Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.992
Filter
1.
J Drugs Dermatol ; 23(7): 529-537, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954613

ABSTRACT

BACKGROUND: Melasma is a chronic pigmentary disorder. In this study, an innovative cream combining cysteamine and tranexamic acid (TXA) was assessed. OBJECTIVE: To evaluate the safety, efficacy, and patient satisfaction of a novel nano-formulated cysteamine and TXA combination cream in treating subjects with epidermal melasma. METHODS:   Fifty (50) randomized subjects participated and received cysteamine and TXA combination cream. The cream was applied for 30 minutes daily for a 3-month duration. Treatment effectiveness, safety, patient satisfaction, and adherence were evaluated. RESULTS: A continuous improvement in melasma was observed, with modified Melasma Area and Severity Index (mMASI) scores improving by 40%, 57%, and 63% at 30, 60, and 90 days, respectively. The primary endpoint of a decrease in mMASI scores was met, with 91% of participants experiencing melasma improvement. Patient Satisfaction and Patient Adherence scores indicated satisfaction. Convenience exhibited the strongest correlation with patient adherence.  Conclusion: Nano-formulated cysteamine and TXA combination cream showed significant efficacy in decreasing mMASI score while demonstrating a strong safety profile and patient satisfaction.  J Drugs Dermatol. 2024;23(7):529-537.     doi:10.36849/JDD.7765R1.


Subject(s)
Cysteamine , Medication Adherence , Melanosis , Patient Satisfaction , Tranexamic Acid , Humans , Melanosis/drug therapy , Melanosis/diagnosis , Cysteamine/administration & dosage , Cysteamine/adverse effects , Tranexamic Acid/administration & dosage , Tranexamic Acid/adverse effects , Female , Adult , Treatment Outcome , Middle Aged , Male , Skin Cream/administration & dosage , Skin Cream/adverse effects , Administration, Cutaneous , Severity of Illness Index , Drug Combinations , Nanoparticles/administration & dosage , Young Adult
2.
Nat Commun ; 15(1): 5565, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956062

ABSTRACT

Long-term treatment of myocardial infarction is challenging despite medical advances. Tissue engineering shows promise for MI repair, but implantation complexity and uncertain outcomes pose obstacles. microRNAs regulate genes involved in apoptosis, angiogenesis, and myocardial contraction, making them valuable for long-term repair. In this study, we find downregulated miR-199a-5p expression in MI. Intramyocardial injection of miR-199a-5p into the infarcted region of male rats revealed its dual protective effects on the heart. Specifically, miR-199a-5p targets AGTR1, diminishing early oxidative damage post-myocardial infarction, and MARK4, which influences long-term myocardial contractility and enhances cardiac function. To deliver miR-199a-5p efficiently and specifically to ischemic myocardial tissue, we use CSTSMLKAC peptide to construct P-MSN/miR199a-5p nanoparticles. Intravenous administration of these nanoparticles reduces myocardial injury and protects cardiac function. Our findings demonstrate the effectiveness of P-MSN/miR199a-5p nanoparticles in repairing MI through enhanced contraction and anti-apoptosis. miR199a-5p holds significant therapeutic potential for long-term repair of myocardial infarction.


Subject(s)
MicroRNAs , Myocardial Infarction , Nanoparticles , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/administration & dosage , Animals , Myocardial Infarction/genetics , Male , Rats , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Rats, Sprague-Dawley , Apoptosis/drug effects , Myocardium/metabolism , Myocardium/pathology , Disease Models, Animal , Myocardial Contraction/drug effects , Administration, Intravenous , Myocardial Ischemia/genetics , Myocardial Ischemia/therapy , Myocardial Ischemia/metabolism
3.
Sci Rep ; 14(1): 15140, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956234

ABSTRACT

Rapamycin slows cystogenesis in murine models of polycystic kidney disease (PKD) but failed in clinical trials, potentially due to insufficient drug dosing. To improve drug efficiency without increasing dose, kidney-specific drug delivery may be used. Mesoscale nanoparticles (MNP) selectively target the proximal tubules in rodents. We explored whether MNPs can target cystic kidney tubules and whether rapamycin-encapsulated-MNPs (RapaMNPs) can slow cyst growth in Pkd1 knockout (KO) mice. MNP was intravenously administered in adult Pkd1KO mice. Serum and organs were harvested after 8, 24, 48 or 72 h to measure MNP localization, mTOR levels, and rapamycin concentration. Pkd1KO mice were then injected bi-weekly for 6 weeks with RapaMNP, rapamycin, or vehicle to determine drug efficacy on kidney cyst growth. Single MNP injections lead to kidney-preferential accumulation over other organs, specifically in tubules and cysts. Likewise, one RapaMNP injection resulted in higher drug delivery to the kidney compared to the liver, and displayed sustained mTOR inhibition. Bi-weekly injections with RapaMNP, rapamycin or vehicle for 6 weeks resulted in inconsistent mTOR inhibition and little change in cyst index, however. MNPs serve as an effective short-term, kidney-specific delivery system, but long-term RapaMNP failed to slow cyst progression in Pkd1KO mice.


Subject(s)
Disease Models, Animal , Mice, Knockout , Nanoparticles , Polycystic Kidney Diseases , Sirolimus , Animals , Sirolimus/administration & dosage , Sirolimus/pharmacology , Mice , Polycystic Kidney Diseases/drug therapy , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/pathology , Nanoparticles/administration & dosage , TOR Serine-Threonine Kinases/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Drug Delivery Systems , Male
4.
J Control Release ; 371: 371-385, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849089

ABSTRACT

The efficacy of DNA-damaging agents, such as the topoisomerase I inhibitor SN38, is often compromised by the robust DNA repair mechanisms in tumor cells, notably homologous recombination (HR) repair. Addressing this challenge, we introduce a novel nano-strategy utilizing binary tumor-killing mechanisms to enhance the therapeutic impact of DNA damage and mitochondrial dysfunction in cancer treatment. Our approach employs a synergistic drug pair comprising SN38 and the BET inhibitor JQ-1. We synthesized two prodrugs by conjugating linoleic acid (LA) to SN38 and JQ-1 via a cinnamaldehyde thioacetal (CT) bond, facilitating co-delivery. These prodrugs co-assemble into a nanostructure, referred to as SJNP, in an optimal synergistic ratio. SJNP was validated for its efficacy at both the cellular and tissue levels, where it primarily disrupts the transcription factor protein BRD4. This disruption leads to downregulation of BRCA1 and RAD51, impairing the HR process and exacerbating DNA damage. Additionally, SJNP releases cinnamaldehyde (CA) upon CT linkage cleavage, elevating intracellular ROS levels in a self-amplifying manner and inducing ROS-mediated mitochondrial dysfunction. Our results indicate that SJNP effectively targets murine triple-negative breast cancer (TNBC) with minimal adverse toxicity, showcasing its potential as a formidable opponent in the fight against cancer.


Subject(s)
Acrolein , Camptothecin , Drug Delivery Systems , Nanoparticles , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Animals , Humans , Female , Cell Line, Tumor , Acrolein/analogs & derivatives , Acrolein/administration & dosage , Acrolein/chemistry , Camptothecin/analogs & derivatives , Camptothecin/administration & dosage , Camptothecin/therapeutic use , Camptothecin/pharmacology , Prodrugs/administration & dosage , Prodrugs/therapeutic use , Linoleic Acid/chemistry , Linoleic Acid/administration & dosage , Triazoles/administration & dosage , Triazoles/pharmacology , Triazoles/chemistry , DNA Damage/drug effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Mice, Nude , Mice , Cell Cycle Proteins/metabolism , Transcription Factors/metabolism , Topoisomerase I Inhibitors/administration & dosage , Bromodomain Containing Proteins , Azepines
5.
J Control Release ; 371: 498-515, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849090

ABSTRACT

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and inflammatory cellular infiltration. Functional cells in the RA microenvironment (RAM) are composed of activated immune cells and effector cells. Activated immune cells, including macrophages, neutrophils, and T cells, can induce RA. Effector cells, including synoviocytes, osteoclasts, and chondrocytes, receiving inflammatory stimuli, exacerbate RA. These functional cells, often associated with the upregulation of surface-specific receptor proteins and significant homing effects, can secrete pro-inflammatory factors and interfere with each other, thereby jointly promoting the progression of RA. Recently, some nanomedicines have alleviated RA by targeting and modulating functional cells with ligand modifications, while other nanoparticles whose surfaces are camouflaged by membranes or extracellular vesicles (EVs) of these functional cells target and attack the lesion site for RA treatment. When ligand-modified nanomaterials target specific functional cells to treat RA, the functional cells are subjected to attack, much like the intended targets. When functional cell membranes or EVs are modified onto nanomaterials to deliver drugs for RA treatment, functional cells become the attackers, similar to arrows. This study summarized how diversified functional cells serve as targets or arrows by engineered nanoparticles to treat RA. Moreover, the key challenges in preparing nanomaterials and their stability, long-term efficacy, safety, and future clinical patient compliance have been discussed here.


Subject(s)
Arthritis, Rheumatoid , Nanomedicine , Nanoparticles , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Humans , Nanomedicine/methods , Animals , Nanoparticles/administration & dosage , Drug Delivery Systems , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Extracellular Vesicles
6.
J Control Release ; 371: 570-587, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852624

ABSTRACT

Myocardial infarction (MI)-induced impaired cardiomyocyte (CM) mitochondrial function and microenvironmental inflammatory cascades severely accelerate the progression of heart failure for compromised myocardial repair. Modulation of the crosstalk between CM mitochondrial DNA (mtDNA) and STING has been recently identified as a robust strategy in enhancing MI treatment, but remains seldom explored. To develop a novel approach that can address persistent myocardial injury using this crosstalk, we report herein construction of a biomimetic hydrogel system, Rb1/PDA-hydrogel comprised of ginsenoside Rb1/polydopamine nanoparticles (Rb1/PDA NPs)-loaded carboxylated chitosan, 4-arm-PEG-phenylboronic acid (4-arm-PEG-PBA), and 4-arm-PEG-dopamine (4-arm-PEG-DA) crosslinked networks. An optimized hydrogel formulation presents not only desired adhesion properties to the surface of the myocardium, but also adaptability for deep myocardial injection, resulting in ROS scavenging, CM mitochondrial function protection, M1 macrophage polarization inhibition through the STING pathway, and angiogenesis promotion via an internal-external spatial combination. The enhanced therapeutic efficiency is supported by the histological analysis of the infarcted area, which shows that the fibrotic area of the MI rats decreases from 58.4% to 5.5%, the thickness of the left ventricular wall increases by 1-fold, and almost complete recovery of cardiac function after 28 days of treatment. Overall, this study reported the first use of a strong adhesive and injectable hydrogel with mtDNA and STING signaling characteristics for enhanced MI treatment via an internal-external spatial combination strategy.


Subject(s)
DNA, Mitochondrial , Hydrogels , Myocardial Infarction , Myocytes, Cardiac , Polymers , Animals , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Hydrogels/administration & dosage , Hydrogels/chemistry , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Male , Polymers/chemistry , Polymers/administration & dosage , Indoles/administration & dosage , Indoles/chemistry , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Chitosan/chemistry , Chitosan/administration & dosage , Rats, Sprague-Dawley , Polyethylene Glycols/chemistry , Polyethylene Glycols/administration & dosage , Rats , Membrane Proteins , Reactive Oxygen Species/metabolism , Boronic Acids , Ginsenosides
8.
Lancet Gastroenterol Hepatol ; 9(8): 734-744, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38870977

ABSTRACT

BACKGROUND: There is an unmet need for effective therapies in pretreated advanced biliary tract cancer. We aimed to evaluate the efficacy of nanoliposomal irinotecan and fluorouracil plus leucovorin compared with fluorouracil plus leucovorin as second-line treatment for biliary tract cancer. METHODS: NALIRICC was a multicentre, open-label, randomised, phase 2 trial done in 17 German centres for patients aged 18 years or older, with an Eastern Cooperative Oncology Group performance status of 0-1, metastatic biliary tract cancer, and progression on gemcitabine-based therapy. Patients were randomly assigned (1:1) to receive intravenous infusions of nanoliposomal irinotecan (70 mg/m2), fluorouracil (2400 mg/m2), and leucovorin (400 mg/m2) every 2 weeks (nanoliposomal irinotecan group) or fluorouracil (2400 mg/m2) plus leucovorin (400 mg/m2) every 2 weeks (control group). Randomisation was by permutated block randomisation in block sizes of four, stratified by primary tumour site. Investigator-assessed progression-free survival was the primary endpoint, which was evaluated in all randomly assigned patients. Secondary efficacy outcomes were overall survival, objective response rate, and quality of life. Safety was assessed in all randomly assigned patients who received at least one dose of the study treatment. Enrolment for this trial has been completed, and it is registered with ClinicalTrials.gov, NCT03043547. FINDING: Between Dec 4, 2017, and Aug 2, 2021, 49 patients were randomly assigned to the nanoliposomal irinotecan group and 51 patients to the control group. Median age was 65 years (IQR 59-71); 45 (45%) of 100 patients were female. Median progression-free survival was 2·6 months (95% CI 1·7-3·6) in the nanoliposomal irinotecan group and 2·3 months (1·6-3·4) in the control group (hazard ratio [HR] 0·87 [0·56-1·35]). Median overall survival was 6·9 months (95% CI 5·3-10·6) in the nanoliposomal irinotecan group and 8·2 months (5·4-11·9) in the control group (HR 1·08 [0·68-1·72]). The objective response rate was 14% (95% CI 6-27; seven patients) in the nanoliposomal irinotecan group and 4% (1-14; two patients) in the control group. The most common grade 3 or worse adverse events in the nanoliposomal irinotecan group were neutropenia (eight [17%] of 48 vs none in the control group), diarrhoea (seven [15%] vs one [2%]), and nausea (four [8%] vs none). In the control group, the most common grade 3 or worse adverse events were cholangitis (four [8%] patients vs none in the nanoliposomal irinotecan group) and bile duct stenosis (four [8%] vs three [6%]). Treatment-related serious adverse events occurred in 16 (33%) patients in the nanoliposomal irinotecan group (grade 2-3 diarrhoea in five patients; one case each of abdominal infection, acute kidney injury, pancytopenia, increased blood bilirubin, colitis, dehydration, dyspnoea, infectious enterocolitis, ileus, oral mucositis, and nausea). One (2%) treatment-related serious adverse event occurred in the control group (worsening of general condition). Median duration until deterioration of global health status, characterised by the time from randomisation to the initial observation of a score decline exceeding 10 points, was 4·0 months (95% CI 2·2-not reached) in the nanoliposomal irinotecan group and 3·7 months (2·7-not reached) in the control group. INTERPRETATION: The addition of nanoliposomal irinotecan to fluorouracil plus leucovorin did not improve progression-free survival or overall survival and was associated with higher toxicity compared with fluorouracil plus leucovorin. Further research is necessary to define the role of irinotecan-based combinations in second-line treatment of biliary tract cancer. FUNDING: Servier and AIO-Studien.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Cholangiocarcinoma , Deoxycytidine , Fluorouracil , Gemcitabine , Irinotecan , Leucovorin , Liposomes , Humans , Female , Male , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Fluorouracil/administration & dosage , Fluorouracil/adverse effects , Leucovorin/administration & dosage , Leucovorin/adverse effects , Leucovorin/therapeutic use , Middle Aged , Irinotecan/administration & dosage , Irinotecan/adverse effects , Irinotecan/therapeutic use , Aged , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Deoxycytidine/analogs & derivatives , Deoxycytidine/administration & dosage , Deoxycytidine/adverse effects , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Progression-Free Survival , Nanoparticles/administration & dosage
9.
Pathog Dis ; 822024 Feb 07.
Article in English | MEDLINE | ID: mdl-38862192

ABSTRACT

To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.


Subject(s)
Antibodies, Bacterial , Bacterial Vaccines , Chlamydia Infections , Chlamydia muridarum , Cytokines , Mice, Inbred BALB C , Animals , Female , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Chlamydia muridarum/immunology , Cytokines/metabolism , Chlamydia Infections/prevention & control , Chlamydia Infections/immunology , Mice , Antibodies, Bacterial/blood , Injections, Intramuscular , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Immunization, Secondary , Disease Models, Animal , Immunogenicity, Vaccine , Injections, Subcutaneous , Nanoparticles/administration & dosage , Recombinant Proteins/immunology , Recombinant Proteins/administration & dosage , Vaccine Efficacy , Th1 Cells/immunology , Nanovaccines
10.
Int J Nanomedicine ; 19: 5317-5333, 2024.
Article in English | MEDLINE | ID: mdl-38859953

ABSTRACT

Purpose: The purpose of this study is to address the high mortality and poor prognosis associated with Acute Respiratory Distress Syndrome (ARDS), conditions characterized by acute and progressive respiratory failure. The primary goal was to prolong drug circulation time, increase drug accumulation in the lungs, and minimize drug-related side effects. Methods: Simvastatin (SIM) was used as the model drug in this study. Employing a red blood cell surface-loaded nanoparticle drug delivery technique, pH-responsive cationic nanoparticles loaded with SIM were non-covalently adsorbed onto the surface of red blood cells (RBC), creating a novel drug delivery system (RBC@SIM-PEI-PPNPs). Results: The RBC@SIM-PEI-PPNPs delivery system effectively extended the drug's circulation time, providing an extended therapeutic window. Additionally, this method substantially improved the targeted accumulation of SIM in lung tissues, thereby enhancing the drug's efficacy in treating ARDS and impeding its progression to ARDS. Crucially, the system showed a reduced risk of adverse drug reactions. Conclusion: RBC@SIM-PEI-PPNPs demonstrates promise in ARDS and ARDS treatment. This innovative approach successfully overcomes the limitations associated with SIM's poor solubility and low bioavailability, resulting in improved therapeutic outcomes and fewer drug-related side effects. This research holds significant clinical implications and highlights its potential for broader application in drug delivery and lung disease treatment.


Subject(s)
Erythrocytes , Respiratory Distress Syndrome , Simvastatin , Simvastatin/administration & dosage , Simvastatin/pharmacokinetics , Simvastatin/chemistry , Respiratory Distress Syndrome/drug therapy , Erythrocytes/drug effects , Animals , Lung/drug effects , Humans , Male , Nanoparticle Drug Delivery System/chemistry , Nanoparticle Drug Delivery System/pharmacokinetics , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Mice , Polyethyleneimine/chemistry , Drug Delivery Systems/methods , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
11.
BMC Vet Res ; 20(1): 269, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907235

ABSTRACT

This study was conducted to evaluate the effects of thyme, ginger, and their nano-particles, as alternatives to antibiotic growth promotors (AGP), on productive performance, carcass traits, meat quality and gut health of broiler chickens. A total of 270 one-day-old broiler chicks were randomly distributed into 6 groups, each consisting of 3 replicates (n = 15 chicks/replicate). The birds in group 1 were fed the control diet which contained neither antibiotic growth promotors nor phytogenic feed additives (PFA). Birds in group 2 were fed diets containing 0.05% of AGP (Bacitracin methylene disalicylate). Chicks in group 3 and 4 were fed diets supplemented with 1.0% of thyme and ginger, respectively, whereas birds in group 5 and 6 were offered diets including 0.10% of nano-thyme and nano-ginger, respectively. The experiment lasted for 35 days. It was found that thyme and ginger with their nano-products, like the antibiotic, improved the body weight, weight gain and feed conversion rate of birds. The effect of ginger and nano-ginger on body weight and weight gain was greater than other treatments. During the overall feeding period, the feed cost of production was the highest in antibiotic group, but was the lowest in ginger and nano-ginger treatments. There was no effect of dietary treatments on carcass yield or organs weight except bursa of Fabricius and abdominal fat. Thyme, ginger and their nano-composites increased the weight of bursa and reduced the abdominal fat amount. The phytogenic additives and their nano-particles improved the colour, water holding capacity, and flavor of meat. Moreover, these additives reduced the total intestinal bacterial count as well as the total aerobic mesophilic count of meat. The effect of PFA and their nano-particles on the bacterial count was similar to that of antibiotic. In conclusion, thyme and ginger with their nano- particles can be considered as promising agents in feeding of broilers to improve the growth performance, gut health and meat quality. Moreover, these additives can be used as alternatives to AGP to overcome its health hazards and the high cost. The nanotechnology of herbal plants enables them to be added in smaller amounts in poultry diets with producing the same effect of raw ingredients, and this could be due to the higher bioavailability.


Subject(s)
Animal Feed , Chickens , Diet , Meat , Nanoparticles , Thymus Plant , Zingiber officinale , Animals , Chickens/growth & development , Chickens/microbiology , Zingiber officinale/chemistry , Thymus Plant/chemistry , Animal Feed/analysis , Diet/veterinary , Meat/standards , Nanoparticles/administration & dosage , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Male
12.
Nat Commun ; 15(1): 5310, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906867

ABSTRACT

Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is closely associated with various malignancies. Considering the complex life cycle of EBV, developing vaccines targeting key entry glycoproteins to elicit robust and durable adaptive immune responses may provide better protection. EBV gHgL-, gB- and gp42-specific antibodies in healthy EBV carriers contributed to sera neutralizing abilities in vitro, indicating that they are potential antigen candidates. To enhance the immunogenicity of these antigens, we formulate three nanovaccines by co-delivering molecular adjuvants (CpG and MPLA) and antigens (gHgL, gB or gp42). These nanovaccines induce robust humoral and cellular responses through efficient activation of dendritic cells and germinal center response. Importantly, these nanovaccines generate high levels of neutralizing antibodies recognizing vulnerable sites of all three antigens. IgGs induced by a cocktail vaccine containing three nanovaccines confer superior protection from lethal EBV challenge in female humanized mice compared to IgG elicited by individual NP-gHgL, NP-gB and NP-gp42. Importantly, serum antibodies elicited by cocktail nanovaccine immunization confer durable protection against EBV-associated lymphoma. Overall, the cocktail nanovaccine shows robust immunogenicity and is a promising candidate for further clinical trials.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epstein-Barr Virus Infections , Glycoproteins , Herpesvirus 4, Human , Animals , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/prevention & control , Epstein-Barr Virus Infections/virology , Antibodies, Neutralizing/immunology , Herpesvirus 4, Human/immunology , Humans , Female , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Glycoproteins/immunology , Glycoproteins/administration & dosage , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Adjuvants, Immunologic/administration & dosage , Lymphoma/immunology , Lymphoma/virology , Nanovaccines
13.
Drug Resist Updat ; 75: 101098, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833804

ABSTRACT

Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.


Subject(s)
Antigen-Presenting Cells , Cancer Vaccines , Immunotherapy , Nanoparticles , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Nanoparticles/administration & dosage , Antigen-Presenting Cells/immunology , Biomimetics/methods , Biomimetic Materials/administration & dosage , Animals , Liposomes , Nanovaccines
14.
Open Vet J ; 14(5): 1161-1166, 2024 May.
Article in English | MEDLINE | ID: mdl-38938439

ABSTRACT

Background: This research describes the methodology used for the preparation of selenium nanoparticles from Pseudomonas aeruginosa and their administration to lambs for lipid profile checking, administration of selenium nanoparticles as a medication in lambs results in hypolipidemia. Aimed: The study aimed to investigate the potential of selenium nanoparticles in improving lipid profiles in lambs. Methods: Healthy lambs (n = 10) of similar age and weight were selected for the study. The animals were housed in individual pens with free access to water and a standard diet. The lambs were randomly divided into two groups: the control group (n = 5) and the treatment group (n = 5). The control group received a standard diet, while the treatment group received the same diet and oral administrated with selenium nanoparticles at 0.1 mg/kg body weight. The administration was carried out daily for a period of 8 weeks. Blood samples were collected from the jugular vein of each lamb at the beginning of the study (baseline) and at the end of the 2 weeks treatment period. The samples were collected in vacutainer tubes and allowed to clot. Serum was separated by centrifugation at 3,000 rpm for 10 minutes and stored at -80°C for estimation of lipid profile total cholesterol (TC), triglyceride, high-density lipoprotein (HDL), and low-density lipoprotein (LDL). The serum samples were used for the estimation of lipid profile levels using an enzymatic colorimetric method. The absorbance was measured at 540 nm using a spectrophotometer. Results: The results showed a significant decrease in serum TC, triglyceride, and very-low-density lipoprotein cholesterol levels after selenium nanoparticle supplementation compared to the control group (p < 0.05), the results indicated a significant increase in serum HDL levels after selenium nanoparticle supplementation compared to the control group (p < 0.05). This indicates that selenium nanoparticle supplementation has a beneficial effect on reducing TC levels in lambs. Conclusion: The conclusion section will summarize the findings of the study and highlight the potential of selenium nanoparticles in improving lipid profiles in lambs. The implications of the study for animal nutrition and health will be discussed, along with the need for further research in this area.


Subject(s)
Lipids , Nanoparticles , Selenium , Animals , Selenium/administration & dosage , Selenium/blood , Male , Nanoparticles/administration & dosage , Lipids/blood , Sheep/blood , Pseudomonas aeruginosa/drug effects , Sheep, Domestic/physiology
15.
Drug Deliv Transl Res ; 14(8): 2100-2111, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38709442

ABSTRACT

Biodegradable nanocarriers possess enormous potential for use as drug delivery systems that can accomplish controlled and targeted drug release, and a wide range of nanosystems have been reported for the treatment and/or diagnosis of various diseases and disorders. Of the various nanocarriers currently available, liposomes and polymer nanoparticles have been extensively studied and some formulations have already reached the market. However, a combination of properties to create a single hybrid system can give these carriers significant advantages, such as improvement in encapsulation efficacy, higher stability, and active targeting towards specific cells or tissues, over lipid or polymer-based platforms. To this aim, this work presents the formulation of poly(lactic-co-glycolic) acid (PLGA) nanoparticles in the presence of a hyaluronic acid (HA)-phospholipid conjugate (HA-DPPE), which was used to anchor HA onto the nanoparticle surface and therefore create an actively targeted hybrid nanosystem. Furthermore, ionic interactions have been proposed for drug encapsulation, leading us to select the free base form of pentamidine (PTM-B) as the model drug. We herein report the preparation of hybrid nanocarriers that were loaded via ion-pairing between the negatively charged PLGA and HA and the positively charged PTM-B, demonstrating an improved loading capacity compared to PLGA-based nanoparticles. The nanocarriers displayed a size of below 150 nm, a negative zeta potential of -35 mV, a core-shell internal arrangement and high encapsulation efficiency (90%). Finally, the ability to be taken up and exert preferential and receptor-mediated cytotoxicity on cancer cells that overexpress the HA specific receptor (CD44) has been evaluated. Competition assays supported the hypothesis that PLGA/HA-DPPE nanoparticles deliver their cargo within cells in a CD44-dependent manner.


Subject(s)
Hyaluronan Receptors , Hyaluronic Acid , Nanoparticles , Pentamidine , Polylactic Acid-Polyglycolic Acid Copolymer , Humans , Hyaluronic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Hyaluronan Receptors/metabolism , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Pentamidine/chemistry , Pentamidine/administration & dosage , Drug Carriers/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Drug Liberation , Lipids/chemistry , Drug Delivery Systems
16.
J Control Release ; 370: 614-625, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729436

ABSTRACT

Mutations in RAS, a family of proteins found in all human cells, drive a third of cancers, including many pancreatic, colorectal, and lung cancers. However, there is a lack of clinical therapies that can effectively prevent RAS from causing tumor growth. Recently, a protease was engineered that specifically degrades active RAS, offering a promising new tool for treating these cancers. However, like many other intracellularly acting protein-based therapies, this protease requires a delivery vector to reach its site of action within the cell. In this study, we explored the incorporation of cationic lipids into ionizable lipid nanoparticles (LNPs) to develop a RAS protease delivery platform capable of inhibiting cancer cell proliferation in vitro and in vivo. A library of 13 LNPs encapsulating RAS protease was designed, and each formulation was evaluated for in vitro delivery efficiency and toxicity. A subset of four top-performing LNP formulations was identified and further evaluated for their impact on cancer cell proliferation in human colorectal cancer cells with mutated KRAS in vitro and in vivo, as well as their in vivo biodistribution and toxicity. In vivo, both the concentration of cationic lipid and type of cargo influenced LNP and cargo distribution. All lead candidate LNPs showed RAS protease functionality in vitro, and the top-performing formulation achieved effective intracellular RAS protease delivery in vivo, decreasing cancer cell proliferation in an in vivo xenograft model and significantly reducing tumor growth and size. Overall, this work demonstrates the use of LNPs as an effective delivery platform for RAS proteases, which could potentially be utilized for cancer therapies.


Subject(s)
Cell Proliferation , Lipids , Nanoparticles , Humans , Animals , Cell Proliferation/drug effects , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Lipids/chemistry , Cell Line, Tumor , Mice, Nude , Female , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , ras Proteins/metabolism , Tissue Distribution , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Mice , Drug Delivery Systems
17.
Drug Deliv Transl Res ; 14(8): 2046-2061, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38811465

ABSTRACT

The global emergency of coronavirus disease 2019 (COVID-19) has spurred extensive worldwide efforts to develop vaccines for protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our contribution to this global endeavor involved the development of a diverse library of nanocarriers, as alternatives to lipid nanoparticles (LNPs), including nanoemulsions (NEs) and nanocapsules (NCs), with the aim of protecting and delivering messenger ribonucleic acid (mRNA) for nasal vaccination purposes. A wide range of prototypes underwent rigorous screening through a series of in vitro and in vivo experiments, encompassing assessments of cellular transfection, cytotoxicity, and intramuscular administration of a model mRNA for protein translation. As a result, two promising candidates were identified for nasal administration. One of them was a NE incorporating a combination of an ionizable lipid (C12-200) and cationic lipid (DOTAP), both intended to condense mRNA, along with DOPE, which is known to facilitate endosomal escape. This NE exhibited a size of 120 nm and a highly positive surface charge (+ 50 mV). Another candidate was an NC formulation comprising the same components and endowed with a dextran sulfate shell. This formulation showed a size of 130 nm and a moderate negative surface charge (-16 mV). Upon intranasal administration of mRNA encoding for ovalbumin (mOVA) associated with optimized versions of the said NE and NCs, a robust antigen-specific CD8 + T cell response was observed. These findings underscore the potential of NEs and polymeric NCs in advancing mRNA vaccine development for combating infectious diseases.


Subject(s)
Administration, Intranasal , COVID-19 Vaccines , Emulsions , Nanocapsules , mRNA Vaccines , Nanocapsules/chemistry , Animals , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Mice , COVID-19/prevention & control , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Humans , SARS-CoV-2/immunology , Female , Quaternary Ammonium Compounds/chemistry , Mice, Inbred BALB C , Fatty Acids, Monounsaturated/chemistry , RNA, Messenger/administration & dosage , Drug Carriers/chemistry , Drug Carriers/administration & dosage
18.
Int J Pharm ; 659: 124250, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38777304

ABSTRACT

The smart oral administration Insulin device has the potential to improve glycemic management. It can reduce the risk of hypoglycemia associated with exogenous Insulin (INS) therapy while also avoiding many of the disadvantages associated with subcutaneous injections. Furthermore, diabetes mellitus (DM) is an endocrine illness characterized by inflammation, and it is critical to minimize the amount of inflammatory markers in diabetic patients while maintaining average blood glucose. In this study, a responsive nanosystem vitamin B12-Fucoidan-Concanavalin A (VB12-FU-ConA NPs) with anti-inflammatory action was developed for smart oral delivery of Insulin. Con A has high sensitivity and strong specificity as a glucose-responsive material. Fucoidan has anti-inflammatory, immunomodulatory, and hypoglycemic functions, and it can bind to Con A to form a reversible complex. Under high glucose conditions, free glucose competitively binds to Con A, which swells the nanocarrier and promotes Insulin release. Furthermore, in the low pH environment of the gastrointestinal tract, positively charged VB12 and anionic fucoidan bind tightly to protect the Insulin wrapped in the carrier, and VB12 can also bind to intestinal epithelial factors to improve transit rate, thereby promoting INS absorption. In vitro tests showed that the release of nanoparticles in hyperglycemic solutions was significantly higher than the drug release in normoglycemic conditions. Oral delivery of the nanosystems dramatically lowered blood glucose levels in type I diabetic mice (T1DM) during in vivo pharmacodynamics, minimizing the risk of hypoglycemia. Blood glucose levels reached a minimum of 8.1 ± 0.4 mmol/L after 8 h. Administering the nanosystem orally notably decreased the serum levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in diabetic mice. The nano delivery system can be degraded and metabolized in the intestinal tract after being taken orally, demonstrating good biodegradability and biosafety. In conclusion, the present study showed that VB12-FU-ConA nanocarriers are expected to be a novel system for rationalizing blood glucose.


Subject(s)
Anti-Inflammatory Agents , Blood Glucose , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Insulin , Polysaccharides , Animals , Polysaccharides/administration & dosage , Polysaccharides/chemistry , Blood Glucose/drug effects , Blood Glucose/analysis , Administration, Oral , Insulin/administration & dosage , Insulin/pharmacokinetics , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Mice , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/pharmacokinetics , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Male , Vitamin B 12/administration & dosage , Nanoparticles/administration & dosage , Drug Liberation , Drug Carriers/chemistry , Humans
19.
J Control Release ; 371: 29-42, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763389

ABSTRACT

The tumor develops defense tactics, including conversing the mechanical characteristics of tumor cells and their surrounding environment. A recent study reported that cholesterol depletion stiffens tumor cells, which could enhance adaptive T-cell immunotherapy. However, it remains unclear whether reducing the cholesterol in tumor cells contributes to re-educating the stiff tumor matrix, which serves as a physical barrier against drug penetration. Herein, we found that depleting cholesterol from tumor cells can demolish the intratumor physical barrier by disrupting the mechanical signal transduction between tumor cells and the extracellular matrix through the destruction of lipid rafts. This disruption allows nanoparticles (H/S@hNP) to penetrate deeply, resulting in improved photodynamic treatment. Our research also indicates that cholesterol depletion can inhibit the epithelial-mesenchymal transition and repolarize tumor-associated macrophages from M2 to M1, demonstrating the essential role of cholesterol in tumor progression. Overall, this study reveals that a cholesterol-depleted, softened tumor matrix reduces the difficulty of drug penetration, leading to enhanced antitumor therapeutics.


Subject(s)
Cholesterol , Cholesterol/metabolism , Animals , Humans , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Nanoparticles/administration & dosage , Mice , Photochemotherapy/methods , Tumor Microenvironment/drug effects , Female , Extracellular Matrix/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects
20.
J Control Release ; 371: 111-125, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782064

ABSTRACT

In esophageal cancer (EC), clinical specimen testing has uncovered a significant increase in BTB and CNC homolog 1 (BACH1) expression and a shift towards an immunosuppressive environment, alongside a notable decrease in p53 protein expression. Therefore, therapeutic strategies focusing on BACH1 inhibition and p53 upregulation appear promising. Traditional oral treatments for EC lack precision and efficacy. Here, we propose a novel approach employing tumor-targeted nanoparticles (NPs) for drug delivery. However, the formation of a drug reservoir at the esophageal site, crucial for the sustained release of therapeutics, presents significant challenges in nano-delivery systems for EC treatment. To address this, we developed a thermosensitive hydrogel composed of F127 and tannic acid, serving as a vehicle for NP loading. These NPs, synthesized through the emulsion/volatization methods of mPEG-PLGA-PLL-cRGD, facilitate in situ drug delivery. Upon contacting esophageal tissue, the hydrogel transitions to a gel, adhering to the lining and enabling sustained release of encapsulated therapeutics. The formulation encompasses NPs laden with small interfering RNA targeting BACH1 (siBACH1) and the p53 activator PRIMA-1, creating a cohesive gel-nano system. Preliminary biological assessments demonstrate that this injectable, thermosensitive gel-nano system adheres effectively to esophageal tissue and targets EC cells. For better modeling clinical outcomes, a patient-derived organoid xenograft (PDOX) model was innovated, involving transplantation of EC-derived organoids into humanized mice, reconstructed with peripheral blood mononuclear cells (PBMCs). Post-treatment analysis showed substantial EC growth inhibition (89.51% tumor inhibition rate), significant BACH1 level reduction, restored anti-tumor immune responses, and pronounced tumor apoptosis. In summary, our study introduces a thermosensitive gel-nano system for EC treatment via restoring p53 activity and boosting T-cell immunity, with potential for clinical application.


Subject(s)
Esophageal Neoplasms , Nanoparticles , Tumor Suppressor Protein p53 , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/immunology , Animals , Humans , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Cell Line, Tumor , Hydrogels/administration & dosage , Hydrogels/chemistry , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Female , Mice , Temperature , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Drug Delivery Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...