Mechanistic understanding often starts in a plastic cell culture dish. This can be problematic because contact of fibroblasts with tissue culture plastic or glass surfaces invariably generates myofibroblast phenotypes in standard culture. We describe a straight-forward method to produce soft cell culture surfaces for fibroblast isolation and continued culture and highlight key advantages and limitations of the approach. Adding a layer of elastic silicone polymer tunable to the softness of normal skin and the stiffness of pathologic scars allows to control mechanical fibroblast activation while preserving the simplicity of conventional 2-dimensional cell culture.


Subject(s)
Myofibroblasts , Skin , Animals , Myofibroblasts/physiology , Myofibroblasts/cytology , Mice , Skin/cytology , Skin/pathology , Cells, Cultured , Cell Culture Techniques/methods , Wound Healing/physiology , Fibroblasts/cytology , Extracellular Matrix/metabolism , Cicatrix, Hypertrophic/pathology , Collagen/metabolism , Silicones
4.
Sci Rep ; 14(1): 17015, 2024 07 24.
Article in English | MEDLINE | ID: mdl-39043765

ABSTRACT

This study investigates how dynamic fluctuations in matrix stiffness affect the behavior of cardiac fibroblasts (CFs) within a three-dimensional (3D) hydrogel environment. Using hybrid hydrogels with tunable stiffness, we created an in vitro model to mimic the varying stiffness of the cardiac microenvironment. By manipulating hydrogel stiffness, we examined CF responses, particularly the expression of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation. Our findings reveal that increased matrix stiffness promotes the differentiation of CFs into myofibroblasts, while matrix softening reverses this process. Additionally, we identified the role of focal adhesions and integrin ß1 in mediating stiffness-induced phenotypic switching. This study provides significant insights into the mechanobiology of cardiac fibrosis and suggests that modulating matrix stiffness could be a potential therapeutic strategy for treating cardiovascular diseases.


Subject(s)
Cell Differentiation , Extracellular Matrix , Fibroblasts , Hydrogels , Myofibroblasts , Phenotype , Hydrogels/chemistry , Extracellular Matrix/metabolism , Animals , Fibroblasts/metabolism , Fibroblasts/cytology , Myofibroblasts/metabolism , Myofibroblasts/cytology , Integrin beta1/metabolism , Focal Adhesions/metabolism , Myocardium/cytology , Myocardium/metabolism , Cells, Cultured , Rats , Actins/metabolism
6.
Stem Cell Res Ther ; 15(1): 166, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867276

ABSTRACT

BACKGROUND: Hypertrophic scarring results from myofibroblast differentiation and persistence during wound healing. Currently no effective treatment for hypertrophic scarring exists however, autologous fat grafting has been shown to improve scar elasticity, appearance, and function. The aim of this study was to understand how paracrine factors from adipose tissues and adipose-derived stromal cells (ADSC) affect fibroblast to myofibroblast differentiation. METHODS: The transforming growth factor-ß1 (TGF-ß1) induced model of myofibroblast differentiation was used to test the effect of conditioned media from adipose tissue, ADSC or lipid on the proportion of fibroblasts and myofibroblasts. RESULTS: Adipose tissue conditioned media inhibited the differentiation of fibroblasts to myofibroblasts but this inhibition was not observed following treatment with ADSC or lipid conditioned media. Hepatocyte growth factor (HGF) was readily detected in the conditioned medium from adipose tissue but not ADSC. Cells treated with HGF, or fortinib to block HGF, demonstrated that HGF was not responsible for the inhibition of myofibroblast differentiation. Conditioned media from adipose tissue was shown to reduce the proportion of myofibroblasts when added to fibroblasts previously treated with TGF-ß1, however, conditioned media treatment was unable to significantly reduce the proportion of myofibroblasts in cell populations isolated from scar tissue. CONCLUSIONS: Cultured ADSC or adipocytes have been the focus of most studies, however, this work highlights the importance of considering whole adipose tissue to further our understanding of fat grafting. This study supports the use of autologous fat grafts for scar treatment and highlights the need for further investigation to determine the mechanism.


Subject(s)
Adipose Tissue , Cell Differentiation , Hepatocyte Growth Factor , Myofibroblasts , Transforming Growth Factor beta1 , Myofibroblasts/metabolism , Myofibroblasts/drug effects , Myofibroblasts/cytology , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cell Differentiation/drug effects , Culture Media, Conditioned/pharmacology , Humans , Hepatocyte Growth Factor/pharmacology , Hepatocyte Growth Factor/metabolism , Paracrine Communication/drug effects , Phenotype , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/cytology , Adipocytes/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Stromal Cells/metabolism , Stromal Cells/cytology , Stromal Cells/drug effects
7.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 505-511, 2024 Jun 18.
Article in Chinese | MEDLINE | ID: mdl-38864137

ABSTRACT

OBJECTIVE: To investigate the effect of tofacitinib, a pan-Janus kinase (JAK) inhibitor, on transforming growth factor-beta 1 (TGF-ß1)-induced fibroblast to myofibroblast transition (FMT) and to explore its mechanism. To provide a theoretical basis for the clinical treatment of connective tissue disease-related interstitial lung disease (CTD-ILD). METHODS: (1) Human fetal lung fibroblast 1 (HFL-1) were cultured in vitro, and 6 groups were established: DMSO blank control group, TGF-ß1 induction group, and TGF-ß1 with different concentrations of tofacitinib (0.5, 1.0, 2.0, 5.0 µmol/L) drug intervention experimental groups. CCK-8 was used to measure the cell viability, and wound-healing assay was performed to measure cell migration ability. After 48 h of combined treatment, quantitative real-time PCR (RT-PCR) and Western blotting were used to detect the gene and protein expression levels of α-smooth muscle actin (α-SMA), fibronectin (FN), and collagen type Ⅰ (COL1). (2) RT-PCR and enzyme-linked immunosorbnent assay (ELISA) were used to detect the interleukin-6 (IL-6) gene and protein expression changes, respectively. (3) DMSO carrier controls, 1.0 µmol/L and 5.0 µmol/L tofacitinib were added to the cell culture media of different groups for pre-incubation for 30 min, and then TGF-ß1 was added to treat for 1 h, 6 h and 24 h. The phosphorylation levels of Smad2/3 and signal transducer and activator of transcription 3 (STAT3) protein were detected by Western blotting. RESULTS: (1) Tofacitinib inhibited the viability and migration ability of HFL-1 cells after TGF-ß1 induction. (2) The expression of α-SMA, COL1A1 and FN1 genes of HFL-1 in the TGF-ß1-induced groups was significantly up-regulated compared with the blank control group (P < 0.05). Compared with the TGF-ß1 induction group, α-SMA expression in the 5.0 µmol/L tofacitinib intervention group was significantly inhi-bited (P < 0.05). Compared with the TGF-ß1-induced group, FN1 gene was significantly inhibited in each intervention group at a concentration of 0.5-5.0 µmol/L (P < 0.05). Compared with the TGF-ß1-induced group, the COL1A1 gene expression in each intervention group did not change significantly. (3) Western blotting results showed that the protein levels of α-SMA and FN1 in the TGF-ß1-induced group were significantly higher than those in the control group (P < 0.05), and there was no significant difference in the expression of COL1A1. Compared with the TGF-ß1-induced group, the α-SMA protein level in the intervention groups with different concentrations decreased. And the differences between the TGF-ß1-induced group and 2.0 µmol/L or 5.0 µmol/L intervention groups were statistically significant (P < 0.05). Compared with the TGF-ß1-induced group, the FN1 protein levels in the intervention groups with different concentrations showed a downward trend, but the difference was not statistically significant. There was no difference in COL1A1 protein expression between the intervention groups compared with the TGF-ß1-induced group. (4) After TGF-ß1 acted on HFL-1 cells for 48 h, the gene expression of the IL-6 was up-regulated and IL-6 in culture supernatant was increased, the intervention with tofacitinib partly inhibited the TGF-ß1-induced IL-6 gene expression and IL-6 in culture supernatant. TGF-ß1 induced the increase of Smad2/3 protein phosphorylation in HFL-1 cells for 1 h and 6 h, STAT3 protein phosphorylation increased at 1 h, 6 h and 24 h, the pre-intervention with tofacitinib inhibited the TGF-ß1-induced Smad2/3 phosphorylation at 6 h and inhibited TGF-ß1-induced STAT3 phosphorylation at 1 h, 6 h and 24 h. CONCLUSION: Tofacitinib can inhibit the transformation of HFL-1 cells into myofibroblasts induced by TGF-ß1, and the mechanism may be through inhibiting the classic Smad2/3 pathway as well as the phosphorylation of STAT3 induced by TGF-ß1, thereby protecting the disease progression of pulmonary fibrosis.


Subject(s)
Fibroblasts , Lung , Myofibroblasts , Piperidines , Pyrimidines , STAT3 Transcription Factor , Signal Transduction , Transforming Growth Factor beta1 , Humans , Pyrimidines/pharmacology , Piperidines/pharmacology , STAT3 Transcription Factor/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Transforming Growth Factor beta1/metabolism , Myofibroblasts/metabolism , Myofibroblasts/cytology , Myofibroblasts/drug effects , Lung/cytology , Signal Transduction/drug effects , Fibronectins/metabolism , Cell Movement/drug effects , Pyrroles/pharmacology , Actins/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Janus Kinases/metabolism , Cell Survival/drug effects , Smad2 Protein/metabolism , Lung Diseases, Interstitial/metabolism , Interleukin-6/metabolism , Smad3 Protein/metabolism , Cells, Cultured
8.
Commun Biol ; 7(1): 736, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890483

ABSTRACT

Organ fibrosis causes collagen fiber overgrowth and impairs organ function. Cardiac fibrosis after myocardial infarction impairs cardiac function significantly, pulmonary fibrosis reduces gas exchange efficiency, and liver fibrosis disturbs the natural function of the liver. Its development is associated with the differentiation of fibroblasts into myofibroblasts and increased collagen synthesis. Fibrosis has organ specificity, defined by the heterogeneity of fibroblasts. Although this heterogeneity is established during embryonic development, it has not been defined yet. Fibroblastic differentiation of induced pluripotent stem cells (iPSCs) recapitulates the process by which fibroblasts acquire diversity. Here, we differentiated iPSCs into cardiac, hepatic, and dermal fibroblasts and analyzed their properties using single-cell RNA sequencing. We observed characteristic subpopulations with different ratios in each organ-type fibroblast group, which contained both resting and distinct ACTA2+ myofibroblasts. These findings provide crucial information on the ontogeny-based heterogeneity of fibroblasts, leading to the development of therapeutic strategies to control fibrosis.


Subject(s)
Cell Differentiation , Fibroblasts , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Fibroblasts/metabolism , Myofibroblasts/metabolism , Myofibroblasts/cytology , Cells, Cultured , Single-Cell Analysis , Fibrosis
9.
Sci Rep ; 14(1): 9795, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684844

ABSTRACT

Cardiac fibrosis contributes to the development of heart failure, and is the response of cardiac fibroblasts (CFs) to pressure or volume overload. Limiting factors in CFs research are the poor availability of human cells and the tendency of CFs to transdifferentiate into myofibroblasts when cultured in vitro. The possibility to generate CFs from induced pluripotent stem cells (iPSC), providing a nearly unlimited cell source, opens new possibilities. However, the behaviour of iPSC-CFs under mechanical stimulation has not been studied yet. Our study aimed to assess the behaviour of iPSC-CFs under mechanical stretch and pro-fibrotic conditions. First, we confirm that iPSC-CFs are comparable to primary CFs at gene, protein and functional level. Furthermore, iPSC-derived CFs adopt a pro-fibrotic response to transforming growth factor beta (TGF-ß). In addition, mechanical stretch inhibits TGF-ß-induced fibroblast activation in iPSC-CFs. Thus, the responsiveness to cytokines and mechanical stimulation of iPSC-CFs demonstrates they possess key characteristics of primary CFs and may be useful for disease modelling.


Subject(s)
Fibroblasts , Induced Pluripotent Stem Cells , Transforming Growth Factor beta , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Humans , Fibroblasts/metabolism , Fibroblasts/cytology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Stress, Mechanical , Cells, Cultured , Cell Differentiation , Myocardium/cytology , Myocardium/metabolism , Myofibroblasts/metabolism , Myofibroblasts/cytology , Fibrosis
10.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38602485

ABSTRACT

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Subject(s)
Cell Differentiation , Hippo Signaling Pathway , Morphogenesis , Myofibroblasts , Protein Serine-Threonine Kinases , Pulmonary Alveoli , Signal Transduction , YAP-Signaling Proteins , Animals , Mice , Myofibroblasts/metabolism , Myofibroblasts/cytology , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/cytology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Morphogenesis/genetics , Mesoderm/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Lung/metabolism , Organogenesis/genetics , Gene Expression Regulation, Developmental
11.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38602479

ABSTRACT

Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFBs) and a stable but poorly described population of lipid-rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFBs). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single-cell RNA sequencing and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a MyoFB differentiation program that is distinct from other mesenchymal cell types and increases the known repertoire of mesenchymal cell types in the neonatal lung.


Subject(s)
Animals, Newborn , Cell Differentiation , Lung , Myofibroblasts , Animals , Myofibroblasts/metabolism , Myofibroblasts/cytology , Mice , Lung/cytology , Lung/embryology , Lung/metabolism , Cell Lineage , Organogenesis , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism
12.
Dev Cell ; 59(9): 1159-1174.e5, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38537630

ABSTRACT

Inside the finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic capillary, the lacteal, sending fats into the systemic blood circulation for energy production. Despite this vital function, mechanisms of formation, assembly alongside lacteals, and maintenance of villus smooth muscle are unknown. By combining single-cell RNA sequencing and quantitative lineage tracing of the mouse intestine, we identified a local hierarchy of subepithelial fibroblast progenitors that differentiate into mature smooth muscle fibers via intermediate contractile myofibroblasts. This continuum persists as the major mechanism for villus musculature renewal throughout adult life. The NOTCH3-DLL4 signaling axis governs the assembly of smooth muscle fibers alongside their adjacent lacteals and is required for fat absorption. Our studies identify the ontogeny and maintenance of a poorly defined class of intestinal smooth muscle, with implications for accelerated repair and recovery of digestive function following injury.


Subject(s)
Cell Differentiation , Myofibroblasts , Animals , Myofibroblasts/metabolism , Myofibroblasts/cytology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Signal Transduction , Lymphatic Vessels/metabolism , Lymphatic Vessels/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Intestines/cytology , Muscle, Smooth/metabolism , Muscle, Smooth/cytology , Stem Cells/cytology , Stem Cells/metabolism , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Mice, Inbred C57BL
13.
Small ; 20(28): e2400644, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38326079

ABSTRACT

Tissue development is mediated by a combination of mechanical and biological signals. Currently, there are many reports on biological signals regulating repair. However, insufficient attention is paid to the process of mechanical regulation, especially the active mechanical regulation in vivo, which has not been realized. Herein, a novel dynamically regulated repair system for both in vitro and in vivo applications is developed, which utilizes magnetic nanoparticles as non-contact actuators to activate hydrogels. The magnetic hydrogel can be periodically activated and deformed to different amplitudes by a dynamic magnetic system. An in vitro skin model is used to explore the impact of different dynamic stimuli on cellular mechano-transduction signal activation and cell differentiation. Specifically, the effect of mechanical stimulation on the phenotypic transition of fibroblasts to myofibroblasts is investigated. Furthermore, in vivo results verify that dynamic massage can simulate and enhance the traction effect in skin defects, thereby accelerating the wound healing process by promoting re-epithelialization and mediating dermal contraction.


Subject(s)
Bandages , Massage , Wound Healing , Animals , Massage/methods , Fibroblasts , Humans , Hydrogels/chemistry , Cell Differentiation , Skin , Mice , Myofibroblasts/cytology
14.
Nature ; 623(7988): 792-802, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968392

ABSTRACT

Optimal tissue recovery and organismal survival are achieved by spatiotemporal tuning of tissue inflammation, contraction and scar formation1. Here we identify a multipotent fibroblast progenitor marked by CD201 expression in the fascia, the deepest connective tissue layer of the skin. Using skin injury models in mice, single-cell transcriptomics and genetic lineage tracing, ablation and gene deletion models, we demonstrate that CD201+ progenitors control the pace of wound healing by generating multiple specialized cell types, from proinflammatory fibroblasts to myofibroblasts, in a spatiotemporally tuned sequence. We identified retinoic acid and hypoxia signalling as the entry checkpoints into proinflammatory and myofibroblast states. Modulating CD201+ progenitor differentiation impaired the spatiotemporal appearances of fibroblasts and chronically delayed wound healing. The discovery of proinflammatory and myofibroblast progenitors and their differentiation pathways provide a new roadmap to understand and clinically treat impaired wound healing.


Subject(s)
Endothelial Protein C Receptor , Fascia , Wound Healing , Animals , Mice , Cell Differentiation , Cell Hypoxia , Cell Lineage , Disease Models, Animal , Endothelial Protein C Receptor/metabolism , Fascia/cytology , Fascia/injuries , Fascia/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Profiling , Inflammation/metabolism , Inflammation/pathology , Myofibroblasts/cytology , Myofibroblasts/metabolism , Signal Transduction , Single-Cell Gene Expression Analysis , Skin/cytology , Skin/injuries , Skin/metabolism , Tretinoin/metabolism
15.
Cell Tissue Res ; 390(3): 465-489, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36098854

ABSTRACT

Overexposure to transforming growth factor b1 (TGF-ß1) induces myofibroblastic differentiation of mesenchymal stem cells (MSCs), which could be attenuated by myeloid-derived suppressor cell (MDSC) supernatant. However, the promyofibroblastic effects of TGF-ß1 and the antimyofibroblastic effects of MDSC supernatant in MSCs have not been fully elucidated. To further clarify the latent mechanism and identify underlying therapeutic targets, we used an integrative strategy combining transcriptomics and metabolomics. Bone marrow MSCs were collected 24 h following TGF-ß1 and MDSC supernatant treatment for RNA sequencing and untargeted metabolomic analysis. The integrated data were then analyzed to identify significant gene-metabolite correlations. Differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) were assessed by Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for exploring the mechanisms of myofibroblastic differentiation of MSCs. The integration of transcriptomic and metabolomic data highlighted significantly coordinated changes in glycolysis/gluconeogenesis and purine metabolism following TGF-ß1 and MDSC supernatant treatment. By combining transcriptomic and metabolomic analyses, this study showed that glycolysis/gluconeogenesis and purine metabolism were essential for the myofibroblastic differentiation of MSCs and may serve as promising targets for mechanistic research and clinical practice in the treatment of fibrosis by MDSC supernatant.


Subject(s)
Mesenchymal Stem Cells , Myeloid-Derived Suppressor Cells , Myofibroblasts , Cell Differentiation , Myeloid-Derived Suppressor Cells/metabolism , Purines/metabolism , Purines/pharmacology , Transcriptome/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factors/genetics , Transforming Growth Factors/metabolism , Transforming Growth Factors/pharmacology , Myofibroblasts/cytology
16.
Cell Rep ; 38(1): 110189, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34986347

ABSTRACT

Fibrosis is a major cause of mortality worldwide, characterized by myofibroblast activation and excessive extracellular matrix deposition. Systemic sclerosis is a prototypic fibrotic disease in which CXCL4 is increased and strongly correlates with skin and lung fibrosis. Here we aim to elucidate the role of CXCL4 in fibrosis development. CXCL4 levels are increased in multiple inflammatory and fibrotic mouse models, and, using CXCL4-deficient mice, we demonstrate the essential role of CXCL4 in promoting fibrotic events in the skin, lungs, and heart. Overexpressing human CXCL4 in mice aggravates, whereas blocking CXCL4 reduces, bleomycin-induced fibrosis. Single-cell ligand-receptor analysis predicts CXCL4 to affect endothelial cells and fibroblasts. In vitro, we confirm that CXCL4 directly induces myofibroblast differentiation and collagen synthesis in different precursor cells, including endothelial cells, by stimulating endothelial-to-mesenchymal transition. Our findings identify a pivotal role of CXCL4 in fibrosis, further substantiating the potential role of neutralizing CXCL4 as a therapeutic strategy.


Subject(s)
Extracellular Matrix/pathology , Myofibroblasts/metabolism , Platelet Factor 4/metabolism , Pulmonary Fibrosis/pathology , Scleroderma, Systemic/pathology , Animals , Bleomycin/toxicity , Cell Line , Collagen/biosynthesis , Disease Models, Animal , Endothelial Cells/cytology , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition/physiology , Human Umbilical Vein Endothelial Cells , Humans , Lung/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Myofibroblasts/cytology , Pericytes/metabolism , Platelet Factor 4/genetics , Stromal Cells/cytology , Stromal Cells/metabolism
17.
J Cardiovasc Transl Res ; 15(3): 621-634, 2022 06.
Article in English | MEDLINE | ID: mdl-34734351

ABSTRACT

Myocardial infarction (MI) is a significant contributor to the development of heart failure. Histidine decarboxylase (HDC), the unique enzyme that converts L-histidine to histamine, is highly expressed in CD11b+ immature myeloid cells. However, the relationship between HDC-expressing macrophages and cardiac myofibroblasts remains to be explained. Here, we demonstrate that the GFP (green fluorescent protein)-labeled HDC+CD11b+ myeloid precursors and their descendants could differentiate into fibroblast-like cells in myocardial interstitium. Furthermore, we prove that CD11b+Ly6C+ monocytes/macrophages, but not CD11b+Ly6G+ granulocytes, are identified as the main cellular source for bone marrow-derived myofibroblast transformation, which could be regulated via histamine H1 and H2 receptor-dependent signaling pathways. Using HDC knockout mice, we find that histamine deficiency promotes myofibroblast transformation from Ly6C+ macrophages and cardiac fibrosis partly through upregulating the expression of Krüppel-like factor 5 (KLF5). Taken together, our data uncover a central role of HDC in regulating bone marrow-derived macrophage-to-myofibroblast transformation but also identify a histamine receptor (HR)-KLF5 related signaling pathway that mediates myocardial fibrosis post-MI. CD11b+Ly6C+ monocytes/macrophages are the main cellular source for bone marrow-derived myofibroblast transformation. Histamine inhibits myofibroblasts transformation via H1R and H2R-dependent signaling pathways, and ameliorates cardiac fibrosis partly through upregulating KLF5 expression.


Subject(s)
Histamine , Histidine Decarboxylase , Myeloid Cells , Myocardial Infarction , Myofibroblasts , Animals , Fibrosis , Histamine/deficiency , Histidine Decarboxylase/metabolism , Mice , Myeloid Cells/cytology , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myofibroblasts/cytology
18.
Int J Mol Sci ; 22(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34884552

ABSTRACT

Dexmedetomidine (DEX), a selective α2 adrenergic receptor (AR) agonist, is commonly used as a sedative drug during critical illness. In the present study, we explored a novel accelerative effect of DEX on cardiac fibroblast (CF) differentiation mediated by LPS and clarified its potential mechanism. LPS apparently increased the expression of α-SMA and collagen I/III and the phosphorylation of p38 and Smad-3 in the CFs of mice. These effects were significantly enhanced by DEX through increasing α2A-AR expression in CFs after LPS stimulation. The CFs from α2A-AR knockout mice were markedly less sensitive to DEX treatment than those of wild-type mice. Inhibition of protein kinase C (PKC) abolished the enhanced effects of DEX on LPS-induced differentiation of CFs. We also found that the α-SMA level in the second-passage CFs was much higher than that in the nonpassage and first-passage CFs. However, after LPS stimulation, the TNF-α released from the nonpassage CFs was much higher than that in the first- and second-passage CFs. DEX had no effect on LPS-induced release of TNF-α and IL-6 from CFs. Further investigation indicated that DEX promoted cardiac fibrosis and collagen I/III synthesis in mice exposed to LPS for four weeks. Our results demonstrated that DEX effectively accelerated LPS-induced differentiation of CFs to myofibroblasts through the PKC-p38-Smad2/3 signaling pathway by activating α2A-AR.


Subject(s)
Cell Differentiation , Collagen Type III/metabolism , Collagen Type I/metabolism , Dexmedetomidine/pharmacology , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , Myofibroblasts/cytology , Receptors, Adrenergic, alpha-2/chemistry , Adrenergic alpha-2 Receptor Agonists/pharmacology , Animals , Male , Mice , Mice, Inbred C57BL , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Protein Kinase C/genetics , Protein Kinase C/metabolism , Signal Transduction , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
19.
PLoS One ; 16(11): e0256812, 2021.
Article in English | MEDLINE | ID: mdl-34762649

ABSTRACT

Transforming growth factor-beta 1 (TGF-ß1), a pro-fibrotic tumour-derived factor promotes fibroblast differentiation in the tumour microenvironment and is thought to contribute to the development of pro-tumourigenic cancer-associated fibroblasts (CAFs) by promoting myofibroblast differentiation. miRNA dysregulation has been demonstrated in myofibroblast transdifferentiation and CAF activation, however, their expression varies among cell types and with the method of fibroblast induction. Here, the expression profile of miRNA in human primary oral fibroblasts treated with TGF-ß1, to derive a myofibroblastic, CAF-like phenotype, was determined compared to untreated fibroblasts. Myofibroblast transdifferentiation was determined by the expression of alpha-smooth muscle actin (α-SMA) and fibronectin-1 extra domain A (FN-EDA1) using quantitative real-time PCR (qRT-PCR) and western blot. The formation of stress fibres was assessed by fluorescence microscopy, and associated changes in contractility were assessed using collagen contraction assays. Extracellular vesicles (EVs) were purified by using size exclusion chromatography and ultracentrifugation and their size and concentration were determined by nanoparticle tracking analysis. miRNA expression profiling in oral fibroblasts treated with TGF-ß1 and their extracellular vesicles was carried out using tiling low-density array cards. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to perform functional and pathway enrichment analysis of target genes. In this study, TGF-ß1 induced a myofibroblastic phenotype in normal oral fibroblasts as assessed by expression of molecular markers, the formation of stress fibres and increased contractility. TaqMan Low-Density Array (TLDA) analysis demonstrated that miR-503 and miR-708 were significantly upregulated, while miR-1276 was significantly downregulated in TGF-ß1-treated oral fibroblasts (henceforth termed experimentally-derived CAF, eCAF). The gene functional enrichment analysis showed that the candidate miRNAs have the potential to modulate various pathways; including the Ras associated protein 1 (Rap1), PI3K-Akt, and tumour necrosis factor (TNF) signalling pathways. In addition, altered levels of several miRNAs were detected in eCAF EV, including miR-142 and miR-222. No differences in size or abundance of EV were detected between eCAF and normal oral fibroblast (NOF). Little overlap was observed between changes in cellular and EV miRNA profiles, suggesting the possibility of selective loading of EV miRNA. The study reveals miRNA expression signature could be involved in myofibroblast transdifferentiation and the miRNA cargo of their EV, providing novel insight into the involvement of miRNA in CAF development and function.


Subject(s)
Cell Transdifferentiation/physiology , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Myofibroblasts/cytology , Actins/metabolism , Cell Transdifferentiation/drug effects , Cells, Cultured , Collagen/metabolism , Extracellular Vesicles/drug effects , Gene Expression Profiling , Humans , MicroRNAs/genetics , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta1/pharmacology
20.
Mol Biol Cell ; 32(22): ar41, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34731044

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic disease of the lung caused by a rampant inflammatory response that results in the deposition of excessive extracellular matrix (ECM). IPF patient lungs also develop fibroblastic foci that consist of activated fibroblasts and myofibroblasts. In concert with ECM deposition, the increased cell density within fibroblastic foci imposes confining forces on lung fibroblasts. In this work, we observed that increased cell density increases the incidence of the fibroblast-to-myofibroblast transition (FMT), but mechanical confinement imposed by micropillars has no effect on FMT incidence. We found that human lung fibroblasts (HLFs) express more α-SMA and deposit more collagen matrix, which are both characteristics of myofibroblasts, in response to TGF-ß1 when cells are seeded at a high density compared with a medium or a low density. These results support the hypothesis that HLFs undergo FMT more readily in response to TGF-ß1 when cells are densely packed, and this effect could be dependent on increased OB-cadherin expression. This work demonstrates that cell density is an important factor to consider when modelling IPF in vitro, and it may suggest decreasing cell density within fibroblastic foci as a strategy to reduce IPF burden.


Subject(s)
Fibroblasts/cytology , Lung/cytology , Myofibroblasts/cytology , Actins/metabolism , Cell Count , Cells, Cultured , Collagen/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Idiopathic Pulmonary Fibrosis/pathology , Myofibroblasts/metabolism , Transforming Growth Factor beta1/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL