Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.108
Filter
1.
J Neurosci Nurs ; 56(4): 136-142, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38976832

ABSTRACT

ABSTRACT: INTRODUCTION: Nurses have a central role in educating patients and families about treatment options and how to integrate them into action plans for neurologic conditions. In recent years, a growing number of intranasal formulations have become available as rescue therapy for neurologic conditions or symptoms including migraine, opioid overdose, and seizures. Rescue therapies do not replace maintenance medications or emergency care but are designed to enable rapid treatment of urgent or disabling conditions in community settings. Yet, discussion of rescue therapies for neurologic conditions remains limited in nursing literature. CONTENT: Intranasal formulations are specifically formulated for delivery and absorption in the nose and have several characteristics that are well suited as rescue therapies for neurologic conditions. Intranasal formulations include triptans for migraine, naloxone and nalmefene for opioid overdose, and benzodiazepines for seizure clusters in patients with epilepsy. Therapeutic attributes discussed here include ease of use in community settings by nonmedical professionals, relatively rapid onset of action, and favorable safety profile and patient experience. This information is critical for nurses to make informed decisions about rescue therapy options, incorporate these into plans of care, and educate patients, care partners, and other healthcare providers. CONCLUSION: Rescue therapies are increasingly important in the care of people with neurologic conditions. Various formulations are available and continue to evolve, offering easy and quick ways for nurses, patients, and nonmedical care partners to administer critical rescue medications. For nurses overseeing medication management, the attributes of intranasal rescue therapies should be considered in the context of providing patients with the right care at the right time.


Subject(s)
Administration, Intranasal , Nervous System Diseases , Humans , Analgesics, Opioid/adverse effects , Analgesics, Opioid/antagonists & inhibitors , Benzodiazepines/administration & dosage , Benzodiazepines/therapeutic use , Naloxone/administration & dosage , Naloxone/therapeutic use , Narcotic Antagonists/administration & dosage , Narcotic Antagonists/therapeutic use , Nervous System Diseases/chemically induced , Nervous System Diseases/drug therapy , Tryptamines/therapeutic use , Tryptamines/administration & dosage
2.
Postepy Biochem ; 69(4): 264-273, 2024 01 30.
Article in Polish | MEDLINE | ID: mdl-39012699

ABSTRACT

Cancer, type 2 diabetes, cardiovascular and neurological diseases are disorders commonly classified as diseases that have a significant impact on the length and quality of human life. Sirtuins play an important role in their pathogenesis and complications. Numerous studies indicate that modulation of the expression of these proteins can slow down the processes of aging and cell death, prevent inflammation, and regulate metabolic processes, and consequently modify the progression of the disease. One of the best-known sirtuins is sirtuin 1, whose strongest natural activator is resveratrol. The development of alternative therapies involving natural compounds such as resveratrol is highly desirable due to the significantly lower number of side effects compared to conventional therapies. Therefore, this review summarizes the possible benefits of resveratrol as a sirtuin 1 activator in the prevention and treatment of human diseases based on the results of the studies conducted so far.


Subject(s)
Neoplasms , Nervous System Diseases , Resveratrol , Sirtuin 1 , Humans , Resveratrol/pharmacology , Resveratrol/therapeutic use , Sirtuin 1/metabolism , Neoplasms/drug therapy , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Animals
3.
Vitam Horm ; 126: 125-168, 2024.
Article in English | MEDLINE | ID: mdl-39029971

ABSTRACT

Beta-caryophyllene is an abundant terpene in cannabis, cinnamon, black pepper, cloves, and citrus fruit, delivering a striking, woody-spicy, like cloves and a sweet fruity aroma. Beta-caryophyllene is a Food and Drug Administration-approved food additive with Generally Recognized as Safe status. Interestingly, several biologic activities have been described for beta-caryophyllene, including anti-inflammatory and analgesic effects, neuroprotection against cerebral ischemia and neuronal injury, protection of neurovascular unit against oxidative damage, glial activation and neuroinflammation and anticonvulsant effects. In this chapter, we intend to review the beneficial effects of beta-caryophyllene in the context of psychiatric and neurological diseases. Also, we will analyze the possibility that the blood-brain-barrier may be a central target underlying the beneficial actions of beta-caryophyllene.


Subject(s)
Blood-Brain Barrier , Mental Disorders , Nervous System Diseases , Polycyclic Sesquiterpenes , Polycyclic Sesquiterpenes/pharmacology , Humans , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Nervous System Diseases/drug therapy , Animals , Mental Disorders/drug therapy , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
4.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063051

ABSTRACT

Vitamin D, obtained from diet or synthesized internally as cholecalciferol and ergocalciferol, influences bodily functions through its most active metabolite and the vitamin D receptor. Recent research has uncovered multiple roles for vitamin D in the central nervous system, impacting neural development and maturation, regulating the dopaminergic system, and controlling the synthesis of neural growth factors. This review thoroughly examines these connections and investigates the consequences of vitamin D deficiency in neurological disorders, particularly neurodegenerative diseases. The potential benefits of vitamin D supplementation in alleviating symptoms of these diseases are evaluated alongside a discussion of the controversial findings from previous intervention studies. The importance of interpreting these results cautiously is emphasised. Furthermore, the article proposes that additional randomised and well-designed trials are essential for gaining a deeper understanding of the potential therapeutic advantages of vitamin D supplementation for neurological disorders. Ultimately, this review highlights the critical role of vitamin D in neurological well-being and highlights the need for further research to enhance our understanding of its function in the brain.


Subject(s)
Central Nervous System , Nervous System Diseases , Vitamin D Deficiency , Vitamin D , Humans , Vitamin D/metabolism , Vitamin D/therapeutic use , Animals , Central Nervous System/metabolism , Central Nervous System/drug effects , Vitamin D Deficiency/metabolism , Vitamin D Deficiency/drug therapy , Nervous System Diseases/metabolism , Nervous System Diseases/drug therapy , Dietary Supplements , Receptors, Calcitriol/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/drug therapy
5.
Expert Opin Ther Targets ; 28(7): 529-543, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39068514

ABSTRACT

INTRODUCTION: The main inhibitory neurotransmitter in the central nervous system (CNS), γ-aminobutyric acid (GABA), is involved in a multitude of neurological and psychiatric disorders characterized by an imbalance in excitatory and inhibitory signaling. Regulation of extracellular levels of GABA is maintained by the four GABA transporters (GATs; GAT1, GAT2, GAT3, and BGT1), Na+/Cl--coupled transporters of the solute carrier 6 (SLC6) family. Despite mounting evidence for the involvement of the non-GAT1 GABA transporters in diseases, only GAT1 has successfully been translated into clinical practice via the drug tiagabine. AREAS COVERED: In this review, all four GATs will be described in terms of their involvement in disease, and the most recent data on structure, function, expression, and localization discussed in relation to their potential role as drug targets. This includes an overview of various ways to modulate the GATs in relation to treatment of diseases caused by imbalances in the GABAergic system. EXPERT OPINION: The recent publication of various GAT1 structures is an important milestone for future development of compounds targeting the GATs. Such information can provide much needed insight into mechanistic aspects of all GAT subtypes and be utilized to design improved ligands for this highly interesting drug target class.


Subject(s)
Drug Development , GABA Plasma Membrane Transport Proteins , Molecular Targeted Therapy , Nervous System Diseases , Tiagabine , gamma-Aminobutyric Acid , Humans , GABA Plasma Membrane Transport Proteins/metabolism , Animals , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , gamma-Aminobutyric Acid/metabolism , Tiagabine/pharmacology , Mental Disorders/drug therapy , Mental Disorders/physiopathology , Mental Disorders/metabolism
6.
Int J Pharm ; 661: 124400, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38950662

ABSTRACT

Neurological disorders, including brain injury, brain tumors, and neurodegenerative diseases, rank as the second leading cause of death worldwide. Exploring effective new treatments for neurological disorders has long been a hot research issue in clinical practice. Recently, microneedles (MNs) have attracted much attention due to their designation as a "painless and non-invasive" novel transdermal delivery method, characterized by their biocompatibility and sustainability. The advantages of MNs open an avenue for potential therapeutic interventions targeting neurological disorders. This review presents a concise overview of progress in the field of MNs, with highlights on the application in the treatment of neurological disorders. Notably, trends in the development of MNs and future challenges are also discussed.


Subject(s)
Administration, Cutaneous , Drug Delivery Systems , Microinjections , Needles , Nervous System Diseases , Humans , Drug Delivery Systems/methods , Nervous System Diseases/drug therapy , Animals , Microinjections/methods
7.
Food Funct ; 15(13): 6798-6824, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38836693

ABSTRACT

In recent decades, natural compounds derived from herbal medicine or dietary sources have played important roles in prevention and treatment of various diseases and have attracted more and more attention. Curcumin, extracted from the Curcumae Longae Rhizoma and widely used as food spice and coloring agent, has been proven to possess high pharmacological value. However, the pharmacological application of curcumin is limited due to its poor systemic bioavailability. As a major active metabolite of curcumin, tetrahydrocurcumin (THC) has higher bioavailability and stability than curcumin. Increasing evidence confirmed that THC had a wide range of biological activities and significant treatment effects on diseases. In this paper, we reviewed the research progress on the biological activities and therapeutic potential of THC on different diseases such as neurological disorders, metabolic syndromes, cancers, and inflammatory diseases. The extensive pharmacological effects of THC involve the modulation of various signaling transduction pathways including MAPK, JAK/STAT, NF-κB, Nrf2, PI3K/Akt/mTOR, AMPK, Wnt/ß-catenin. In addition, the pharmacokinetics, drug combination and toxicology of THC were discussed, thus providing scientific basis for the safe application of THC and the development of its dietary supplements and drugs.


Subject(s)
Curcumin , Curcumin/pharmacology , Curcumin/analogs & derivatives , Curcumin/chemistry , Humans , Animals , Neoplasms/drug therapy , Neoplasms/prevention & control , Neoplasms/metabolism , Signal Transduction/drug effects , Nervous System Diseases/drug therapy , Nervous System Diseases/prevention & control , Curcuma/chemistry , Inflammation/drug therapy , Inflammation/prevention & control , Metabolic Diseases/prevention & control , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism
8.
Am J Chin Med ; 52(4): 1053-1086, 2024.
Article in English | MEDLINE | ID: mdl-38904550

ABSTRACT

Neurological disorders (NDs) are diseases that seriously affect the health of individuals worldwide, potentially leading to a significant reduction in the quality of life for patients and their families. Herbal medicines have been widely used in the treatment of NDs due to their multi-target and multi-pathway features. Ginkgo biloba leaves (GBLs), one of the most popular herbal medicines in the world, have been demonstrated to present therapeutic effects on NDs. However, the pharmacological mechanisms of GBLs in the treatment of neurological disorders have not been systematically summarized. This study aimed to summarize the molecular mechanism of GBLs in treating NDs from the cell models, animal models, and clinical trials of studies. Four databases, i.e., PubMed, Google Scholar, CNKI, and Web of Science were searched using the following keywords: "Ginkgo biloba", "Ginkgo biloba extract", "Ginkgo biloba leaves", "Ginkgo biloba leaves extract", "Neurological disorders", "Neurological diseases", and "Neurodegenerative diseases". All items meeting the inclusion criteria on the treatment of NDs with GBLs were extracted and summarized. Additionally, PRISMA 2020 was performed to independently evaluate the screening methods. Out of 1385 records in the database, 52 were screened in relation to the function of GBLs in the treatment of NDs; of these 52 records, 39 were preclinical trials and 13 were clinical studies. Analysis of pharmacological studies revealed that GBLs can improve memory, cognition, behavior, and psychopathology of NDs and that the most frequently associated GBLs are depression, followed by Alzheimer's disease, stroke, Huntington's disease, and Parkinson's disease. Additionally, the clinical studies of depression, AD, and stroke are the most common, and most of the remaining ND data are available from in vitro or in vivo animal studies. Moreover, the possible mechanisms of GBLs in treating NDs are mainly through free radical scavenging, anti-oxidant activity, anti-inflammatory response, mitochondrial protection, neurotransmitter regulation, and antagonism of PAF. This is the first paper to systematically and comprehensively investigate the pharmacological effects and neuroprotective mechanisms of GBLs in the treatment of NDs thus far. All findings contribute to a better understanding of the efficacy and complexity of GBLs in treating NDs, which is of great significance for the further clinical application of this herbal medicine.


Subject(s)
Ginkgo biloba , Nervous System Diseases , Neuroprotective Agents , Plant Extracts , Plant Leaves , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Animals , Nervous System Diseases/drug therapy , Plant Leaves/chemistry , Phytotherapy , Ginkgo Extract
9.
Biochem Pharmacol ; 226: 116395, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942087

ABSTRACT

GPR56, also known as GPR56/ADGRG1, is a member of the ADGRG subgroup belonging to adhesion G protein-coupled receptors (aGPCRs). aGPCRs are the second largest subfamily of the GPCR superfamily, which is the largest family of membrane protein receptors in the human genome. Studies in recent years have demonstrated that GPR56 is integral to the normal development of the brain and functions as an important player in cortical development, suggesting that GPR56 is involved in many physiological processes. Indeed, aberrant expression of GPR56 has been implicated in multiple neurological and psychiatric disorders, including bilateral frontoparietal polymicrogyria (BFPP), depression and epilepsy. In a recent study, it was found that upregulated expression of GPR56 reduced depressive-like behaviours in an animal model of depression, indicating that GPR56 plays an important role in the antidepressant response. Given the link of GPR56 with the antidepressant response, the function of GPR56 has become a focus of research. Although GPR56 may be a potential target for the development of antidepressants, the underlying molecular mechanisms remain largely unknown. Therefore, in this review, we will summarize the latest findings of GPR56 function in neurological and psychiatric disorders (depression, epilepsy, autism, and BFPP) and emphasize the mechanisms of GPR56 in activation and signalling in those conditions. After reviewing several studies, attributing to its significant biological functions and exceptionally long extracellular N-terminus that interacts with multiple ligands, we draw a conclusion that GPR56 may serve as an important drug target for neuropsychological diseases.


Subject(s)
Mental Disorders , Nervous System Diseases , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Animals , Mental Disorders/drug therapy , Mental Disorders/metabolism , Mental Disorders/genetics , Nervous System Diseases/metabolism , Nervous System Diseases/drug therapy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
10.
Neurology ; 103(1): e209533, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38833654

ABSTRACT

BACKGROUND AND OBJECTIVES: Pivotal trials for neurologic drugs in clinical development are often initiated without a phase 2 trial ("bypass") or despite a negative phase 2 efficacy result ("override"). Such practices may degrade the risk/benefit ratio of phase 3 trials. The aim of this study is to estimate the proportion of phase 3 trials for 10 neurologic diseases started without a positive phase 2 trial, to identify factors associated with this practice, and to investigate any association with unfavorable phase 3 trial outcomes. METHODS: We searched ClinicalTrials.gov for phase 3 trials completed during 2011-2021, with at least 1 research site in the United States, Canada, the European Union, the United Kingdom, or Australia, and investigating drugs or biologics for treatment of 10 neurologic conditions. Our primary objective was to assess the prevalence of phase 2 bypass/override by searching for preceding phase 2 trials. We used Fisher exact tests to determine whether phase 3 trial characteristics and trial results were associated with phase 2 bypass/override. RESULTS: Of the 1,188 phase 3 trials captured in our search, 113 met eligibility for inclusion. Of these, 46% were not preceded by a phase 2 trial that was positive on an efficacy endpoint (31% bypassed and 15% overrode phase 2 trial). Phase 2 bypass/override was not associated with industry funding (77% vs 89%, 95% CI 0.75-7.55, p = 0.13) or testing already approved interventions (23% vs 15%, 95% CI 0.60-5.14, p = 0.33). Overall, phase 3 trials based on phase 2 bypassed/override were statistically significantly less likely to be positive on their primary outcome (31% vs 57%, respectively, 95% CI 1.21-6.92, p = 0.01). This effect disappeared when indications characterized by nearly universal positive or negative results were excluded. Trials that bypassed/overrode phase 2 trials were not statistically significantly more likely to be terminated early because of safety or futility (29% vs 15%, respectively, 95% CI 0.15-1.18, p = 0.11) and did not show increased risk of adverse events in experimental arms (RR = 1.46, 95% CI 1.19-1.79, vs RR = 1.36, 95% CI 1.10-1.69, respectively, p = 0.65). DISCUSSION: Almost half of the neurologic disease phase 3 trials were initiated without the support of a positive phase 2 trial. Although our analysis does not establish harm with bypass/override, its prevalence and the scientific rationale for phase 2 trial testing favor development of criteria defining when phase 2 bypass/override is justified.


Subject(s)
Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Nervous System Diseases , Humans , Clinical Trials, Phase II as Topic/methods , Clinical Trials, Phase III as Topic/methods , Nervous System Diseases/drug therapy , Nervous System Diseases/epidemiology , Drug Development/methods , Prevalence
11.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928508

ABSTRACT

NMDA receptor antagonists have potential for therapeutics in neurological and psychiatric diseases, including neurodegenerative diseases, epilepsy, traumatic brain injury, substance abuse disorder (SUD), and major depressive disorder (MDD). (S)-ketamine was the first of a novel class of antidepressants, rapid-acting antidepressants, to be approved for medical use. The stereoisomer, (R)-ketamine (arketamine), is currently under development for treatment-resistant depression (TRD). The compound has demonstrated efficacy in multiple animal models. Two clinical studies disclosed efficacy in TRD and bipolar depression. A study by the drug sponsor recently failed to reach a priori clinical endpoints but post hoc analysis revealed efficacy. The clinical value of (R)-ketamine is supported by experimental data in humans and rodents, showing that it is less sedating, does not produce marked psychotomimetic or dissociative effects, has less abuse potential than (S)-ketamine, and produces efficacy in animal models of a range of neurological and psychiatric disorders. The mechanisms of action of the antidepressant effects of (R)-ketamine are hypothesized to be due to NMDA receptor antagonism and/or non-NMDA receptor mechanisms. We suggest that further clinical experimentation with (R)-ketamine will create novel and improved medicines for some of the neurological and psychiatric disorders that are underserved by current medications.


Subject(s)
Antidepressive Agents , Ketamine , Nervous System Diseases , Receptors, N-Methyl-D-Aspartate , Ketamine/therapeutic use , Ketamine/pharmacology , Humans , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Nervous System Diseases/drug therapy , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Mental Disorders/drug therapy , Stereoisomerism
12.
Synapse ; 78(4): e22301, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38819491

ABSTRACT

Neurological disorders (NDs) are diseases of the central and peripheral nervous systems that affect more than one billion people worldwide. The risk of developing an ND increases with age due to the vulnerability of the different organs and systems to genetic, environmental, and social changes that consequently cause motor and cognitive deficits that disable the person from their daily activities and individual and social productivity. Intrinsic factors (genetic factors, age, gender) and extrinsic factors (addictions, infections, or lifestyle) favor the persistence of systemic inflammatory processes that contribute to the evolution of NDs. Neuroinflammation is recognized as a common etiopathogenic factor of ND. The study of new pharmacological options for the treatment of ND should focus on improving the characteristic symptoms and attacking specific molecular targets that allow the delay of damage processes such as neuroinflammation, oxidative stress, cellular metabolic dysfunction, and deregulation of transcriptional processes. In this review, we describe the possible role of sodium phenylbutyrate (NaPB) in the pathogenesis of Alzheimer's disease, hepatic encephalopathy, aging, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis; in addition, we describe the mechanism of action of NaPB and its beneficial effects that have been shown in various in vivo and in vitro studies to delay the evolution of any ND.


Subject(s)
Nervous System Diseases , Phenylbutyrates , Humans , Phenylbutyrates/therapeutic use , Phenylbutyrates/pharmacology , Animals , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism
13.
Prog Mol Biol Transl Sci ; 205: 23-70, 2024.
Article in English | MEDLINE | ID: mdl-38789181

ABSTRACT

Recent evolution in drug repurposing has brought new anticipation, especially in the conflict against neurodegenerative diseases (NDDs). The traditional approach to developing novel drugs for these complex disorders is laborious, time-consuming, and often abortive. However, drug reprofiling which is the implementation of illuminating novel therapeutic applications of existing approved drugs, has shown potential as a promising strategy to accelerate the hunt for therapeutics. The advancement of computational approaches and artificial intelligence has expedited drug repurposing. These progressive technologies have enabled scientists to analyse extensive datasets and predict potential drug-disease interactions. By prospecting into the existing pharmacological knowledge, scientists can recognise potential therapeutic candidates for reprofiling, saving precious time and resources. Preclinical models have also played a pivotal role in this field, confirming the effectiveness and mechanisms of action of repurposed drugs. Several studies have occurred in recent years, including the discovery of available drugs that demonstrate significant protective effects in NDDs, relieve debilitating symptoms, or slow down the progression of the disease. These findings highlight the potential of repurposed drugs to change the landscape of NDD treatment. Here, we present an overview of recent developments and major advances in drug repurposing intending to provide an in-depth analysis of traditional drug discovery and the strategies, approaches and technologies that have contributed to drug repositioning. In addition, this chapter attempts to highlight successful case studies of drug repositioning in various therapeutic areas related to NDDs and explore the clinical trials, challenges and limitations faced by researchers in the field. Finally, the importance of drug repositioning in drug discovery and development and its potential to address discontented medical needs is also highlighted.


Subject(s)
Drug Repositioning , Nervous System Diseases , Animals , Humans , Drug Discovery , Nervous System Diseases/drug therapy
14.
CNS Drugs ; 38(6): 425-441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38724842

ABSTRACT

In the last decade, the landscape of treating autoimmune diseases has evolved with the emergence and approval of novel targeted therapies. Several new biological agents offer selective and target-specific immunotherapy and therefore fewer side effects, such as neonatal Fc receptor (FcRn)-targeting therapy. Neonatal Fc receptor-targeted therapies are engineered to selectively target FcRn through various methods, such as Fc fragments or monoclonal anti-FcRn antibodies. These approaches enhance the breakdown of autoantibodies by blocking the immunoglobulin G recycling pathway. This mechanism reduces overall plasma immunoglobulin levels, including the levels of pathogenic autoantibodies, without affecting the other immunoglobulin class immunoglobulin A, immunoglobulin E, immunoglobulin M, and immunoglobulin D levels. Drugs that inhibit FcRn include efgartigimod, rozanolixizumab, batoclimab, and nipocalimab. These medications can be administered either intravenously or subcutaneously. Numerous clinical trials are currently underway to investigate their effectiveness, safety, and tolerability in various neurological conditions, including myasthenia gravis and other neurological disorders such as chronic inflammatory demyelinating polyneuropathy, myositis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. Positive results from clinical trials of efgartigimod and rozanolixizumab led to their approval for the treatment of generalized myasthenia gravis. Additional clinical trials are still ongoing. Neonatal Fc receptor inhibitor agents seem to be well tolerated. Reported adverse events include headache (most commonly observed with efgartigimod and rozanolixizumab), upper respiratory tract infection, urinary tract infection, diarrhea, pyrexia, and nausea. Additionally, some of these agents may cause transient hypoalbuminemia and hypercholesterolemia notably reported with batoclimab and nipocalimab. In this review, we discuss the available clinical data for FcRN inhibitor agents in treating different neurological autoimmune diseases.


Subject(s)
Histocompatibility Antigens Class I , Nervous System Diseases , Receptors, Fc , Humans , Nervous System Diseases/drug therapy , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/administration & dosage
15.
Talanta ; 276: 126263, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788378

ABSTRACT

Enzyme handling and utilization bears many challenges such as their limited stability, intolerance of organic solvents, high cost, or inability to reuse. Most of these limitations can be overcome by enzyme immobilization on the surface of solid support. In this work, the recombinant form of human cholinesterases and monoamine oxidases as important drug targets for neurological diseases were immobilized on the surface of magnetic non-porous microparticles by a non-covalent bond utilizing the interaction between a His-tag terminus on the recombinant enzymes and cobalt (Co2+) ions immobilized on the magnetic microparticles. This type of binding led to targeted enzyme orientation, which completely preserved the catalytic activity and allowed high reproducibility of immobilization. In comparison with free enzymes, the immobilized enzymes showed exceptional stability in time and the possibility of repeated use. Relevant Km, Vmax, and IC50 values using known inhibitors were obtained using particular immobilized enzymes. Such immobilized enzymes on magnetic particles could serve as an excellent tool for a sustainable approach in the early stage of drug discovery.


Subject(s)
Cobalt , Drug Discovery , Enzymes, Immobilized , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Humans , Cobalt/chemistry , Monoamine Oxidase/metabolism , Monoamine Oxidase/chemistry , Nervous System Diseases/drug therapy , Nervous System Diseases/enzymology , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Cost-Benefit Analysis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Enzyme Stability
16.
Neuroscience ; 551: 69-78, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38754721

ABSTRACT

The functioning of the brain and its impact on behavior, emotions, and cognition can be affected by both neurological and psychiatric disorders that impose a significant burden on global health. Phytochemicals are helpful in the treatment of several neurological and psychological disorders, including anxiety, depression, Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and autism spectrum disorder (ASD), because they have symptomatic benefits with few adverse reactions. Changes in gut microbiota have been associated with many neurological and psychiatric conditions. This review focuses on the potential efficacy of phytochemicals such as flavonoids, terpenoids, and polyphenols in regulating gut flora and providing symptomatic relief for a range of neurological and psychological conditions. Evidence-based research has shown the medicinal potentials of these phytochemicals, but additional study is required to determine whether altering gut microbiota might slow the advancement of neurological and psychological problems.


Subject(s)
Gastrointestinal Microbiome , Mental Disorders , Nervous System Diseases , Phytochemicals , Humans , Gastrointestinal Microbiome/drug effects , Mental Disorders/drug therapy , Nervous System Diseases/drug therapy , Nervous System Diseases/microbiology , Phytochemicals/pharmacology , Animals
17.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2290-2298, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812129

ABSTRACT

Ligustilide is the main active component of the volatile oil from Angelica sinensis and Ligusticum chuanxiong in the Umbelliferae family. It is a phthalein compound with anti-inflammatory, analgesic, antioxidant, anti-tumor, anti-atherosclerosis, neuroprotective, and other pharmacological effects. It can improve the permeability of the blood-brain barrier and has important potential in the treatment of neurodegenerative diseases and other nervous system diseases, such as Alzheimer's disease, ischemic stroke, Parkinson's disease, vascular dementia, and depression. Therefore, the mechanism of ligustilide in the treatment of nervous system diseases was summarized to provide a reference for drug development and clinical application.


Subject(s)
4-Butyrolactone , Nervous System Diseases , Humans , Animals , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , 4-Butyrolactone/chemistry , Nervous System Diseases/drug therapy , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
18.
Neurochem Int ; 177: 105771, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761853

ABSTRACT

For most diseases and disorders occurring in the brain, the full causes behind them are yet unknown, but many show signs of dysfunction of amino acid transporters or abnormalities in amino acid metabolism. The blood-brain barrier (BBB) plays a key role in supporting the function of the central nervous system (CNS). Because of its unique structure, the BBB can maintain the optimal environment for CNS by controlling the passage of hydrophilic molecules from blood to the brain. Nutrients, such as amino acids, can cross the BBB via specific transporters. Many amino acids are essential for CNS function, and dysfunction of these amino acid transporters can lead to abnormalities in amino acid levels. This has been linked to causes behind certain genetic brain diseases, such as schizophrenia, autism spectrum disorder, and Huntington's disease (HD). One example of crucial amino acids is L-Cys, the rate-limiting factor in the biosynthesis of an important antioxidant, glutathione (GSH). Deficiency of L-Cys and GSH has been linked to oxidative stress and has been shown as a plausible cause behind certain CNS diseases, like schizophrenia and HD. This review presents the current status of potential L-Cys therapies and gives future directions that can be taken to improve amino acid transportation related to distinct CNS diseases.


Subject(s)
Amino Acid Transport Systems , Cysteine , Nervous System Diseases , Neuroprotective Agents , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Animals , Cysteine/metabolism , Nervous System Diseases/metabolism , Nervous System Diseases/drug therapy , Amino Acid Transport Systems/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects
19.
Comput Biol Med ; 175: 108536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701592

ABSTRACT

In response to the shortcomings in data quality and coverage for neurological and psychiatric disorders (NPDs) in existing comprehensive databases, this paper introduces the DTNPD database, specifically designed for NPDs. DTNPD contains detailed information on 30 NPDs types, 1847 drugs, 514 drug targets, 64 drug combinations, and 61 potential target combinations, forming a network with 2389 drug-target associations. The database is user-friendly, offering open access and downloadable data, which is crucial for network pharmacology studies. The key strength of DTNPD lies in its robust networks of drug and target combinations, as well as drug-target networks, facilitating research and development in the field of NPDs. The development of the DTNPD database marks a significant milestone in understanding and treating NPDs. For accessing the DTNPD database, the primary URL is http://dtnpd.cnsdrug.com, complemented by a mirror site available at http://dtnpd.lyhbio.com.


Subject(s)
Mental Disorders , Nervous System Diseases , Humans , Mental Disorders/drug therapy , Mental Disorders/metabolism , Nervous System Diseases/drug therapy , Databases, Pharmaceutical , Databases, Factual
20.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731911

ABSTRACT

In drug discovery, selecting targeted molecules is crucial as the target could directly affect drug efficacy and the treatment outcomes. As a member of the CCN family, CTGF (also known as CCN2) is an essential regulator in the progression of various diseases, including fibrosis, cancer, neurological disorders, and eye diseases. Understanding the regulatory mechanisms of CTGF in different diseases may contribute to the discovery of novel drug candidates. Summarizing the CTGF-targeting and -inhibitory drugs is also beneficial for the analysis of the efficacy, applications, and limitations of these drugs in different disease models. Therefore, we reviewed the CTGF structure, the regulatory mechanisms in various diseases, and drug development in order to provide more references for future drug discovery.


Subject(s)
Connective Tissue Growth Factor , Drug Discovery , Humans , Connective Tissue Growth Factor/metabolism , Drug Discovery/methods , Animals , Neoplasms/drug therapy , Neoplasms/metabolism , Eye Diseases/drug therapy , Eye Diseases/metabolism , Fibrosis , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Gene Expression Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL