Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 322
Filter
1.
Bioorg Chem ; 150: 107596, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941699

ABSTRACT

A novel series of 1,8-naphthalimide piperazinamide based benzenesulfonamides derivatives were designed and synthesized as carbonic anhydrase IX (CA IX) inhibitors and ferroptosis inducers for the treatment of triple-negative breast cancer (TNBC). The representative compound 9o exhibited more potent inhibitory activity and selective against CA IX over off-target CA II, compared with positive control SLC-0111. Molecular docking study was also performed to gain insights into the binding interactions of 9o in the binding pocket of CAIX. Moreover, compound 9o exhibited superior antitumor activities against breast cancer cells under hypoxia than that of normoxia conditions. Mechanism studies revealed that compound 9o could act as DNA intercalator and effectively suppressed cell migration, arrested the cell cycle at G1/S phase and induced apoptosis in MDA-MB-231 cells, while inducing ferroptosis accompanied by the dissipation of MMP and the elevation intracellular levels of ROS. Notably, in vivo studies demonstrated that 9o effectively inhibited tumor growth and metastasis in a highly metastatic murine breast cancer 4 T1 xenograft model. Taken together, this study suggests that compound 9o represents a potent and selective CA IX inhibitor and ferroptosis inducer for the treatment of TNBC.


Subject(s)
Antineoplastic Agents , Benzenesulfonamides , Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ferroptosis , Naphthalimides , Sulfonamides , Triple Negative Breast Neoplasms , Humans , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Ferroptosis/drug effects , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Molecular Structure , Cell Proliferation/drug effects , Structure-Activity Relationship , Mice , Female , Naphthalimides/chemistry , Naphthalimides/pharmacology , Naphthalimides/chemical synthesis , Drug Discovery , Apoptosis/drug effects , Molecular Docking Simulation , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Cell Line, Tumor , Antigens, Neoplasm
2.
Int J Biol Macromol ; 273(Pt 2): 132955, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852733

ABSTRACT

In this study, 4-sulfo-1,8-naphthalimide calixarene of derivatives were prepared (3 and 4) then transparent biofilms of the Ag salts of these compounds were formed in the presence of hyaluronic acid (HA), and antimicrobial properties were investigated. In chemosensor studies, the sensing ability behavior of 3 and 4 towards some cations and anions was investigated by fluorescence spectroscopy. It was observed that the prepared chemosensors show selectivity towards Hg(II) and Cr(VI). Ligand-ion interaction occurs according to the photo-induced electron transfer (PET) mechanism. The stoichiometric ratio was calculated by using Stern-Volmer plot method and binding constant Ksv values were found as 5.2 × 107 M-1 and 5.5 × 107 M-1 for 3-Hg(II) and 4-Hg(II) complexes, respectively and 4.0 × 107 M-1 and 4.3 × 107 M-1 for 3-Cr(VI) and 4-Cr(VI) complexes. The detection limits of the complexes of 3-Hg(II) and 4-Hg(II) are 6.35 × 10-12and 6.81 × 10-12, while those of 3-Cr(VI) and 4-Cr(VI) are 1.41 × 10- 11and 8.37 × 10-12, respectively. As a result of the antimicrobial test performed with these compounds, it was observed that the most effective material was HA-3Ag, which showed a significant antibacterial effect against Sarcina lutea (S. lutea) at a minimum inhibitory concentration (MIC) value of 0.097 mg/mL.


Subject(s)
Biofilms , Calixarenes , Hyaluronic Acid , Mercury , Naphthalimides , Calixarenes/chemistry , Calixarenes/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Biofilms/drug effects , Naphthalimides/chemistry , Naphthalimides/pharmacology , Mercury/chemistry , Chromium/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Spectrometry, Fluorescence , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phenols/chemistry , Phenols/pharmacology , Fluorescence
3.
J Mater Chem B ; 12(23): 5645-5660, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38747306

ABSTRACT

The increasing frequency of drug-resistant pathogens poses serious health issues to humans around the globe, leading to the development of new antibacterial agents to conquer drug resistance and bacterial infections. In view of this, we have synthesized a series of bis-naphthalimides to respond to awful drug resistance. Bioactivity assay and structure-activity relationship disclosed that compounds 5d and 5o exhibit potent antibacterial activity against E. faecalis, outperforming the marketed antibiotics. These drug candidates not only inhibit the biofilm formation of E. faecalis but also display rapid bactericidal properties, thus delaying the development of drug resistance within 20 passages. To explore the mechanism of antibacterial activity against E. faecalis, biofunctional examination was carried out which unveiled that 5d and 5o effectively disrupt bacterial cell membranes, causing the leakage of cytoplasmic contents and metabolic activity loss. Concurrently, 5d and 5o effectively intercalate with DNA to block DNA replication, causing the build-up of excessive reactive oxygen species and inhibiting the glutathione activity, ultimately leading to oxidative damage of E. faecalis and cell death. In addition, these compounds readily bind with HSA with a high binding constant, indicating that these drug candidates could be easily delivered to the target site. The above finding manifested that these newly synthesized bis-naphthalimides with multitargeting antibacterial properties offer a new prospect to overcome drug resistance.


Subject(s)
Anti-Bacterial Agents , Enterococcus faecalis , Microbial Sensitivity Tests , Naphthalimides , Enterococcus faecalis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Naphthalimides/chemistry , Naphthalimides/pharmacology , Humans , Structure-Activity Relationship , Biofilms/drug effects , Drug Resistance, Bacterial/drug effects , Molecular Structure , Cell Death/drug effects
4.
Molecules ; 29(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38792143

ABSTRACT

Strigolactones (SLs) have potential to be used in sustainable agriculture to mitigate various stresses that plants have to deal with. The natural SLs, as well as the synthetic analogs, are difficult to obtain in sufficient amounts for practical applications. At the same time, fluorescent SLs would be useful for the mechanistic understanding of their effects based on bio-imaging or spectroscopic techniques. In this study, new fluorescent SL mimics containing a substituted 1,8-naphthalimide ring system connected through an ether link to a bioactive furan-2-one moiety were prepared. The structural, spectroscopic, and biological activity of the new SL mimics on phytopathogens were investigated and compared with previously synthetized fluorescent SL mimics. The chemical group at the C-6 position of the naphthalimide ring influences the fluorescence parameters. All SL mimics showed effects similar to GR24 on phytopathogens, indicating their suitability for practical applications. The pattern of the biological activity depended on the fungal species, SL mimic and concentration, and hyphal order. This dependence is probably related to the specificity of each fungal receptor-SL mimic interaction, which will have to be analyzed in-depth. Based on the biological properties and spectroscopic particularities, one SL mimic could be a good candidate for microscopic and spectroscopic investigations.


Subject(s)
Lactones , Naphthalimides , Naphthalimides/chemistry , Naphthalimides/chemical synthesis , Naphthalimides/pharmacology , Lactones/chemistry , Lactones/pharmacology , Lactones/chemical synthesis , Molecular Structure , Ascomycota , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Rhizoctonia/drug effects , Heterocyclic Compounds, 3-Ring
5.
Bioorg Med Chem Lett ; 107: 129776, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38692523

ABSTRACT

Human cytochrome P450 1B1 enzyme (hCYP1B1), a member of hCYP1 subfamily, plays a crucial role in multiple diseases by participating in many metabolic pathways. Although a suite of potent hCYP1B1 inhibitors have been previously reported, most of them also act as aryl hydrocarbon receptor (AhR) agonists that can up-regulate the expression of hCYP1B1 and then counteract their inhibitory potential in living systems. This study aimed to develop novel efficacious hCYP1B1 inhibitors that worked well in living cells but without AhR agonist effects. For these purposes, a series of 1,8-naphthalimide derivatives were designed and synthesized, and their structure-activity relationships (SAR) as hCYP1B1 inhibitors were analyzed. Following three rounds SAR studies, several potent hCYP1B1 inhibitors were discovered, among which compound 3n was selected for further investigations owing to its extremely potent anti-hCYP1B1 activity (IC50 = 0.040 nM) and its blocking AhR transcription activity in living cells. Inhibition kinetic analyses showed that 3n potently inhibited hCYP1B1 via a mix inhibition manner, showing a Ki value of 21.71 pM. Docking simulations suggested that introducing a pyrimidine moiety to the hit compound (1d) facilitated 3n to form two strong interactions with hCYP1B1/heme, viz., the C-Br⋯π halogen bond and the N-Fe coordination bond. Further investigations demonstrated that 3n (5 µM) could significantly reverse the paclitaxel (PTX) resistance in H460/PTX cells, evidenced by the dramatically reduced IC50 values, from 632.6 nM (PTX alone) to 100.8 nM (PTX plus 3n). Collectively, this study devised a highly potent hCYP1B1 inhibitor (3n) without AhR agonist effect, which offered a promising drug candidate for overcoming hCYP1B1-associated drug resistance.


Subject(s)
Cytochrome P-450 CYP1B1 , Drug Design , Naphthalimides , Humans , Structure-Activity Relationship , Naphthalimides/pharmacology , Naphthalimides/chemistry , Naphthalimides/chemical synthesis , Cytochrome P-450 CYP1B1/antagonists & inhibitors , Cytochrome P-450 CYP1B1/metabolism , Molecular Structure , Dose-Response Relationship, Drug
6.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731451

ABSTRACT

A novel second-generation blue fluorescent polyamidoamine dendrimer peripherally modified with sixteen 4-N,N-dimethylaninoethyloxy-1,8-naphthalimide units was synthesized. Its basic photophysical characteristics were investigated in organic solvents of different polarity. It was found that in these solvents, the dendrimer is colorless and emitted blue fluorescence with different intensities depending on their polarity. The effect of the pH of the medium on the fluorescence intensity was investigated and it was found that in the acidic medium, the fluorescence is intense and is quenched in the alkaline medium. The ability of the dendrimer to detect metal ions (Pb2+, Zn2+, Mg2+, Sn2+, Ba2+, Ni2+, Sn2+, Mn2+, Co2+, Fe3+, and Al3+) was also investigated, and it was found that in the presence of Fe3+, the fluorescent intensity was amplified more than 66 times. The antimicrobial activity of the new compound has been tested in vitro against Gram-positive B. cereus and Gram-negative P. aeruginosa. The tests were performed in the dark and after irradiation with visible light. The antimicrobial activity of the compound enhanced after light irradiation and B. cereus was found slightly more sensitive than P. aeruginosa. The increase in antimicrobial activity after light irradiation is due to the generation of singlet oxygen particles, which attack bacterial cell membranes.


Subject(s)
Dendrimers , Microbial Sensitivity Tests , Naphthalimides , Polyamines , Naphthalimides/chemistry , Naphthalimides/pharmacology , Dendrimers/chemistry , Dendrimers/pharmacology , Polyamines/chemistry , Polyamines/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fluorescence , Pseudomonas aeruginosa/drug effects , Hydrogen-Ion Concentration , Bacillus cereus/drug effects , Light , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence
7.
Eur J Med Chem ; 271: 116416, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38657480

ABSTRACT

Targeting polo-box domain (PBD) small molecule for polo-like kinase 1 (PLK1) inhibition is a viable alternative to target kinase domain (KD), which could avoid pan-selectivity and dose-limiting toxicity of ATP-competitive inhibitors. However, their efficacy in these settings is still low and inaccessible to clinical requirement. Herein, we utilized a structure-based high-throughput virtual screen to find novel chemical scaffold capable of inhibiting PLK1 via targeting PBD and identified an initial hit molecule compound 1a. Based on the lead compound 1a, a structural optimization approach was carried out and several series of derivatives with naphthalimide structural motif were synthesized. Compound 4Bb was identified as a new potent PLK1 inhibitor with a KD value of 0.29 µM. 4Bb could target PLK1 PBD to inhibit PLK1 activity and subsequently suppress the interaction of PLK1 with protein regulator of cytokinesis 1 (PRC1), finally leading to mitotic catastrophe in drug-resistant lung cancer cells. Furthermore, 4Bb could undergo nucleophilic substitution with the thiol group of glutathione (GSH) to disturb the redox homeostasis through exhausting GSH. By regulating cell cycle machinery and increasing cellular oxidative stress, 4Bb exhibited potent cytotoxicity to multiple cancer cells and drug-resistant cancer cells. Subcutaneous and oral administration of 4Bb could effectively inhibit the growth of drug-resistant tumors in vivo, doubling the survival time of tumor bearing mice without side effects in normal tissues. Thus, our study offers an orally-available, structurally-novel PLK1 inhibitor for drug-resistant lung cancer therapy.


Subject(s)
Antineoplastic Agents , Cell Cycle Proteins , Cell Proliferation , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Lung Neoplasms , Naphthalimides , Polo-Like Kinase 1 , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Naphthalimides/chemistry , Naphthalimides/pharmacology , Naphthalimides/chemical synthesis , Humans , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Structure-Activity Relationship , Mice , Molecular Structure , Drug Resistance, Neoplasm/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Cell Line, Tumor , Mice, Nude , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism
8.
J Neurochem ; 168(7): 1281-1296, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38339787

ABSTRACT

Insect neuronal nicotinic acetylcholine receptors (nAChRs) are transmembrane receptors that play a key role in the development and synaptic plasticity of both vertebrates and invertebrates and are considered to be major targets of neonicotinoid insecticides. We used dorsal unpaired median (DUM) neurons, which are insect neurosecretory cells, in order to explore the intracellular mechanisms leading to the regulation of insect neuronal nAChRs in more detail. Using whole-cell patch-clamp and fura-2AM calcium imaging techniques, we found that a novel CaMKK/AMPK pathway could be involved in the intracellular regulation of DUM neuron nAChRs. The CaMKK selective inhibitor, STO, reduced nicotinic current amplitudes, and strongly when co-applied with α-Bgt. Interestingly, intracellular application of the AMPK activator, A-76, prevented the reduction in nicotine-induced currents observed in the presence of the AMPK inhibitor, dorsomorphin. STO prevented the increase in intracellular calcium induced by nicotine, which was not dependent on α-Bgt. Currents induced by 1 mM LMA, a selective activator of nAChR2, were reduced under bath application of STO, and mecamylamine, which blocked nAChR2 subtype, inhibited the increase in intracellular calcium induced by LMA. These findings provide insight into potential complex mechanisms linked to the modulation of the DUM neuron nAChRs and CaMKK pathway.


Subject(s)
Calcium , Nicotine , Animals , Nicotine/pharmacology , Calcium/metabolism , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/drug effects , Nicotinic Agonists/pharmacology , Patch-Clamp Techniques , Neurons/drug effects , Neurons/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/antagonists & inhibitors , Naphthalimides/pharmacology , Protein Kinase Inhibitors/pharmacology , Benzimidazoles
9.
Mol Pharm ; 21(3): 1090-1107, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38306276

ABSTRACT

Lymphoma can effectively be treated with a chemotherapy regimen that is associated with adverse side effects due to increasing drug resistance, so there is an emergent need for alternative small-molecule inhibitors to overcome the resistance that occurs in lymphoma management and overall increase the prognosis rate. A new series of substituted naphthalimide moieties conjugated via ester and amide linkages with artesunate were designed, synthesized, and characterized. In addition to the conjugates, to further achieve a theranostic molecule, FITC was incorporated via a multistep synthesis process. DNA binding studies of these selected derivatives by ultraviolet-visible (UV-vis), fluorescence spectroscopy, intercalating dye (EtBr, acridine orange)-DNA competitive assay, and minor groove binding dye Hoechst 33342-DNA competitive assay suggested that the synthesized novel molecules intercalated between the two strands of DNA due to its naphthalimide moiety and its counterpart artesunate binds with the minor groove of DNA. Napthalimide-artesunate conjugates inhibit the growth of lymphoma and induce apoptosis, including ready incorporation and reduction in cell viability. The remodeled drug has a significant tumoricidal effect against solid DL tumors developed in BALB/c mice in a dose-dependent manner. The novel drug appears to inhibit metastasis and increase the survival of the treated animals compared with untreated littermates.


Subject(s)
Antineoplastic Agents , Lymphoma , Neoplasms , Animals , Mice , Artesunate , Naphthalimides/pharmacology , Naphthalimides/therapeutic use , Naphthalimides/chemistry , DNA/chemistry , Lymphoma/drug therapy , Spectrometry, Fluorescence , Antineoplastic Agents/chemistry , Apoptosis
10.
Technol Cancer Res Treat ; 23: 15330338231225861, 2024.
Article in English | MEDLINE | ID: mdl-38225189

ABSTRACT

The development of 1,8-naphthalimide derivatives as cell probes, DNA targeting agents, and anti-tumor drugs is one of the research hotspots in the field of medicine. Naphthalimide compounds are a kind of DNA embedder, which can change the topological structure of DNA by embedding in the middle of DNA base pairs, and then affect the recognition and action of topoisomerase on DNA. Aminofide and mitonafide are the first 2 drugs to undergo clinical trials. They have good DNA insertion ability, can embed DNA double-stranded structure, and induce topoisomerase II to cut part of pBR322DNA, but not yet entered the market due to their toxicity. In this paper, the design and structure-activity relationship of mononaphthalimide and bisaphthalimide compounds were studied, and the relationship between the structure of naphthalimide and anti-tumor activity was analyzed and discussed. It was found that a variety of structural modifications were significant in improving anti-tumor activity and reducing toxicity.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Naphthalimides/pharmacology , Naphthalimides/chemistry , Naphthalimides/therapeutic use , Structure-Activity Relationship , Neoplasms/drug therapy , Neoplasms/genetics , DNA/genetics , DNA/chemistry , DNA/therapeutic use , Antineoplastic Agents/therapeutic use , Cell Line, Tumor
11.
Anticancer Agents Med Chem ; 24(2): 96-116, 2024.
Article in English | MEDLINE | ID: mdl-37974443

ABSTRACT

The efficacy of drugs against cancer in clinical settings may be limited due to pharmacokinetic issues, side effects and the emergence of drug resistance. However, a class of anticancer drugs known as naphthalimides have proven to be very effective. These derivatives have demonstrated to be effective in treating different types of cancers and exhibit strong DNA binding affinity. The anticancer properties of the naphthalimide derivatives allow them to target a number of cancer cell lines. Researchers have investigated the anticancer activity of numerous naphthalimide derivatives, such as heterocyclic fused, non-fused substituted, metal-substituted and carboxamide derivatives. Surprisingly, some derivatives demonstrate greater activity than the reference norms, such as cisplatin, amonafide, mitonafide and others and are selective against many cell lines. The primary objective of this research is to comprehend the effects of various substitution patterns on the structure-activity relationship (SAR) of these derivatives and the instances in which they enhance or reduce this biological activity.


Subject(s)
Antineoplastic Agents , Naphthalimides , Humans , Naphthalimides/pharmacology , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cisplatin
12.
Molecules ; 28(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687082

ABSTRACT

This paper presents the photophysical and biological properties of eight 3-imino-1,8-naphthalimides. The optical properties of the compounds were investigated in the solvents that differed in their polarity (dichloromethane, acetonitrile, and methanol), including three methods of sample preparation using different pre-dissolving solvents such as dimethyl sulfoxide or chloroform. In the course of the research, it was found that there are strong interactions between the tested compounds and DMSO, which was visible as a change in the maximum emission band (λem) of the neat 3-imino-1,8-naphthalimides (λem = 470-480 nm) and between the compounds and DMSO (λem = 504-514 nm). The shift of the emission maximum that was associated with the presence of a small amount of DMSO in the sample was as much as 41 nm. In addition, the susceptibility of imines to hydrolysis in the methanol/water mixture with increasing water content and in the methanol/water mixture (v/v; 1:1) in the pH range from 1 to 12 was discussed. The studies showed that the compounds are hydrolysed in the CH3OH/H2O system in an acidic environment (pH in the range of 1 to 4). In addition, it was found that partial hydrolysis occurs in systems with an increased amount of water, and its degree may depend on the type of substituent on the imine bond. The compounds tended to quench the emission (ACQ) in the aggregated state and increase the emission related to the protonation of the imine bond. Moreover, it was found that the substituent in the imine bonds influenced a compound's individual photophysical properties. Biological tests, including cytotoxicity studies and cellular localisation, were also performed for all of the molecules. All of the tested compounds exhibited green fluorescence in the MCF-7 cells and showed co-localisation in the mitochondria, endoplasmic reticulum, and lysosome. The obtained photophysical and biological results indicate the promising potential use of the tested compounds as cellular dyes.


Subject(s)
Dimethyl Sulfoxide , Methanol , Naphthalimides/pharmacology , Fluorescent Dyes , Solvents , Imines , Ionophores
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123041, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37354859

ABSTRACT

Hydrogen polysulfide (H2Sn, n > 1), as one of the important members of reactive sulfur species (RSS), plays a vital part in the processes of both their physiology and pathology. In this work, a ratiometric fluorescent probe for H2Sn had been designed and prepared based on the combination mechanism of intramolecular charge transfer (ICT) and fluorescence resonance energy transfer (FRET). The probe chose a coumarin derivative as the energy donor, a naphthalimide derivative as the energy acceptor and 2-fluoro-5-nitrobenzoate as the H2Sn recognition group. When H2Sn was not present in the system, the ICT process of the naphthalimide acceptor was inhibited and the FRET process from the coumarin donor to the naphthalimide acceptor was turned off. When H2Sn was added, both ICT and FRET occurred due to the nucleophilic substitution-cyclization reactions between the probe and hydrogen polysulfide. In addition, the ratio value of the emission intensities at 550 nm and 473 nm (I550 nm/I473 nm) of this probe had a good linear relationship with H2Sn concentration in the range of 6.0 × 10-7-5.0 × 10-5 mol·L-1, and a detection limit of 1.8 × 10-7 mol·L-1 was obtained. The developed probe had high selectivity and sensitivity, as well as good biocompatibility. Additionally, the probe had been used to successfully image both indigenous and exogenous hydrogen polysulfide in A549 cells using confocal microscope.


Subject(s)
Fluorescence Resonance Energy Transfer , Naphthalimides , Fluorescence Resonance Energy Transfer/methods , Naphthalimides/pharmacology , Fluorescent Dyes/pharmacology , Hydrogen , Coumarins
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122582, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36905738

ABSTRACT

Hydrogen sulfide (H2S) is a central signaling and antioxidant biomolecule involved in various biological processes. As inappropriate levels of H2S in the human body are closely related to various diseases, including cancer, a tool capable of detecting H2S with high selectivity and sensitivity in living systems is urgently required. In this work, we intended to develop a biocompatible and activatable fluorescent molecular probe for detecting H2S generation in living cells. The 7-nitro-2,1,3-benzoxadiazole-imbedded naphthalimide (1) probe presented here responds specifically to H2S and produces readily detectable fluorescence at 530 nm. Interestingly, probe 1 exhibited significant fluorescence responses to changes in endogenous H2S levels as well as high biocompatibility and permeability in living HeLa cells. This allowed for the real-time monitoring of endogenous H2S generation as an antioxidant defense response in the oxidatively stressed cells.


Subject(s)
Hydrogen Sulfide , Naphthalimides , Humans , Antioxidants/pharmacology , Fluorescent Dyes , HeLa Cells , Naphthalimides/pharmacology , Signal Transduction , Azoles/chemistry
15.
Bioorg Chem ; 132: 106373, 2023 03.
Article in English | MEDLINE | ID: mdl-36681043

ABSTRACT

Synthetic glycoconjugates as chemical probes have been widely developed for the detection of glycosidase enzymes. However, the binding interactions between iminosugar derivatives and glycosidases were limited, especially for the binding interactions between multivalent glycosidase inhibitors and α-glycosidases. In this paper, three naphthalimide-DNJ conjugates were synthesized. Furthermore, the binding interactions and glycosidase inhibition effects of them were investigated. It was found that the strong binding interactions of multivalent glycosidase inhibitors with enzymes were related to the efficient inhibitory activity against glycosidase. Moreover, the lengths of the chain between DNJ moieties and the triazole ring for the naphthalimide-DNJ conjugates influenced the self-assembly properties, binding interactions and glycosidase inhibition activities with multisource glycosidases. Compound 13 with six carbons between the DNJ moiety and triazole ring showed the stronger binding interactions and better glycosidase inhibition activities against α-mannosidase (jack bean) and α-glucosidase (aspergillus niger). In addition, compound 13 showed an effective PBG inhibition effect in mice with 51.18 % decrease in blood glucose at 30 min. This result opens a way for detection of multivalent glycosidase inhibition effect by a fluorescent sensing method.


Subject(s)
Enzyme Inhibitors , Glycoside Hydrolases , Mice , Animals , Enzyme Inhibitors/chemistry , Glycoside Hydrolases/metabolism , Naphthalimides/pharmacology , Fluorescence , alpha-Mannosidase
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122385, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36696861

ABSTRACT

Hydrogen sulfide (H2S) is involved in various biological processes. Thereby, abnormal levels of H2S are reported to be related to various human diseases including cancer. Currently, many fluorescent probes are pioneered to detect H2S by taking advantages of naphthalimides' unique internal charge transfer (ICT) property. However, most probes often require a high content of organic solvents or surfactants, and are limited to the analysis of exogenous H2S treated externally in live cell studies, and have difficulties in analyzing endogenous H2S, thus limiting their practical use. In this study, we developed a bio-friendly biotin-coupled and azide-functionalized naphthalimide (1) as a fluorescent probe enabling real-time analysis of H2S in living system. Probe was able to provide a fluorescence at 545 nm via H2S-mediated azide reduction selectively without interference by biologically abundant constituents and pH effects. In a biological study using A549 cells, probe readily penetrated living cells without cytotoxicity, and unreacted probes showed almost no fluorescence, enabling real-time detection of H2S in living cells without requiring separate washing process. More importantly, under stimulation with various H2S inducers and inhibitors, probe was able to provide an effective fluorescence response against fluctuations in endogenous H2S, a key requirement for H2S studies. Probe 1 can be applied as a useful chemical tool and enables the analysis of H2S and the study of H2S-related cell functions in a variety of environments.


Subject(s)
Hydrogen Sulfide , Humans , Hydrogen Sulfide/analysis , Naphthalimides/pharmacology , Naphthalimides/chemistry , Azides , Biotin , Fluorescent Dyes/chemistry , HeLa Cells
17.
Bioorg Med Chem Lett ; 80: 129109, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36549395

ABSTRACT

Glutathione S-transferases (GSTs) are a superfamily of multifunctional enzymes comprising multiple classes and subtypes. This paper describes the synthesis and characterization of TPPBN-1, a naphthalimide derivative conjugated with a triphenylphosphonium (TPP) cation. When 4-bromonaphthalimide (BrNaph), a previously characterized GST substrate, was conjugated to a TPP cation, the conjugate showed increased reactivity towards most alpha- and mu-class GSTs, particularly the GSTA2 subtype, compared to the parent compound, but hardly towards Pi-class GSTs. Using this probe with enhanced reactivity, the enzymatic activity of endogenous GSTA1/2 in HepG2 cells was visualized by confocal fluorescence microscopy. The results demonstrated that modification with TPP cations, which are often used as tags for targeting mitochondria, can be used to enhance the reactivity of probes for specific GST subtypes.


Subject(s)
Glutathione Transferase , Naphthalimides , Naphthalimides/pharmacology , Glutathione Transferase/chemistry , Mitochondria , Cations
18.
Drug Dev Res ; 84(4): 671-680, 2023 Jun.
Article in English | MEDLINE | ID: mdl-32548880

ABSTRACT

Current therapeutic drugs for Alzheimer's disease (AD) can only offer limited symptomatic benefits and do not halt disease progression. Multitargeted directed ligands (MTDLs) have been considered to be a feasible way to treat AD due to the multiple neuropathological processes in AD. Previous studies proposed that compounds containing two aromatic groups connected by a carbon chain should act as effective amyloid ß (Aß) aggregation inhibitors although the optimal length of the carbon chain has not been explored. In the current study, a series of naphthalimide analogs were designed and synthesized based on the proposed structure and multiple bioactivities beneficial to the AD treatment were reported. In vitro studies showed that compound 8, which has two aromatic groups connected by a two-carbon chain, exhibited significant inhibition of Aß aggregation through the prevention of elongation and association of Aß fibril growth. Furthermore, this compound also displayed antioxidative activities and neuroprotection from Aß monomer induced toxicity in primary cortical neurons. The results of the present study highlight a novel naphthalimide-based compound 8 as a promising MTDL against AD. Its structural elements can be further explored for enhanced therapeutic capabilities.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides , Naphthalimides/pharmacology , Naphthalimides/therapeutic use , Ligands , Antioxidants/pharmacology , Cholinesterase Inhibitors/chemistry
19.
Molecules ; 27(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500547

ABSTRACT

The invasion of pathogenic fungi poses nonnegligible threats to the human health and agricultural industry. This work exploited a family of hydroxyethyl naphthalimides as novel antifungal species with synergistic potential of chemical and dynamic treatment to combat the fungal resistance. These prepared naphthalimides showed better antifungal potency than fluconazole towards some tested fungi including Aspergillus fumigatus, Candida tropicalis and Candida parapsilosis 22019. Especially, thioether benzimidazole derivative 7f with excellent anti-Candida tropicalis efficacy (MIC = 4 µg/mL) possessed low cytotoxicity, safe hemolysis level and less susceptibility to induce resistance. Biochemical interactions displayed that 7f could form a supramolecular complex with DNA to block DNA replication, and constitute a biosupermolecule with cytochrome P450 reductase (CPR) from Candida tropicalis to hinder CPR biological function. Additionally, 7f presented strong lipase affinity, which facilitated its permeation into cell membrane. Moreover, 7f with dynamic antifungal potency promoted the production and accumulation of reactive oxygen species (ROS) in cells, which destroyed the antioxidant defence system, led to oxidative stress with lipid peroxidation, loss of glutathione, membrane dysfunction and metabolic inactivation, and eventually caused cell death. The chemical and dynamic antifungal synergistic effect initiated by hydroxyethyl naphthalimides was a reasonable treatment window for prospective development.


Subject(s)
Drug Resistance, Fungal , Naphthalimides , Humans , Naphthalimides/pharmacology , Prospective Studies , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Fluconazole/pharmacology
20.
J Agric Food Chem ; 70(40): 12819-12829, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36173029

ABSTRACT

Transketolase (TK) was identified as a new target for the development of novel herbicides. In this study, a series of naphthalimide-aroyl hybrids were designed and prepared based on TK as a new target and tested for their herbicidal activities. In vitro bioassay showed that compounds 4c and 4w exhibited stronger inhibitory effects against Digitaria sanguinalis (DS) and Amaranthus retroflexus (AR) with the inhibition over 90% at 200 mg/L and around 80% at 100 mg/L. Also, compounds 4c and 4w exhibited excellent postemergence herbicidal activity against DS and AR with the inhibition around 90% at 90 g [active ingredient (ai)]/ha and 80% at 50 g (ai)/ha in the greenhouse, which was comparable with the activity of mesotrione. The fluorescent quenching experiments of At TK revealed the occurrence of electron transfer from compound 4w to At TK and the formation of a strong exciplex between them. Molecular docking analyses further showed that compounds 4w exhibited profound affinity with At TK through the interaction with the amino acids in the active site, which results in its strong inhibitory activities against TK. These findings demonstrated that compound 4w is potentially a lead candidate for novel herbicides targeting TK.


Subject(s)
Amaranthus , Herbicides , Amino Acids/pharmacology , Digitaria , Enzyme Inhibitors/pharmacology , Herbicides/chemistry , Molecular Docking Simulation , Naphthalimides/pharmacology , Structure-Activity Relationship , Transketolase
SELECTION OF CITATIONS
SEARCH DETAIL