Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.328
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 237-242, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097868

ABSTRACT

Recently, nanocarriers have been utilized for encapsulating and sustained release of agrochemicals specifically auxins. Due to their potential applications such as increased bioavailability and improved crop yield and nutritional quality. Herein, the efficacy of alginate/chitosan nanocapsules as a nanocarrier for the hormone indole-3-butyric acid (IBA) loading and its effect on rooting tobacco plants has been carried out in the present study. The average particle size of IBA-alginate/chitosan nanocapsules was measured by Dynamic light scattering analysis at 321 nm. Scanning electron microscope studies revealed the spherical shape of nanoparticles with an average size of 97 nm. The average particle size of IBA-alginate/chitosan nanocapsules was measured by Dynamic light scattering analysis at 321 nm. The characteristic peaks of IBA on alginate/chitosan nanocapsules were identified by Fourier transform infrared spectroscopic analysis. Also, high efficiency (35%) of IBA hormone loading was observed. The findings indicated that the concentration of 3 mgL-1 of IBA-alginate/chitosan nanocapsules has the highest efficiency in increasing the rooting in tobacco (Nicotiana tabacum) plants compared to other treatments. According to our results, we can introduce alginate/chitosan nanocapsules as an efficient nanocarrier in IBA hormone transfer applications and their use in agriculture.


Subject(s)
Alginates , Chitosan , Indoles , Nanocapsules , Nicotiana , Plant Roots , Chitosan/chemistry , Nicotiana/drug effects , Nicotiana/growth & development , Nicotiana/metabolism , Alginates/chemistry , Indoles/chemistry , Nanocapsules/chemistry , Plant Roots/drug effects , Plant Roots/growth & development , Particle Size , Spectroscopy, Fourier Transform Infrared , Hexuronic Acids/chemistry , Glucuronic Acid/chemistry , Plant Growth Regulators/pharmacology , Plant Growth Regulators/chemistry
2.
Sci Rep ; 14(1): 16584, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39020069

ABSTRACT

In this study, the effect of Thymus vulgaris essential oil (TVO) nanoemulsion (NE, 500 mg/L) in combination with ultrasound (ultrasound-NE) on the microbial and physiological quality of green bell pepper was investigated. The TVO-NE droplet size and zeta potential were 84.26 nm and - 0.77 mV, respectively. The minimum inhibitory concentrations of the TVO and TVO-NE against E. coli and S. aureus were about 0.07 and 7 g/L, respectively. The NE-ultrasound treatment exhibited the lowest peroxidase activity and respiration rate with no detrimental effect on texture, total phenolic content, antioxidant activity, pH, and TSS. Although the NE-ultrasound treatment showed the highest weight loss and electrolytic leakage, it exhibited the best visual color and appearance. The NE-ultrasound treatment descended the total viable/mold and yeast counts significantly compared to control. Results showed that treating the bell peppers with NE-ultrasound can result in bell peppers with good postharvest quality and extended shelf life.


Subject(s)
Capsicum , Escherichia coli , Nanocapsules , Oils, Volatile , Staphylococcus aureus , Thymus Plant , Thymus Plant/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Capsicum/chemistry , Capsicum/microbiology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Food Preservation/methods , Ultrasonics/methods , Antioxidants/pharmacology , Ultrasonic Waves , Emulsions
3.
ACS Appl Mater Interfaces ; 16(30): 38916-38930, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39041453

ABSTRACT

Despite the potential of photodynamic therapy (PDT) in cancer treatment, the development of efficient and photostable photosensitizing molecules that operate at long wavelengths of light has become a major hurdle. Here, we report for the first time an Ir(III)-phthalocyanine conjugate (Ir-ZnPc) as a novel photosensitizer for high-efficiency synergistic PDT treatment that takes advantage of the long-wavelength excitation and near infrared (NIR) emission of the phthalocyanine scaffold and the known photostability and high phototoxicity of cyclometalated Ir(III) complexes. In order to increase water solubility and cell membrane permeability, the conjugate and parent zinc phthalocyanine (ZnPc) were encapsulated in amphoteric redox-responsive polyurethane-polyurea hybrid nanocapsules (Ir-ZnPc-NCs and ZnPc-NCs, respectively). Photobiological evaluations revealed that the encapsulated Ir-ZnPc conjugate achieved high photocytotoxicity in both normoxic and hypoxic conditions under 630 nm light irradiation, which can be attributed to dual Type I and Type II reactive oxygen species (ROS) photogeneration. Interestingly, PDT treatments with Ir-ZnPc-NCs and ZnPc-NCs significantly inhibited the growth of three-dimensional (3D) multicellular tumor spheroids. Overall, the nanoencapsulation of Zn phthalocyanines conjugated to cyclometalated Ir(III) complexes provides a new strategy for obtaining photostable and biocompatible red-light-activated nano-PDT agents with efficient performance under challenging hypoxic environments, thus offering new therapeutic opportunities for cancer treatment.


Subject(s)
Antineoplastic Agents , Indoles , Isoindoles , Photochemotherapy , Photosensitizing Agents , Humans , Indoles/chemistry , Indoles/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Iridium/chemistry , Iridium/pharmacology , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Zinc Compounds/chemistry , Reactive Oxygen Species/metabolism , Nanocapsules/chemistry , Cell Line, Tumor , Cell Survival/drug effects
4.
Int J Pharm ; 661: 124458, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38996823

ABSTRACT

Leukemia, particularly acute myeloid leukemia (AML) is considered a serious health condition with high prevalence among adults. Accordingly, finding new therapeutic modalities for AML is urgently needed. This study aimed to develop a biocompatible nanoformulation for effective oral delivery of the phytomedicine; baicalin (BAC) for AML treatment. Lipid nanocapsules (LNCs) based on bioactive natural components; rhamnolipids (RL) as a biosurfactant and the essential oil linalool (LIN), were prepared using a simple phase-inversion method. The elaborated BAC-LNCs displayed 61.1 nm diameter and 0.2 PDI. Entrapment efficiency exceeded 98 % with slow drug release and high storage-stability over 3 months. Moreover, BAC-LNCs enhanced BAC oral bioavailability by 2.3-fold compared to BAC suspension in rats with higher half-life and mean residence-time. In vitro anticancer studies confirmed the prominent cytotoxicity of BAC-LNCs on the human leukemia monocytes (THP-1). BAC-LNCs exerted higher cellular association, apoptotic capability and antiproliferative activity with DNA synthesis-phase arrest. Finally, a mechanistic study performed through evaluation of various tumor biomarkers revealed that BAC-LNCs downregulated the angiogenic marker, vascular endothelial growth-factor (VEGF) and the anti-apoptotic marker (BCl-2) and upregulated the apoptotic markers (Caspase-3 and BAX). The improved efficacy of BAC bioactive-LNCs substantially recommends their pharmacotherapeutic potential as a promising nanoplatform for AML treatment.


Subject(s)
Drug Liberation , Flavonoids , Leukemia, Myeloid, Acute , Nanocapsules , Animals , Flavonoids/pharmacology , Flavonoids/administration & dosage , Flavonoids/chemistry , Humans , Leukemia, Myeloid, Acute/drug therapy , Nanocapsules/chemistry , Male , Apoptosis/drug effects , Rats , Glycolipids/chemistry , Glycolipids/administration & dosage , Glycolipids/pharmacology , Monoterpenes/pharmacology , Monoterpenes/chemistry , Monoterpenes/administration & dosage , THP-1 Cells , Biological Availability , Administration, Oral , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/chemistry , Rats, Sprague-Dawley , Cell Proliferation/drug effects , Cell Line, Tumor , Acyclic Monoterpenes
5.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892083

ABSTRACT

Oil-core nanocapsules (NCs, also known as nanoemulsions) are of great interest due to their application as efficient carriers of various lipophilic bioactives, such as drugs. Here, we reported for the first time the preparation and characterization of NCs consisting of chondroitin sulfate (CS)-based shells and liquid oil cores. For this purpose, two amphiphilic CS derivatives (AmCSs) were obtained by grafting the polysaccharide chain with octadecyl or oleyl groups. AmCS-based NCs were prepared by an ultrasound-assisted emulsification of an oil phase consisting of a mixture of triglyceride oil and vitamin E in a dispersion of AmCSs. Dynamic light scattering and cryo-transmission electron microscopy showed that the as-prepared core-shell NCs have typical diameters in the range of 30-250 nm and spherical morphology. Since CS is a strong polyanion, these particles have a very low surface potential, which promotes their stabilization. The cytotoxicity of the CS derivatives and CS-based NCs and their impact on cell proliferation were analyzed using human keratinocytes (HaCaTs) and primary human skin fibroblasts (HSFs). In vitro studies showed that AmCSs dispersed in an aqueous medium, exhibiting mild cytotoxicity against HaCaTs, while for HSFs, the harmful effect was observed only for the CS derivative with octadecyl side groups. However, the nanocapsules coated with AmCSs, especially those filled with vitamin E, show high biocompatibility with human skin cells. Due to their stability under physiological conditions, the high encapsulation efficiency of their hydrophobic compounds, and biocompatibility, AmCS-based NCs are promising carriers for the topical delivery of lipophilic bioactive compounds.


Subject(s)
Chondroitin Sulfates , Drug Carriers , Nanocapsules , Nanocapsules/chemistry , Humans , Chondroitin Sulfates/chemistry , Drug Carriers/chemistry , Dietary Supplements , Fibroblasts/drug effects , Cell Proliferation/drug effects , Keratinocytes/drug effects , Emulsions/chemistry , Particle Size , Vitamin E/chemistry , Cell Survival/drug effects , Cell Line , HaCaT Cells
6.
Sci Rep ; 14(1): 13646, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871758

ABSTRACT

A novel nano bio-fertilizer encapsulation method was developed to crosslink chitosan and alginate with humic acid. These nanocapsules, referred to as (Ch./Alg.HA.NPK) or (Ch./Alg.HA.NPK.PGPRs), were loaded with nanoscale essential agro-nutrients (NPK) and beneficial microorganisms Pseudomonas Fluorescence abbreviated as (P.Fluorescence). Structural and morphological analyses were conducted using FourierTransform Infrared, Thermogravimetric Analysis, Scanning Electron Microscopy, Malvern Zeta NanoSizer, and Zeta potential. Encapsulation efficiency and water retention were also determined compared to control non-crosslinked nanocapsules. The sustained cumulative release of NPK over 30 days was also investigated to 33.2%, 47.8%, and 68.3%, alternatively. The release mechanism, also assessed through the kinetic module of the Korsemeyer- Peppas Mathematical model, demonstrated superior performance compared to non-crosslinked nanocapsules (chitosan/alginate). These results show the potential of the synthesized nanocapsules for environmentally conscious controlled release of NPK and PGPRs, thereby mitigating environmental impact, enhancing plant growth, and reducing reliance on conventional agrochemical fertilizers.


Subject(s)
Agriculture , Alginates , Chitosan , Fertilizers , Chitosan/chemistry , Agriculture/methods , Alginates/chemistry , Nanocapsules/chemistry , Humic Substances/analysis , Pseudomonas/metabolism , Pseudomonas/growth & development
7.
Langmuir ; 40(24): 12802-12809, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38850260

ABSTRACT

Since drug carriers are envisaged to be used in a wide variety of situations and environments, nanocarriers with diverse properties, such as biocompatibility, biodegradability, nonimmunogenicity, adequate particle size, robustness, and cell permeability, are required. Here, we report the construction of novel nanocapsules with the above-mentioned features by the self-assembly of peptides composed of oligoproline and oligoleucine (i.e., H-Pro10Leu4-NH2 and H-Pro10Leu6-NH2). The peptides self-organized via hydrogen bonds and hydrophobic interactions between oligoleucine moieties to form vesicle-like nanocapsules with cationic oligoproline exposed on the surface. The guest encapsulation experiments revealed that the nanocapsules were capable of uptake of both water-soluble and insoluble compounds. Furthermore, positively charged and/or oligoproline-based peptides are known to improve cell permeability and cellular uptake, suggesting that the peptide nanocapsules are good candidates for nanocarriers to complement liposomes and polymer micelles.


Subject(s)
Nanocapsules , Peptides , Nanocapsules/chemistry , Peptides/chemistry , Leucine/chemistry , Proline/chemistry , Particle Size , Hydrophobic and Hydrophilic Interactions
8.
J Nanobiotechnology ; 22(1): 336, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38880905

ABSTRACT

Oxygen is necessary for life and plays a key pivotal in maintaining normal physiological functions and treat of diseases. Hemoglobin-based oxygen carriers (HBOCs) have been studied and developed as a replacement for red blood cells (RBCs) in oxygen transport due to their similar oxygen-carrying capacities. However, applications of HBOCs are hindered by vasoactivity, oxidative toxicity, and a relatively short circulatory half-life. With advancements in nanotechnology, Hb encapsulation, absorption, bioconjugation, entrapment, and attachment to nanomaterials have been used to prepare nanomaterial-related HBOCs to address these challenges and pend their application in several biomedical and therapeutic contexts. This review focuses on the progress of this class of nanomaterial-related HBOCs in the fields of hemorrhagic shock, ischemic stroke, cancer, and wound healing, and speculates on future research directions. The advancements in nanomaterial-related HBOCs are expected to lead significant breakthroughs in blood substitutes, enabling their widespread use in the treatment of clinical diseases.


Subject(s)
Blood Substitutes , Hemoglobins , Liposomes , Nanostructures , Oxygen , Humans , Hemoglobins/chemistry , Hemoglobins/metabolism , Blood Substitutes/chemistry , Oxygen/chemistry , Animals , Nanostructures/chemistry , Liposomes/chemistry , Nanocapsules/chemistry , Wound Healing/drug effects , Neoplasms/drug therapy , Shock, Hemorrhagic/drug therapy
9.
ACS Appl Bio Mater ; 7(7): 4471-4485, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38887037

ABSTRACT

In recent years, various nanocarrier systems have been explored to enhance the targeting of cancer cells by improving the ligand-receptor interactions between the nanocarrier and cancer cells for selective cancer cell imaging and targeted delivery of anticancer drugs. Herein, we report multifunctional hydrogen-bonded multilayer nanocapsules functionalized with both folic acid-derived quantum dots (FAQDs) and gold nanorods (AuNRs) for targeted cancer therapy and cancer cell imaging using fluorescence microscopy and medical-range ultrasound imaging systems. The encapsulation efficiency of nanocapsules was found to be 49% for 5-fluorouracil (5-FU). The release percentage reached a plateau at 37% after 1 h at pH 7.4 and increased to 57% after 3 h when the release pH was decreased to pH 5.5 (i.e., the pH of the tumor environment). Under ultrasound irradiation, the release was significantly accelerated, with a total release of 52% and 68% after only 6 min at pH 7.4 and pH 5.5, respectively. While the sonoporation process plays an important role in anticancer activity experiments under ultrasound exposure by generating temporary pores, the targeting ability of FAQDs brings the capsules closer to the cell membrane and improves the cellular uptake of the released drug, thereby increasing local drug concentration. In vitro cytotoxicity experiments with HCT-116 and HEp-2 cells demonstrated anticancer activities of 96% and 98%, respectively. The nanocapsules showed enhanced ultrasound scattering signal intensity and bright spots under ultrasound exposure, most likely caused by high scattering ability and internal reflections of preloaded AuNRs in the interior structure of the nanocapsules. Hence, the demonstrated nanocapsule system not only has the potential to be used as an integrated system for early- stage detection and treatment of cancer cells but also has the ability for live tracking and imaging of cancer cells while undergoing treatment with chemotherapy and radiation therapy.


Subject(s)
Antineoplastic Agents , Gold , Materials Testing , Nanocapsules , Nanotubes , Theranostic Nanomedicine , Gold/chemistry , Gold/pharmacology , Humans , Nanocapsules/chemistry , Nanotubes/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Particle Size , Oxazoles/chemistry , Oxazoles/pharmacology , Optical Imaging , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Fluorouracil/pharmacology , Fluorouracil/chemistry , Ultrasonography , Cell Line, Tumor
10.
Int J Pharm ; 660: 124304, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38848799

ABSTRACT

Depression is one of the most common psychiatric disorders. Nanotechnology has emerged to optimize the pharmacological response. Therefore, the aim of this work was to develop and characterize liposomes and nanocapsules containing paroxetine hydrochloride and evaluate their antidepressant-like effect using the open field and tail suspension tests in mice. Liposomes and nanocapsules were prepared using the reverse-phase evaporation and nanoprecipitation methods, respectively. The particle size of the formulation ranged from 121.81 to 310.73 nm, the polydispersity index from 0.096 to 0.303, the zeta potential from -11.94 to -34.50 mV, the pH from 5.31 to 7.38, the drug content from 80.82 to 94.36 %, and the association efficiency was 98 %. Paroxetine hydrochloride showed slower release when associated with liposomes (43.82 %) compared to nanocapsules (95.59 %) after 10 h. In Vero cells, in vitro toxicity showed a concentration-dependent effect for paroxetine hydrochloride nanostructures. Both nanostructures decreased the immobility time in the TST at 2.5 mg/kg without affecting the number of crossings in the open field test, suggesting the antidepressant-like effect of paroxetine. In addition, the nanocapsules decreased the number of groomings, reinforcing the anxiolytic effect of this drug. These results suggest that the nanostructures were effective in preserving the antidepressant-like effect of paroxetine hydrochloride even at low doses.


Subject(s)
Liposomes , Nanocapsules , Paroxetine , Animals , Paroxetine/administration & dosage , Paroxetine/pharmacology , Paroxetine/chemistry , Nanocapsules/chemistry , Mice , Chlorocebus aethiops , Male , Vero Cells , Particle Size , Drug Liberation , Depression/drug therapy , Hindlimb Suspension , Antidepressive Agents/administration & dosage , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Antidepressive Agents, Second-Generation/administration & dosage , Antidepressive Agents, Second-Generation/chemistry , Antidepressive Agents, Second-Generation/pharmacology , Behavior, Animal/drug effects , Cell Survival/drug effects
11.
Int J Biol Macromol ; 273(Pt 2): 132972, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876241

ABSTRACT

The use of essential oils as natural antioxidant, antimicrobial and insect repellent agent was limited by the loss of bioactive components especially volatile compounds. This study aimed to improve biological properties of curry leaf essential oil (CLEO) by producing nanometer sized particles through two different synthesis techniques; nanoencapsulation and nanoprecipitation. The methods produced different nanostructures; nanocapsules and nanospheres distinguished by the morphological structure (TEM analysis). Successful loading of CLEO into chitosan nanocarrier was proven by FTIR spectra. Zeta potential values for both nanostructures were more than +30 mV implying their stability against aggregation. CLEO loaded nanocapsules exhibited highest antibacterial properties against Gram-positive bacteria compared to nanospheres. Meanwhile, CLEO loaded nanospheres recorded up until 90.44 % DPPH radical scavenging properties, higher compared to nanocapsules. Both nanostructures demonstrated further improvement in antioxidant and antibacterial activities with the incorporation of higher chitosan concentration. In vitro release analysis indicated that CLEO undergo two-stage discharge mechanism where fast discharge occurred up until 12 h followed by sustained released afterwards. The two synthesis methods applied synergistically with greater chitosan concentration successfully produced nanostructures with >60 % encapsulation efficiency (EE). This concluded that both techniques were reliable to protect the bioactive constituents of CLEO for further used.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Chitosan , Drug Liberation , Nanoparticles , Oils, Volatile , Plant Leaves , Chitosan/chemistry , Chitosan/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Leaves/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Nanoparticles/chemistry , Chemical Phenomena , Microbial Sensitivity Tests , Drug Carriers/chemistry , Particle Size , Nanocapsules/chemistry
12.
AAPS PharmSciTech ; 25(5): 120, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816596

ABSTRACT

Cannabinoids, such as ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD), are effective bioactive compounds that improve the quality of life of patients with certain chronic conditions. The copolymer poly(lactic-co-glycolic acid) (PLGA) has been used to encapsulate such compounds separately, providing pharmaceutical grade edible products with unique features. In this work, a variety of PLGA based nanoformulations that maintain the natural cannabinoid profile found in the plant (known as full-spectrum) are proposed and evaluated. Three different cannabis sources were used, representing the three most relevant cannabis chemotypes. PLGA nanocapsules loaded with different amounts of cannabinoids were prepared by nanoemulsion, and were then functionalized with three of the most common coating polymers: pectin, alginate and chitosan. In order to evaluate the suitability of the proposed formulations, all the synthesized nanocapsules were characterized, and their cannabinoid content, size, zeta-potential, morphology and in vitro bioaccessibility was determined. Regardless of the employed cannabis source, its load and the functionalization, high cannabinoid content PLGA nanocapsules with suitable particle size and zeta-potential were obtained. Study of nanocapsules' morphology and in vitro release assays in gastro-intestinal media suggested that high cannabis source load may compromise the structure of nanocapsules and their release properties, and hence, the use of lower content of cannabis source is recommended.


Subject(s)
Cannabis , Nanoparticles , Particle Size , Plant Extracts , Polylactic Acid-Polyglycolic Acid Copolymer , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Cannabis/chemistry , Nanoparticles/chemistry , Plant Extracts/chemistry , Drug Liberation , Cannabinoids/chemistry , Cannabidiol/chemistry , Nanocapsules/chemistry , Drug Carriers/chemistry , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , Chitosan/chemistry , Chemistry, Pharmaceutical/methods , Alginates/chemistry , Pectins/chemistry , Gastrointestinal Tract/metabolism
13.
ACS Nano ; 18(21): 13950-13965, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751197

ABSTRACT

Manipulating the expression of cellular genes through efficient CRISPR/Cas9 delivery is rapidly evolving into a desirable tumor therapeutics. The exposure of CRISPR/Cas9 to a complex external environment poses challenges for conventional delivery carriers in achieving responsive and accurate release. Here, we report a Trojan horse-like nanocapsule for the on-demand delivery of CRISPR/Cas9 in a microRNA-responsive manner, enabling precise tumor therapy. The nanocapsule comprises a nanoassembled, engineered DNAzyme shell encasing a Cas9/sgRNA complex core. The DNAzyme, functioning as a catalytic unit, undergoes a conformational change in the presence of tumor-associated microRNA, followed by activating a positive feedback-driven autonomous catabolic cycle of the nanocapsule shell. This catabolic cycle is accomplished through chain reactions of DNAzyme "cleavage-hybridization-cleavage", which ensures sensitivity in microRNA recognition and effective release of Cas9/sgRNA. Utilizing this Trojan horse-like nanocapsule, as low as 1.7 pM microRNA-21 can trigger the on-demand release of Cas9/sgRNA, enabling the specific editing of the protumorigenic microRNA coding gene. The resulting upregulation of tumor suppressor genes induces apoptosis in tumor cells, leading to significant inhibition of tumor growth by up to 75.94%. The Trojan horse-like nanocapsule, with superior programmability and biocompatibility, is anticipated to serve as a promising carrier for tailoring responsive gene editing systems, achieving enhanced antitumor specificity and efficacy.


Subject(s)
CRISPR-Cas Systems , DNA, Catalytic , MicroRNAs , Nanocapsules , CRISPR-Cas Systems/genetics , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Humans , Nanocapsules/chemistry , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Gene Editing , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/chemistry
14.
Drug Deliv Transl Res ; 14(8): 2046-2061, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38811465

ABSTRACT

The global emergency of coronavirus disease 2019 (COVID-19) has spurred extensive worldwide efforts to develop vaccines for protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our contribution to this global endeavor involved the development of a diverse library of nanocarriers, as alternatives to lipid nanoparticles (LNPs), including nanoemulsions (NEs) and nanocapsules (NCs), with the aim of protecting and delivering messenger ribonucleic acid (mRNA) for nasal vaccination purposes. A wide range of prototypes underwent rigorous screening through a series of in vitro and in vivo experiments, encompassing assessments of cellular transfection, cytotoxicity, and intramuscular administration of a model mRNA for protein translation. As a result, two promising candidates were identified for nasal administration. One of them was a NE incorporating a combination of an ionizable lipid (C12-200) and cationic lipid (DOTAP), both intended to condense mRNA, along with DOPE, which is known to facilitate endosomal escape. This NE exhibited a size of 120 nm and a highly positive surface charge (+ 50 mV). Another candidate was an NC formulation comprising the same components and endowed with a dextran sulfate shell. This formulation showed a size of 130 nm and a moderate negative surface charge (-16 mV). Upon intranasal administration of mRNA encoding for ovalbumin (mOVA) associated with optimized versions of the said NE and NCs, a robust antigen-specific CD8 + T cell response was observed. These findings underscore the potential of NEs and polymeric NCs in advancing mRNA vaccine development for combating infectious diseases.


Subject(s)
Administration, Intranasal , COVID-19 Vaccines , Emulsions , Nanocapsules , mRNA Vaccines , Nanocapsules/chemistry , Animals , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Mice , COVID-19/prevention & control , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Humans , SARS-CoV-2/immunology , Female , Quaternary Ammonium Compounds/chemistry , Mice, Inbred BALB C , Fatty Acids, Monounsaturated/chemistry , RNA, Messenger/administration & dosage , Drug Carriers/chemistry , Drug Carriers/administration & dosage
15.
Int J Biol Macromol ; 270(Pt 1): 132288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735604

ABSTRACT

This study investigated the functional properties of freeze-dried encapsulated Oliveria decumbens Vent. (OEO) and basil (BEO) essential oils (EOs) in maltodextrin/gum arabic coating solution (1:1). Nanoencapsulated EOs were evaluated in terms of size, polydispersity, encapsulation efficiency, morphology, antioxidant, and antibacterial activities (AOA and ABA), and sensory characteristics in vitro compared to the control. The TPC (30.43 to 32.41 mg GAE/g DW) and AOA (25.97 to 26.42 %) were determined in free and encapsulated OEO, and ABA was observed, which were higher than BEO. Both free and encapsulated OEO and BEO demonstrated significant ABA against various Gram-positive and Gram-negative bacteria, with MIC values ranging from 0.25 to 1.25 mg/mL and MBC values ranging from 1.00 to 3.00 mg/mL. In minced meat, both free and encapsulated oils effectively reduced bacterial counts during refrigerated storage, with log reductions ranging from 1.00 to 6.48 CFU/g. Additionally, the pH and thiobarbituric acid values in meat samples were better maintained with the addition of oils. Sensory analysis showed that the encapsulated oils effectively masked their natural flavor and aroma, making them suitable for incorporation into food. Finally, OEO and BEO nanocapsules can improve the standard and safety of meat products due to their antioxidant and antibacterial properties.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Gum Arabic , Oils, Volatile , Polysaccharides , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Gum Arabic/chemistry , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cattle , Drug Compounding , Microbial Sensitivity Tests , Meat Products/microbiology , Meat Products/analysis , Plant Oils/chemistry , Plant Oils/pharmacology , Nanocapsules/chemistry , Ocimum
16.
Talanta ; 276: 126273, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776775

ABSTRACT

Ultrasensitive and rapid detection of low concentration of Escherichia coli O157: H7 (E. coli O157:H7) in food is essential for food safety and public health. In this study, A novel fluorescence signal amplification biosensor based on magnetic separation platform and red fluorescent carbon dots (R-CDs)-encapsulated breakable organosilica nanocapsules (BONs) for ultrasensitive detection of E. coli O157:H7 was established. Wulff-type boronic acid functionalized magnetic nanoparticles (MNPs@B-N/APBA) with broad-spectrum bacterial recognition ability were synthesized for the first time to recognize and capture E. coli O157: H7 in food samples. R-CDs@BONs labeled with anti-E. coli O157:H7 monoclonal antibody (mAb@R-CDs@BONs-NH2) were used as the second recognition element to ensure the specificity for E. coli O157:H7 and form MNPs@B-N/APBA∼ E. coli O157:H7∼mAb@R-CDs@BONs-NH2 sandwich complexes, followed by releasing R-CDs to generate amplified fluorescence response signals for quantitative detection of E. coli O157:H7. The proposed method had a limit of detection with 25 CFU/mL in pure culture and contaminated lettuce samples, which the whole detection process took about 120 min. This fluorescence signal amplification biosensor has the potential to detect other pathogens in food by altering specific antibodies.


Subject(s)
Biosensing Techniques , Carbon , Escherichia coli O157 , Quantum Dots , Escherichia coli O157/isolation & purification , Biosensing Techniques/methods , Carbon/chemistry , Quantum Dots/chemistry , Nanocapsules/chemistry , Fluorescent Dyes/chemistry , Fluorescence , Limit of Detection , Organosilicon Compounds/chemistry , Food Microbiology , Lactuca/microbiology , Lactuca/chemistry
17.
Phytomedicine ; 130: 155763, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38820661

ABSTRACT

BACKGROUND: Emodin is a chemical compound found in traditional Chinese herbs. It possesses anti-inflammatory and many other pharmacological effects. Our previous study showed that emodin significantly alleviates the inflammation effect of severe acute pancreatitis (SAP). However, its poor solubility, high toxicity and limited pancreas retention time hinder its clinical application. PURPOSE: We aimed to prepare emodin nanocapsules with improved bioavailability to achieve the controlled release of emodin by targeting macrophages. Further, the mechanism of mannose-conjugated chitosan-coated lipid nanocapsules loaded with emodin (M-CS-E-LNC) in the treatment of SAP was explored. METHODS: M-CS-E-LNC were prepared by the phase inversion method with slight modification. The expression of inflammation mediators and the anti-inflammation efficacy of M-CS-E-LNC were examined by ELISA, IHC and IF in macrophage cells and LPS-induced SAP mice. IVIS spectrum imaging and HPLC were applied to explore the controlled release of M-CS-E-LNC in the pancreas. LC-MS/MS was performed for lipidomics analysis of macrophages. Moreover, a vector-based short hairpin RNA (shRNA) method was used to silence CTP1 gene expression in macrophage cells. RESULTS: The levels of inflammatory mediators in macrophages were markedly decreased after treatment with M-CS-E-LNC. The same anti-inflammation effects were detected in SAP mouse through the analysis of serum levels of amylase, TNF-α and IL-6. Importantly, M-CS-E-LNC allowed the emodin to selectively accumulate at pancreas and gastrointestinal tissues, thus exhibiting a targeted release. Mechanistically, the M-CS-E-LNC treatment group showed up-regulated expression of the carnitine palmitoyltransferase 1 (CPT1) protein which promoted intracellular long-chain fatty acid transport, thereby promoting the M2 phenotype polarization of macrophages. CONCLUSION: M-CS-E-LNC exhibited significantly improved bioavailability and water solubility, which translated to greater therapeutic effects on macrophage polarization. Our findings also demonstrate, for the first time, that CPT1 may be a new therapeutic target for SAP treatment.


Subject(s)
Emodin , Lipid Metabolism , Macrophages , Nanocapsules , Pancreatitis , Animals , Emodin/pharmacology , Mice , Macrophages/drug effects , Macrophages/metabolism , Pancreatitis/drug therapy , RAW 264.7 Cells , Lipid Metabolism/drug effects , Male , Anti-Inflammatory Agents/pharmacology , Chitosan/pharmacology , Chitosan/chemistry , Mice, Inbred C57BL , Lipopolysaccharides , Metabolic Reprogramming
18.
Int J Pharm ; 659: 124237, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38762167

ABSTRACT

Intranasal administration is an efficient strategy for bypassing the BBB, favoring drug accumulation in the brain, and improving its efficiency. Lipid nanocapsules (LNC) are suitable nanocarriers for the delivery of lipophilic drugs via this route and can be used to encapsulate lipophilic molecules such as retinoic acid (RA) and calcitriol (Cal). As the hallmarks of multiple sclerosis (MS) are neuroinflammation and oligodendrocyte loss, our hypothesis was that by combining two molecules known for their pro-differentiating properties, encapsulated in LNC, and delivered by intranasal administration, we would stimulate oligodendrocyte progenitor cells (OPC) differentiation into oligodendrocytes and provide a new pro-remyelinating therapy. LNC loaded with RA (LNC-RA) and Cal (LNC-Cal) were stable for at least 8 weeks. The combination of RA and Cal was more efficient than the molecules alone, encapsulated or not, on OPC differentiation in vitro and decreased microglia cell activation in a dose-dependent manner. After the combined intranasal administration of LNC-RA and LNC-Cal in a mouse cuprizone model of demyelination, increased MBP staining was observed in the corpus callosum. In conclusion, intranasal delivery of lipophilic drugs encapsulated in LNC is a promising strategy for myelinating therapies.


Subject(s)
Administration, Intranasal , Calcitriol , Cell Differentiation , Nanocapsules , Oligodendrocyte Precursor Cells , Tretinoin , Animals , Tretinoin/administration & dosage , Tretinoin/pharmacology , Cell Differentiation/drug effects , Calcitriol/administration & dosage , Calcitriol/pharmacology , Oligodendrocyte Precursor Cells/drug effects , Mice , Mice, Inbred C57BL , Lipids/chemistry , Cells, Cultured , Male
19.
FEBS Open Bio ; 14(7): 1072-1086, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38702074

ABSTRACT

Telomerase activity is directly affected by the laminin receptor precursor (LRP) protein, a highly conserved nonintegrin transmembrane receptor, which has been shown to have therapeutic effects in ageing, and age-related diseases. Recently, it has been found that overexpression of LRP-FLAG, by plasmid transfection, leads to a significant increase in telomerase activity in cell culture models. This may indicate that upregulation of LRP can be used to treat various age-related diseases. However, transfection is not a viable treatment strategy for patients. Therefore, we present a nanoencapsulated protein-based drug synthesised using poly(lactic-co-glycolic acid) (PLGA) nanocapsules for delivery of the 37 kDa LRP protein therapeutic. PLGA nanocapsules were synthesised using the double emulsification-solvent evaporation technique. Different purification methods, including filtration and centrifugation, were tested to ensure that the nanocapsules were within the optimal size range, and the BCA assay was used to determine encapsulation efficiency. The completed drug was tested in a HEK-293 cell culture model, to investigate the effect on cell viability, LRP protein levels and telomerase activity. A significant increase in total LRP protein levels with a concomitant increase in cell viability and telomerase activity was observed. Due to the observed increase in telomerase activity, this approach could represent a safer alternative to plasmid transfection for the treatment of age-related diseases.


Subject(s)
Cell Survival , Nanocapsules , Polylactic Acid-Polyglycolic Acid Copolymer , Humans , Nanocapsules/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , HEK293 Cells , Cell Survival/drug effects , Recombinant Proteins , Telomerase/metabolism , Telomerase/genetics , Polyglycolic Acid/chemistry , Drug Delivery Systems/methods , Lactic Acid/chemistry , Receptors, Laminin/metabolism , Receptors, Laminin/genetics
20.
Adv Sci (Weinh) ; 11(26): e2403858, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704691

ABSTRACT

Cancer immunotherapy has demonstrated significant efficacy in various tumors, but its effectiveness in treating Hepatocellular Carcinoma (HCC) remains limited. Therefore, there is an urgent need to identify a new immunotherapy target and develop corresponding intervention strategies. Bioinformatics analysis has revealed that growth differentiation factor 15 (GDF15) is highly expressed in HCC and is closely related to poor prognosis of HCC patients. The previous study revealed that GDF15 can promote immunosuppression in the tumor microenvironment. Therefore, knocking out GDF15 through gene editing could potentially reverse the suppressive tumor immune microenvironment permanently. To deliver the CRISPR/Cas9 system specifically to HCC, nanocapsules (SNC) coated with HCC targeting peptides (SP94) on their surface is utilized. These nanocapsules incorporate disulfide bonds (SNCSS) that release their contents in the tumor microenvironment characterized by high levels of glutathione (GSH). In vivo, the SNCSS target HCC cells, exert a marked inhibitory effect on HCC progression, and promote HCC immunotherapy. Mechanistically, CyTOF analysis showed favorable changes in the immune microenvironment of HCC, immunocytes with killer function increased and immunocytes with inhibitive function decreased. These findings highlight the potential of the CRISPR-Cas9 gene editing system in modulating the immune microenvironment and improving the effectiveness of existing immunotherapy approaches for HCC.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Hepatocellular , Liver Neoplasms , Nanocapsules , Tumor Microenvironment , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/therapy , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Liver Neoplasms/pathology , CRISPR-Cas Systems/genetics , Mice , Humans , Animals , Immunotherapy/methods , Disease Models, Animal , Gene Editing/methods , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL