Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.848
Filter
1.
ACS Infect Dis ; 10(10): 3699-3711, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39360674

ABSTRACT

The nonproton pumping type II NADH dehydrogenase in Mycobacterium tuberculosis is essential for meeting the energy needs in terms of ATP under normal aerobic and stressful hypoxic environmental states. Type II NADH dehydrogenase conduits electrons into the electron transport chain in Mycobacterium tuberculosis, which results in ATP synthesis. Therefore, the inhibition of NDH-2 ensures the abolishment of the entire ATP synthesis machinery. Also, type II NADH dehydrogenase is absent in the mammalian genome, thus making it a potential target for antituberculosis drug discovery. Herein, we have screened a commercially available library of drug-like molecules and have identified a hit having a benzimidazole core moiety (6, H37Rv mc26230; minimum inhibitory concentration (MIC) = 16 µg/mL and ATP IC50 = 0.23 µg/mL) interfering with the oxidative phosphorylation pathway. Extensive medicinal chemistry optimization resulted in analogue 8, with MIC = 4 µg/mL and ATP IC50 = 0.05 µg/mL against the H37Rv mc26230 strain of Mycobacterium tuberculosis. Compounds 6 and 8 were found to be active against mono- and multidrug-resistant mycobacterium strains and demonstrated a bactericidal response. The Peredox-mCherry experiment and identification of single-nucleotide polymorphisms in mutants of CBR-5992 (a known type II NADH dehydrogenase inhibitor) were used to confirm the molecules as inhibitors of the type II NADH dehydrogenase enzyme. The safety index >10 for the test active molecules revealed the safety of test molecules.


Subject(s)
Antitubercular Agents , Benzimidazoles , Microbial Sensitivity Tests , Mycobacterium tuberculosis , NADH Dehydrogenase , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , NADH Dehydrogenase/antagonists & inhibitors , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Structure-Activity Relationship , Humans
2.
Neurosci Lett ; 839: 137917, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39102941

ABSTRACT

PTEN-induced kinase1 (PINK1) mutation is the main cause of autosomal recessive inheritance and early-onset Parkinson's disease. Mitochondrial respiratory chain complex I (CI) functional impairment has been considered to be an important factor in the pathogenesis of PD in recent years. In addition, NDUFS3 (nicotinamide adenine dinucleotide deoxylase iron-thionein 3) is one of the core subunits of mitochondrial CI. Therefore, this study explored the role of NDUFS3 gene in PINK1B9 transgenic Drosophila and its possible related mechanisms. In this study, the PD transgenic Drosophila model of MHC-Gal4/UAS system was selected to specifically activate the expression of PINK1B9 gene in the chest muscle tissue of Drosophila melanogaster. NDUFS3 RNAi interference was used to interfere with PINK1B9 transgenic Drosophila melanogaster and its effect on PD transgenic flies was studied. The results suggest that down-regulation of NDUFS3 gene expression may have a protective effect on PINK1B9 transgenic Drosophila melanogaster, and we speculate that down-regulation of NDUFS3 gene expression to reduce oxidative stress and restore mitochondrial function may be related to mitochondrial stress response.


Subject(s)
Animals, Genetically Modified , Disease Models, Animal , Drosophila Proteins , Drosophila melanogaster , Electron Transport Complex I , Mitochondria , Parkinson Disease , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , RNA Interference , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Oxidative Stress/genetics
3.
Gene ; 930: 148853, 2024 Dec 20.
Article in English | MEDLINE | ID: mdl-39147111

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is a maternal inherited disorder, primarily due to mitochondrial DNA (mtDNA) mutations. This investigation aimed to assess the pathogenicity of m.3635G>A alteration known to confer susceptibility to LHON. The disruption of electrostatic interactions among S110 of the MT-ND1 and the side chain of E4, along with the carbonyl backbone of M1 in the NDUFA1, was observed in complex I of cybrids with m.3635G>A. This disturbance affected the complex I assembly activity by changing the mitochondrial respiratory chain composition and function. In addition, the affected cybrids exhibited notable deficiencies in complex I activities, including impaired mitochondrial respiration and depolarization of its membrane potential. Apoptosis was also stimulated in the mutant group, as witnessed by the secretion of cytochrome c and activation of PARP, caspase 3, 7, and 9 compared to the control. Furthermore, the mutant group exhibited decreased levels of autophagy protein light chain 3, accumulation of autophagic substrate P62, and impaired PINK1/Parkin-dependent mitophagy. Overall, the current study has confirmed the crucial involvement of the alteration of the m.3635G>A gene in the development of LHON. These findings contribute to a deeper comprehension of the pathophysiological mechanisms underlying LHON, providing a fundamental basis for further research.


Subject(s)
Apoptosis , Mitochondria , Mitophagy , NADH Dehydrogenase , Optic Atrophy, Hereditary, Leber , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Optic Atrophy, Hereditary, Leber/pathology , Humans , Mitophagy/genetics , Apoptosis/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Mutation , DNA, Mitochondrial/genetics , Membrane Potential, Mitochondrial/genetics , Protein Kinases
4.
New Phytol ; 243(6): 2187-2200, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39036838

ABSTRACT

The superior productivity of C4 plants is achieved via a metabolic C4 cycle which acts as a CO2 pump across mesophyll and bundle sheath (BS) cells and requires an additional input of energy in the form of ATP. The importance of chloroplast NADH dehydrogenase-like complex (NDH) operating cyclic electron flow (CEF) around Photosystem I (PSI) for C4 photosynthesis has been shown in reverse genetics studies but the contribution of CEF and NDH to cell-level electron fluxes remained unknown. We have created gene-edited Setaria viridis with null ndhO alleles lacking functional NDH and developed methods for quantification of electron flow through NDH in BS and mesophyll cells. We show that CEF accounts for 84% of electrons reducing PSI in BS cells and most of those electrons are delivered through NDH while the contribution of the complex to electron transport in mesophyll cells is minimal. A decreased leaf CO2 assimilation rate and growth of plants lacking NDH cannot be rescued by supplying additional CO2. Our results indicate that NDH-mediated CEF is the primary electron transport route in BS chloroplasts highlighting the essential role of NDH in generating ATP required for CO2 fixation by the C3 cycle in BS cells.


Subject(s)
Chloroplasts , NADH Dehydrogenase , Photosystem I Protein Complex , Electron Transport , Chloroplasts/metabolism , NADH Dehydrogenase/metabolism , NADH Dehydrogenase/genetics , Photosystem I Protein Complex/metabolism , Setaria Plant/metabolism , Setaria Plant/genetics , Carbon Dioxide/metabolism , Mesophyll Cells/metabolism , Photosynthesis , Plant Vascular Bundle/metabolism , Plant Leaves/metabolism
5.
Free Radic Biol Med ; 221: 283-295, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38705496

ABSTRACT

Phloretin has been widely perceived as an antioxidant. However, the bioavailability of phloretin in vivo is generally far too low to elicit a direct antioxidant effect by scavenging reactive oxygen species (ROS). Here we showed that administration of phloretin of apple polyphenols extended lifespan of Caenorhabditis elegans and promoted fitness. Specially phloretin enhanced the survival rates of nematodes under oxidants in an inverted U-shaped dose-response manner. The lifespan-extending effects of phloretin were mediated by ROS via mitochondrial complex I inhibition. The increase of ROS stimulated p38 MAPK/PMK-1 as well as transcription factors of NRF2/SKN-1 and FOXO/DAF-16. Consistent with the involvement of NRF2/SKN-1 and FOXO/DAF-16 in lifespan-extending effects, activities of superoxide dismutase (SOD) and catalase (CAT) were enhanced by phloretin. The exogenous application of antioxidants butylated hydroxyanisole and N-acetylcysteine abolished the increase of ROS, the enhancement of SOD and CAT activities, and the lifespan extending effects of phloretin. Meanwhile, with the inhibition of mitochondrial complex I, ATP was instantly decreased. Both energy sensors of AMPK/AAK-2 and SIRT1/SIR-2.1 were involved in the lifespan extension by phloretin. Transcriptomic, real-time qPCR and molecular docking analyses demonstrated that the binding of phloretin at complex I located at NDUFS1/NUO-5, NDUFS2/GAS-1, and NDUFS6/NDUF-6. The molecular dynamic simulation and binding free energy calculations showed that phloretin had high binding affinities towards NDUFS1 (-7.21 kcal/mol) and NDUFS6 (-7.02 kcal/mol). Collectively, our findings suggested phloretin had effects of life expectancy enhancement and fitness promotion via redox regulations in vivo. NDUFS1/NUO-5 and NDUFS6/NDUF-6 might be new targets in the lifespan and wellness regulations.


Subject(s)
Antioxidants , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Electron Transport Complex I , Longevity , Mitochondria , Phloretin , Reactive Oxygen Species , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Longevity/drug effects , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Reactive Oxygen Species/metabolism , Phloretin/pharmacology , Electron Transport Complex I/metabolism , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress/drug effects , NADH Dehydrogenase/metabolism , NADH Dehydrogenase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Gene Expression Regulation/drug effects , Forkhead Transcription Factors
6.
Curr Biol ; 34(12): 2728-2738.e6, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38810637

ABSTRACT

The mitochondrial proteome is comprised of approximately 1,100 proteins,1 all but 12 of which are encoded by the nuclear genome in C. elegans. The expression of nuclear-encoded mitochondrial proteins varies widely across cell lineages and metabolic states,2,3,4 but the factors that specify these programs are not known. Here, we identify mutations in two nuclear-localized mRNA processing proteins, CMTR1/CMTR-1 and SRRT/ARS2/SRRT-1, which we show act via the same mechanism to rescue the mitochondrial complex I mutant NDUFS2/gas-1(fc21). CMTR-1 is an FtsJ-family RNA methyltransferase that, in mammals, 2'-O-methylates the first nucleotide 3' to the mRNA CAP to promote RNA stability and translation5,6,7,8. The mutations isolated in cmtr-1 are dominant and lie exclusively in the regulatory G-patch domain. SRRT-1 is an RNA binding partner of the nuclear cap-binding complex and determines mRNA transcript fate.9 We show that cmtr-1 and srrt-1 mutations activate embryonic expression of NDUFS2/nduf-2.2, a paralog of NDUFS2/gas-1 normally expressed only in dopaminergic neurons, and that nduf-2.2 is necessary for the complex I rescue by the cmtr-1 G-patch mutant. Additionally, we find that loss of the cmtr-1 G-patch domain cause ectopic localization of CMTR-1 protein to processing bodies (P bodies), phase-separated organelles involved in mRNA storage and decay.10 P-body localization of the G-patch mutant CMTR-1 contributes to the rescue of the hyperoxia sensitivity of the NDUFS2/gas-1 mutant. This study suggests that mRNA methylation at P bodies may control nduf-2.2 gene expression, with broader implications for how the mitochondrial proteome is translationally remodeled in the face of tissue-specific metabolic requirements and stress.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Dopaminergic Neurons , Electron Transport Complex I , Methyltransferases , Mutation , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Dopaminergic Neurons/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , NADH Dehydrogenase/metabolism , NADH Dehydrogenase/genetics
7.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792214

ABSTRACT

BACKGROUND: Staphylococcus aureus is a common pathogenic microorganism in humans and animals. Type II NADH oxidoreductase (NDH-2) is the only NADH:quinone oxidoreductase present in this organism and represents a promising target for the development of anti-staphylococcal drugs. Recently, myricetin, a natural flavonoid from vegetables and fruits, was found to be a potential inhibitor of NDH-2 of S. aureus. The objective of this study was to evaluate the inhibitory properties of myricetin against NDH-2 and its impact on the growth and expression of virulence factors in S. aureus. RESULTS: A screening method was established to identify effective inhibitors of NDH-2, based on heterologously expressed S. aureus NDH-2. Myricetin was found to be an effective inhibitor of NDH-2 with a half maximal inhibitory concentration (IC50) of 2 µM. In silico predictions and enzyme inhibition kinetics further characterized myricetin as a competitive inhibitor of NDH-2 with respect to the substrate menadione (MK). The minimum inhibitory concentrations (MICs) of myricetin against S. aureus strains ranged from 64 to 128 µg/mL. Time-kill assays showed that myricetin was a bactericidal agent against S. aureus. In line with being a competitive inhibitor of the NDH-2 substrate MK, the anti-staphylococcal activity of myricetin was antagonized by MK-4. In addition, myricetin was found to inhibit the gene expression of enterotoxin SeA and reduce the hemolytic activity induced by S. aureus culture on rabbit erythrocytes in a dose-dependent manner. CONCLUSIONS: Myricetin was newly discovered to be a competitive inhibitor of S. aureus NDH-2 in relation to the substrate MK. This discovery offers a fresh perspective on the anti-staphylococcal activity of myricetin.


Subject(s)
Flavonoids , Microbial Sensitivity Tests , Staphylococcus aureus , Flavonoids/pharmacology , Flavonoids/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , NADH Dehydrogenase/antagonists & inhibitors , NADH Dehydrogenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Animals , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Humans , Virulence Factors/antagonists & inhibitors , Virulence Factors/metabolism
8.
Cell Death Dis ; 15(5): 311, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697987

ABSTRACT

Cancer cells are highly dependent on bioenergetic processes to support their growth and survival. Disruption of metabolic pathways, particularly by targeting the mitochondrial electron transport chain complexes (ETC-I to V) has become an attractive therapeutic strategy. As a result, the search for clinically effective new respiratory chain inhibitors with minimized adverse effects is a major goal. Here, we characterize a new OXPHOS inhibitor compound called MS-L6, which behaves as an inhibitor of ETC-I, combining inhibition of NADH oxidation and uncoupling effect. MS-L6 is effective on both intact and sub-mitochondrial particles, indicating that its efficacy does not depend on its accumulation within the mitochondria. MS-L6 reduces ATP synthesis and induces a metabolic shift with increased glucose consumption and lactate production in cancer cell lines. MS-L6 either dose-dependently inhibits cell proliferation or induces cell death in a variety of cancer cell lines, including B-cell and T-cell lymphomas as well as pediatric sarcoma. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI-1) partially restores the viability of B-lymphoma cells treated with MS-L6, demonstrating that the inhibition of NADH oxidation is functionally linked to its cytotoxic effect. Furthermore, MS-L6 administration induces robust inhibition of lymphoma tumor growth in two murine xenograft models without toxicity. Thus, our data present MS-L6 as an inhibitor of OXPHOS, with a dual mechanism of action on the respiratory chain and with potent antitumor properties in preclinical models, positioning it as the pioneering member of a promising drug class to be evaluated for cancer therapy. MS-L6 exerts dual mitochondrial effects: ETC-I inhibition and uncoupling of OXPHOS. In cancer cells, MS-L6 inhibited ETC-I at least 5 times more than in isolated rat hepatocytes. These mitochondrial effects lead to energy collapse in cancer cells, resulting in proliferation arrest and cell death. In contrast, hepatocytes which completely and rapidly inactivated this molecule, restored their energy status and survived exposure to MS-L6 without apparent toxicity.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Electron Transport Complex I , Mitochondria , Saccharomyces cerevisiae Proteins , Animals , Humans , Electron Transport Complex I/metabolism , Electron Transport Complex I/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Mice , Cell Line, Tumor , Mitochondria/metabolism , Mitochondria/drug effects , Cell Proliferation/drug effects , Uncoupling Agents/pharmacology , Oxidative Phosphorylation/drug effects , Xenograft Model Antitumor Assays , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Rats , NADH Dehydrogenase/metabolism , NADH Dehydrogenase/antagonists & inhibitors
9.
Appl Environ Microbiol ; 90(5): e0041424, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38563750

ABSTRACT

Lactococcus lactis, a lactic acid bacterium used in food fermentations and commonly found in the human gut, is known to possess a fermentative metabolism. L. lactis, however, has been demonstrated to transfer metabolically generated electrons to external electron acceptors, a process termed extracellular electron transfer (EET). Here, we investigated an L. lactis mutant with an unusually high capacity for EET that was obtained in an adaptive laboratory evolution (ALE) experiment. First, we investigated how global gene expression had changed, and found that amino acid metabolism and nucleotide metabolism had been affected significantly. One of the most significantly upregulated genes encoded the NADH dehydrogenase NoxB. We found that this upregulation was due to a mutation in the promoter region of NoxB, which abolished carbon catabolite repression. A unique role of NoxB in EET could be attributed and it was directly verified, for the first time, that NoxB could support respiration in L. lactis. NoxB, was shown to be a novel type-II NADH dehydrogenase that is widely distributed among gut microorganisms. This work expands our understanding of EET in Gram-positive electroactive microorganisms and the special significance of a novel type-II NADH dehydrogenase in EET.IMPORTANCEElectroactive microorganisms with extracellular electron transfer (EET) ability play important roles in biotechnology and ecosystems. To date, there have been many investigations aiming at elucidating the mechanisms behind EET, and determining the relevance of EET for microorganisms in different niches. However, how EET can be enhanced and harnessed for biotechnological applications has been less explored. Here, we compare the transcriptomes of an EET-enhanced L. lactis mutant with its parent and elucidate the underlying reason for its superior performance. We find that one of the most significantly upregulated genes is the gene encoding the NADH dehydrogenase NoxB, and that upregulation is due to a mutation in the catabolite-responsive element that abolishes carbon catabolite repression. We demonstrate that NoxB has a special role in EET, and furthermore show that it supports respiration to oxygen, which has never been done previously. In addition, a search reveals that this novel NoxB-type NADH dehydrogenase is widely distributed among gut microorganisms.


Subject(s)
Bacterial Proteins , Lactococcus lactis , NADH Dehydrogenase , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactococcus lactis/enzymology , Electron Transport , NADH Dehydrogenase/metabolism , NADH Dehydrogenase/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Gene Expression Regulation, Bacterial , Fermentation
10.
Adv Sci (Weinh) ; 11(21): e2306871, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569495

ABSTRACT

RNA splicing dysregulation and the involvement of specific splicing factors are emerging as common factors in both obesity and metabolic disorders. The study provides compelling evidence that the absence of the splicing factor SRSF1 in mature adipocytes results in whitening of brown adipocyte tissue (BAT) and impaired thermogenesis, along with the inhibition of white adipose tissue browning in mice. Combining single-nucleus RNA sequencing with transmission electron microscopy, it is observed that the transformation of BAT cell types is associated with dysfunctional mitochondria, and SRSF1 deficiency leads to degenerated and fragmented mitochondria within BAT. The results demonstrate that SRSF1 effectively binds to constitutive exon 6 of Ndufs3 pre-mRNA and promotes its inclusion. Conversely, the deficiency of SRSF1 results in impaired splicing of Ndufs3, leading to reduced levels of functional proteins that are essential for mitochondrial complex I assembly and activity. Consequently, this deficiency disrupts mitochondrial integrity, ultimately compromising the thermogenic capacity of BAT. These findings illuminate a novel role for SRSF1 in influencing mitochondrial function and BAT thermogenesis through its regulation of Ndufs3 splicing within BAT.


Subject(s)
Adipocytes, Brown , Homeostasis , Mitochondria , Serine-Arginine Splicing Factors , Thermogenesis , Animals , Male , Mice , Adipocytes, Brown/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Homeostasis/genetics , Homeostasis/physiology , Mitochondria/metabolism , Mitochondria/genetics , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , RNA Splicing/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Thermogenesis/genetics , Thermogenesis/physiology
11.
Cell Death Dis ; 15(4): 253, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594244

ABSTRACT

Mitochondria are important for the activation of endothelial cells and the process of angiogenesis. NDUFS8 (NADH:ubiquinone oxidoreductase core subunit S8) is a protein that plays a critical role in the function of mitochondrial Complex I. We aimed to investigate the potential involvement of NDUFS8 in angiogenesis. In human umbilical vein endothelial cells (HUVECs) and other endothelial cell types, we employed viral shRNA to silence NDUFS8 or employed the CRISPR/Cas9 method to knockout (KO) it, resulting in impaired mitochondrial functions in the endothelial cells, causing reduction in mitochondrial oxygen consumption and Complex I activity, decreased ATP production, mitochondrial depolarization, increased oxidative stress and reactive oxygen species (ROS) production, and enhanced lipid oxidation. Significantly, NDUFS8 silencing or KO hindered cell proliferation, migration, and capillary tube formation in cultured endothelial cells. In addition, there was a moderate increase in apoptosis within NDUFS8-depleted endothelial cells. Conversely, ectopic overexpression of NDUFS8 demonstrated a pro-angiogenic impact, enhancing cell proliferation, migration, and capillary tube formation in HUVECs and other endothelial cells. NDUFS8 is pivotal for Akt-mTOR cascade activation in endothelial cells. Depleting NDUFS8 inhibited Akt-mTOR activation, reversible with exogenous ATP in HUVECs. Conversely, NDUFS8 overexpression boosted Akt-mTOR activation. Furthermore, the inhibitory effects of NDUFS8 knockdown on cell proliferation, migration, and capillary tube formation were rescued by Akt re-activation via a constitutively-active Akt1. In vivo experiments using an endothelial-specific NDUFS8 shRNA adeno-associated virus (AAV), administered via intravitreous injection, revealed that endothelial knockdown of NDUFS8 inhibited retinal angiogenesis. ATP reduction, oxidative stress, and enhanced lipid oxidation were detected in mouse retinal tissues with endothelial knockdown of NDUFS8. Lastly, we observed an increase in NDUFS8 expression in retinal proliferative membrane tissues obtained from human patients with proliferative diabetic retinopathy. Our findings underscore the essential role of the mitochondrial protein NDUFS8 in regulating endothelial cell activation and angiogenesis.


Subject(s)
Angiogenesis , Proto-Oncogene Proteins c-akt , Humans , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Cell Movement , Human Umbilical Vein Endothelial Cells/metabolism , TOR Serine-Threonine Kinases/metabolism , RNA, Small Interfering/pharmacology , Lipids/pharmacology , Adenosine Triphosphate/pharmacology , Cell Proliferation/genetics , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism
12.
Biochemistry (Mosc) ; 89(2): 241-256, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38622093

ABSTRACT

Genes of putative reductases of α,ß-unsaturated carboxylic acids are abundant among anaerobic and facultatively anaerobic microorganisms, yet substrate specificity has been experimentally verified for few encoded proteins. Here, we co-produced in Escherichia coli a heterodimeric protein of the facultatively anaerobic marine bacterium Vibrio ruber (GenBank SJN56019 and SJN56021; annotated as NADPH azoreductase and urocanate reductase, respectively) with Vibrio cholerae flavin transferase. The isolated protein (named Crd) consists of the sjn56021-encoded subunit CrdB (NADH:flavin, FAD binding 2, and FMN bind domains) and an additional subunit CrdA (SJN56019, a single NADH:flavin domain) that interact via their NADH:flavin domains (Alphafold2 prediction). Each domain contains a flavin group (three FMNs and one FAD in total), one of the FMN groups being linked covalently by the flavin transferase. Crd readily reduces cinnamate, p-coumarate, caffeate, and ferulate under anaerobic conditions with NADH or methyl viologen as the electron donor, is moderately active against acrylate and practically inactive against urocanate and fumarate. Cinnamates induced Crd synthesis in V. ruber cells grown aerobically or anaerobically. The Crd-catalyzed reduction started by NADH demonstrated a time lag of several minutes, suggesting a redox regulation of the enzyme activity. The oxidized enzyme is inactive, which apparently prevents production of reactive oxygen species under aerobic conditions. Our findings identify Crd as a regulated NADH-dependent cinnamate reductase, apparently protecting V. ruber from (hydroxy)cinnamate poisoning.


Subject(s)
Oxidoreductases , Vibrio , Oxidoreductases/metabolism , NAD/metabolism , Cinnamates , Oxidation-Reduction , Vibrio/genetics , Vibrio/metabolism , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , NADH Dehydrogenase/metabolism , Flavins/chemistry , Transferases , Flavin-Adenine Dinucleotide/metabolism
13.
Plant Physiol Biochem ; 207: 108420, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324953

ABSTRACT

Cyclic electron transport (CET) around photosystem I (PSI) mediated by the NADH dehydrogenase-like (NDH) complex is closely related to plant salt tolerance. However, whether overexpression of a core subunit of the NDH complex affects the photosynthetic electron transport under salt stress is currently unclear. Here, we expressed the NDH complex L subunit (Ndhl) genes ZmNdhl1 and ZmNdhl2 from C4 plant maize (Zea mays) or OsNdhl from C3 plant rice (Oryza sativa) using a constitutive promoter in rice. Transgenic rice lines expressing ZmNdhl1, ZmNdhl2, or OsNdhl displayed enhanced salt tolerance, as indicated by greater plant height, dry weight, and leaf relative water content, as well as lower malondialdehyde content compared to wild-type plants under salt stress. Fluorescence parameters such as post-illumination rise (PIR), the prompt chlorophyll a fluorescence transient (OJIP), modulated 820-nm reflection (MR), and delayed chlorophyll a fluorescence (DF) remained relatively normal in transgenic plants during salt stress. These results indicate that expression of ZmNdhl1, ZmNdhl2, or OsNdhl increases cyclic electron transport activity, slows down damage to linear electron transport, alleviates oxidative damage to the PSI reaction center and plastocyanin, and reduces damage to electron transport on the receptor side of PSI in rice leaves under salt stress. Thus, expression of Ndhl genes from maize or rice improves salt tolerance by enhancing photosynthetic electron transport in rice. Maize and rice Ndhl genes played a similar role in enhancing salinity tolerance and avoiding photosynthetic damage.


Subject(s)
Oryza , Salt Tolerance , Electron Transport , Salt Tolerance/genetics , Chlorophyll A/metabolism , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Photosynthesis , Photosystem I Protein Complex/metabolism , Oryza/genetics , Oryza/metabolism
14.
Inflammopharmacology ; 32(2): 1545-1573, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308793

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a prominent cause of dementia, resulting in neurodegeneration and memory impairment. This condition imposes a considerable public health burden on both patients and their families due to the patients' functional impairments as well as the psychological and financial constraints. It has been well demonstrated that its aetiology involves proteinopathy, mitochondriopathies, and enhanced reactive oxygen species (ROS) generation, which are some of the key features of AD brains that further result in oxidative stress, excitotoxicity, autophagy, and mitochondrial dysfunction. OBJECTIVE: The current investigation was created with the aim of elucidating the neurological defence mechanism of trans,trans-Farnesol (TF) against intracerebroventricular-streptozotocin (ICV-STZ)-induced Alzheimer-like symptoms and related pathologies in rodents. MATERIALS AND METHODS: The current investigation involved male SD rats receiving TF (25-100 mg/kg, per oral) consecutively for 21 days in ICV-STZ-treated animals. An in silico study was carried out to explore the possible interaction between TF and NADH dehydrogenase and succinate dehydrogenase. Further, various behavioural (Morris water maze and novel object recognition test), biochemical (oxidants and anti-oxidant markers), activities of mitochondrial enzyme complexes and acetylcholinesterase (AChE), pro-inflammatory (tumor necrosis factor-alpha; TNF-α) levels, and histopathological studies were evaluated in specific brain regions. RESULTS: Rats administered ICV-STZ followed by treatment with TF (25, 50, and 100 mg/kg) for 21 days had significantly better mental performance (reduced escape latency to access platform, extended time spent in target quadrant, and improved differential index) in the Morris water maze test and new object recognition test models when compared to control (ICV-STZ)-treated groups. Further, TF treatment significantly restored redox proportion, anti-oxidant levels, regained mitochondrial capacities, attenuated altered AChE action, levels of TNF-α, and histopathological alterations in certain brain regions in comparison with control. In in silico analysis, TF caused greater interaction with NADH dehydrogenase and succinate dehydrogenase. CONCLUSION: The current work demonstrates the neuroprotective ability of TF in an experimental model with AD-like pathologies. The study further suggests that the neuroprotective impacts of TF may be related to its effects on TNF-α levels, oxidative stress pathways, and mitochondrial complex capabilities.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Rats , Male , Humans , Animals , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Farnesol/adverse effects , Streptozocin/pharmacology , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/pharmacology , Antioxidants/metabolism , Rats, Wistar , Acetylcholinesterase/metabolism , Tumor Necrosis Factor-alpha/metabolism , NADH Dehydrogenase/metabolism , NADH Dehydrogenase/pharmacology , NADH Dehydrogenase/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Sprague-Dawley , Oxidative Stress , Maze Learning , Disease Models, Animal
15.
J Neuromuscul Dis ; 11(2): 485-491, 2024.
Article in English | MEDLINE | ID: mdl-38217609

ABSTRACT

Background: The NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 (NDUFS6) gene encodes for an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Bi-allelic NDUFS6 variants have been linked with a severe disorder mostly reported as a lethal infantile mitochondrial disease (LMID) or Leigh syndrome (LS). Objective: Here, we identified a homozygous variant (c.309 + 5 G > A) in NDUFS6 in one male patient with axonal neuropathy accompanied by loss of small fibers in skin biopsy and further complicated by optic atrophy and borderline intellectual disability. Methods: To address the pathogenicity of the variant, biochemical studies (mtDNA copy number quantification, ELISA, Proteomic profiling) of patient-derived leukocytes were performed. Results: The analyses revealed loss of NDUFS6 protein associated with a decrease of three further mitochondrial NADH dehydrogenase subunit/assembly proteins (NDUFA12, NDUFS4 and NDUFV1). Mitochondrial copy number is not altered in leukocytes and the mitochondrial biomarker GDF15 is not significantly changed in serum. Conclusions: Hence, our combined clinical and biochemical data strengthen the concept of NDUFS6 being causative for a very rare form of axonal neuropathy associated with optic atrophy and borderline intellectual disability, and thus expand (i) the molecular genetic landscape of neuropathies and (ii) the clinical spectrum of NDUFS6-associated phenotypes.


Subject(s)
Intellectual Disability , Optic Atrophy , Humans , Male , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , NADPH Dehydrogenase/metabolism , Optic Atrophy/genetics , Proteomics
16.
Heart Surg Forum ; 27(1): E028-E037, 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38286648

ABSTRACT

BACKGROUND: This study mainly investigated the mechanism and effects of AKAP1 in renal patients with acute heart failure (AHF). METHODS: Patients with renal patients with AHF and normal volunteers were collected. The left anterior descending arteries (LAD) of mice were ligated to induce myocardial infarction. RESULTS: AKAP1 messenger RNA (mRNA) expression was found to be down-regulated in renal patients with AHF. The serum levels of AKAP1 mRNA expression were negatively correlated with collagen I/III in patients. AKAP1 mRNA and protein expression in the heart tissue of mice with AHF were also found to be down-regulated in a time-dependent manner. Short hairpin (Sh)-AKAP1 promotes AHF in a mouse model. AKAP1 up-regulation reduces reactive oxygen species (ROS)-induced oxidative stress in an In Vitro model. AKAP1 up-regulation also reduces ROS-induced lipid peroxidation ferroptosis in an In Vitro model. AKAP1 induces NDUFS1 expression to increase GPX4 activity levels. AKAP1 protein interlinked with the NDUFS1 protein. Up-regulation of the AKAP1 gene reduced NDUFS1 ubiquitination, while down-regulation of the AKAP1 gene increased NDUFS1 ubiquitination in a model. In vivo imaging showed that the sh-AKAP1 virus reduced NDUFS1 expression in the heart of a mouse model. CONCLUSIONS: AKAP1 reduced ROS-induced lipid peroxidation ferroptosis through the inhibition of ubiquitination of NDUFS by mitochondrial damage in model of renal patients with AHF, suggest a novel target for AHF treatment.


Subject(s)
A Kinase Anchor Proteins , Ferroptosis , Heart Failure , Animals , Humans , Mice , Heart Failure/genetics , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger , A Kinase Anchor Proteins/metabolism , NADH Dehydrogenase/metabolism
17.
EMBO J ; 43(2): 225-249, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177503

ABSTRACT

Respiratory complex I (NADH:ubiquinone oxidoreductase) is essential for cellular energy production and NAD+ homeostasis. Complex I mutations cause neuromuscular, mitochondrial diseases, such as Leigh Syndrome, but their molecular-level consequences remain poorly understood. Here, we use a popular complex I-linked mitochondrial disease model, the ndufs4-/- mouse, to define the structural, biochemical, and functional consequences of the absence of subunit NDUFS4. Cryo-EM analyses of the complex I from ndufs4-/- mouse hearts revealed a loose association of the NADH-dehydrogenase module, and discrete classes containing either assembly factor NDUFAF2 or subunit NDUFS6. Subunit NDUFA12, which replaces its paralogue NDUFAF2 in mature complex I, is absent from all classes, compounding the deletion of NDUFS4 and preventing maturation of an NDUFS4-free enzyme. We propose that NDUFAF2 recruits the NADH-dehydrogenase module during assembly of the complex. Taken together, the findings provide new molecular-level understanding of the ndufs4-/- mouse model and complex I-linked mitochondrial disease.


Subject(s)
Leigh Disease , Mitochondrial Diseases , Animals , Mice , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Leigh Disease/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , NAD/metabolism , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism
18.
Biochem Biophys Res Commun ; 693: 149374, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38096616

ABSTRACT

Cervical cancer, a common malignancy in women, poses a significant health burden worldwide. In this study, we aimed to investigate the expression, function, and potential mechanisms of NADH: ubiquinone oxidoreductase subunit A8 (NDUFA8) in cervical cancer. The Gene Expression Profiling Interactive Analysis (GEPIA) database and immunohistochemical scoring were used to analyze NDUFA8 expression in cervical cancer tissues and normal tissues. Quantitative real-time PCR and Western blot analyses were performed to assess the expression level of NDUFA8 in cervical cancer cell lines. NDUFA8 knockdown or overexpression experiments were conducted to evaluate its impact on cell proliferation and apoptosis. The mitochondrial respiratory status was analyzed by measuring cellular oxygen consumption, adenosine triphosphate (ATP) levels, and the expression levels of Mitochondrial Complex I activity, and Mitochondrial Complex IV-associated proteins Cytochrome C Oxidase Subunit 5B (COX5B) and COX6C. NDUFA8 exhibited high expression levels in cervical cancer tissues, and these levels were correlated with reduced survival rates. A significant upregulation of NDUFA8 expression was observed in cervical cancer cell lines compared to normal cells. Silencing NDUFA8 hindered cell proliferation, promoted apoptosis, and concurrently suppressed cellular mitochondrial respiration, resulting in decreased levels of available ATP. Conversely, NDUFA8 overexpression induced the opposite effects. Herein, we also found that E1A Binding Protein P300 (EP300) overexpression facilitated Histone H3 Lysine 27 (H3K27) acetylation enrichment, enhancing the activity of the NDUFA8 promoter region. NDUFA8, which is highly expressed in cervical cancer, is regulated by transcriptional control via EP300/H3K27 acetylation. By promoting mitochondrial respiration, NDUFA8 contributes to cervical cancer cell proliferation and apoptosis. These findings provide novel insights into NDUFA8 as a therapeutic target in cervical cancer.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Transcription Factors/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Apoptosis/genetics , Cell Proliferation/genetics , Respiration , Adenosine Triphosphate , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism
19.
New Phytol ; 241(1): 82-101, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37872738

ABSTRACT

C4 plants typically operate a CO2 concentration mechanism from mesophyll (M) cells into bundle sheath (BS) cells. NADH dehydrogenase-like (NDH) complex is enriched in the BS cells of many NADP-malic enzyme (ME) type C4 plants and is more abundant in C4 than in C3 plants, but to what extent it is involved in the CO2 concentration mechanism remains to be experimentally investigated. We created maize and rice mutants deficient in NDH function and then used a combination of transcriptomic, proteomic, and metabolomic approaches for comparative analysis. Considerable decreases in growth, photosynthetic activities, and levels of key photosynthetic proteins were observed in maize but not rice mutants. However, transcript abundance for many cyclic electron transport (CET) and Calvin-Benson cycle components, as well as BS-specific C4 enzymes, was increased in maize mutants. Metabolite analysis of the maize ndh mutants revealed an increased NADPH : NADP ratio, as well as malate, ribulose 1,5-bisphosphate (RuBP), fructose 1,6-bisphosphate (FBP), and photorespiration intermediates. We suggest that by optimizing NADPH and malate levels and adjusting NADP-ME activity, NDH functions to balance metabolic and redox states in the BS cells of maize (in addition to ATP supply), coordinating photosynthetic transcript abundance and protein content, thus directly regulating the carbon flow in the two-celled C4 system of maize.


Subject(s)
Carbon , NADH Dehydrogenase , Carbon/metabolism , NADH Dehydrogenase/metabolism , Zea mays/genetics , Zea mays/metabolism , Malates/metabolism , NADP/metabolism , Carbon Dioxide/metabolism , Proteomics , Photosynthesis , Oxidation-Reduction , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Plant Leaves/metabolism
20.
Microbiol Spectr ; 11(6): e0222523, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37855642

ABSTRACT

IMPORTANCE: Energy generation pathways are a potential avenue for the development of novel antibiotics. However, bacteria possess remarkable resilience due to the compensatory pathways, which presents a challenge in this direction. NADH, the primary reducing equivalent, can transfer electrons to two distinct types of NADH dehydrogenases. Type I NADH dehydrogenase is an enzyme complex comprising multiple subunits and can generate proton motive force (PMF). Type II NADH dehydrogenase does not pump protons but plays a crucial role in maintaining the turnover of NAD+. To study the adaptive rewiring of energy metabolism, we evolved an Escherichia coli mutant lacking type II NADH dehydrogenase. We discovered that by modifying the flux through the tricarboxylic acid (TCA) cycle, E. coli could mitigate the growth impairment observed in the absence of type II NADH dehydrogenase. This research provides valuable insights into the intricate mechanisms employed by bacteria to compensate for disruptions in energy metabolism.


Subject(s)
NADH Dehydrogenase , Proton Pumps , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Proton Pumps/metabolism , Escherichia coli/metabolism , Protons , NAD/metabolism , Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL