Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Elife ; 122024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023520

ABSTRACT

Dormancy in cancer is a clinical state in which residual disease remains undetectable for a prolonged duration. At a cellular level, rare cancer cells cease proliferation and survive chemotherapy and disseminate disease. We created a suspension culture model of high-grade serous ovarian cancer (HGSOC) dormancy and devised a novel CRISPR screening approach to identify survival genes in this context. In combination with RNA-seq, we discovered the Netrin signaling pathway as critical to dormant HGSOC cell survival. We demonstrate that Netrin-1, -3, and its receptors are essential for low level ERK activation to promote survival, and that Netrin activation of ERK is unable to induce proliferation. Deletion of all UNC5 family receptors blocks Netrin signaling in HGSOC cells and compromises viability during the dormancy step of dissemination in xenograft assays. Furthermore, we demonstrate that Netrin-1 and -3 overexpression in HGSOC correlates with poor outcome. Specifically, our experiments reveal that Netrin overexpression elevates cell survival in dormant culture conditions and contributes to greater spread of disease in a xenograft model of abdominal dissemination. This study highlights Netrin signaling as a key mediator HGSOC cancer cell dormancy and metastasis.


High-grade serous ovarian cancer (or HGSOC for short) is the fifth leading cause of cancer-related deaths in women. It is generally diagnosed at an advanced stage of disease when the cancer has already spread to other parts of the body. Surgical removal of tumors and subsequent treatment with chemotherapy often reduces the signs and symptoms of the disease for a time but some cancer cells tend to survive so that patients eventually relapse. The HGSOC cells typically spread from the ovaries by moving through the liquid surrounding organs in the abdomen. The cells clump together and enter an inactive state known as dormancy that allows them to survive chemotherapy and low-nutrient conditions. Understanding how to develop new drug therapies that target dormant cancer cells is thought to be an important step in prolonging the life of HGSOC patients. Cancer cells are hardwired to multiply and grow, so Perampalam et al. reasoned that becoming dormant poses challenges for HGSOC cells, which may create unique vulnerabilities not shared by proliferating cancer cells. To find out more, the researchers used HGSOC cells that had been isolated from patients and grown in the laboratory. The team used a gene editing technique to screen HGSOC cells for genes required by the cells to survive when they are dormant. The experiments found that genes involved in a cell signaling pathway, known as Netrin signaling, were critical for the cells to survive. Previous studies have shown that Netrin signaling helps the nervous system form in embryos and inhibits a program of controlled cell death in some cancers. Perampalam et al. discovered that Netrins were present in the environment immediately surrounding dormant HGSOC cells. Human HGSOC patients with higher levels of Netrin gene expression had poorer prognoses than patients with lower levels of Netrin gene expression. Further experiments demonstrated that Netrins help dormant HGSOC cells to spread around the body. These findings suggest that Netrin signalling may provide useful targets for future drug therapies against dormant cells in some ovarian cancers. This could include repurposing drugs already in development or creating new inhibitors of this pathway.


Subject(s)
Carcinoma, Ovarian Epithelial , Cell Survival , Netrins , Ovarian Neoplasms , Signal Transduction , Humans , Female , Animals , Cell Line, Tumor , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Netrins/metabolism , Netrins/genetics , Mice , Netrin-1/metabolism , Netrin-1/genetics , Cell Proliferation , Netrin Receptors/metabolism , Netrin Receptors/genetics
2.
Elife ; 122024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056276

ABSTRACT

Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells - disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner - delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.


Subject(s)
Netrin Receptors , Netrin-1 , Animals , Netrin-1/metabolism , Netrin-1/genetics , Mice , Male , Female , Netrin Receptors/metabolism , Netrin Receptors/genetics , Phodopus , Axons/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/growth & development , Dopaminergic Neurons/metabolism
3.
PLoS One ; 19(5): e0295701, 2024.
Article in English | MEDLINE | ID: mdl-38771761

ABSTRACT

The Polarity/Protusion model of UNC-6/Netrin function in axon repulsion does not rely on a gradient of UNC-6/Netrin. Instead, the UNC-5 receptor polarizes the VD growth cone such that filopodial protrusions are biased to the dorsal leading edge. UNC-5 then inhibits growth cone protrusion ventrally based upon this polarity, resulting in dorsally-biased protrusion and dorsal migration away from UNC-6/Netrin. While previous studies have shown that UNC-5 inhibits growth cone protrusion by destabilizing actin, preventing microtubule + end entry, and preventing vesicle fusion, the signaling pathways involved are unclear. The SRC-1 tyrosine kinase has been previously shown to physically interact with and phosphorylate UNC-5, and to act with UNC-5 in axon guidance and cell migration. Here, the role of SRC-1 in VD growth cone polarity and protrusion is investigated. A precise deletion of src-1 was generated, and mutants displayed unpolarized growth cones with increased size, similar to unc-5 mutants. Transgenic expression of src-1(+) in VD/DD neurons resulted in smaller growth cones, and rescued growth cone polarity defects of src-1 mutants, indicating cell-autonomous function. Transgenic expression of a putative kinase-dead src-1(D831A) mutant caused a phenotype similar to src-1 loss-of-function, suggesting that this is a dominant negative mutation. The D381A mutation was introduced into the endogenous src-1 gene by genome editing, which also had a dominant-negative effect. Genetic interactions of src-1 and unc-5 suggest they act in the same pathway on growth cone polarity and protrusion, but might have overlapping, parallel functions in other aspects of axon guidance. src-1 function was not required for the effects of activated myr::unc-5, suggesting that SRC-1 might be involved in UNC-5 dimerization and activation by UNC-6, of which myr::unc-5 is independent. In sum, these results show that SRC-1 acts with UNC-5 in growth cone polarity and inhibition of protrusion.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Polarity , Growth Cones , Animals , Animals, Genetically Modified , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Cell Movement , Growth Cones/metabolism , Netrin Receptors/metabolism , Netrin Receptors/genetics , Netrins , Receptors, Cell Surface
4.
BMC Med Genomics ; 17(1): 83, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594690

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary CNS tumor, characterized by high mortality and heterogeneity. However, the related lncRNA signatures and their target microRNA (miRNA) for GBM are still mostly unknown. Therefore, it is critical that we discover lncRNA markers in GBM and their biological activities. MATERIALS AND METHODS: GBM-related RNA-seq data were obtained from the Cancer Genome Atlas (TCGA) database. The "edger" R package was used for differently expressed lncRNAs (DELs) identification. Then, we forecasted prospective miRNAs that might bind to lncRNAs by Cytoscape software. Survival analysis of those miRNAs was examined by the starBase database, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the miRNAs' target genes was conducted by the Gene Set Enrichment Analysis (GSEA) database and R software. Moreover, the proliferative ability of unc-5 netrin receptor B antisense RNA 1 (UNC5B-AS1) cells was evaluated by Cell Counting Kit-8 (CCK-8) analysis. Mechanistically, the regulatory interaction between UNC5B-AS1 and miRNA in GBM biological processes was studied using CCK-8 analysis. RESULTS: Our results indicated that overexpression of UNC5B-AS1 has been shown to suppress GBM cell growth. Mechanistically, miR-24-3p in GBM was able to alleviate the anti-oncogenic effects of UNC5B-AS1 on cell proliferation. CONCLUSION: The discovery of the novel UNC5B-AS1-miR-24-3p network suggests possible lncRNA and miRNA roles in the development of GBM, which may have significant ramifications for the analysis of clinical prognosis and the development of GBM medications.


Subject(s)
Glioblastoma , MicroRNAs , RNA, Long Noncoding , Humans , Glioblastoma/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Prospective Studies , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Netrin Receptors/genetics , Netrin Receptors/metabolism
5.
Genes (Basel) ; 15(3)2024 02 27.
Article in English | MEDLINE | ID: mdl-38540364

ABSTRACT

The UNC-5 family of netrin receptor genes, predominantly expressed in brain tissues, plays a pivotal role in various neuronal processes. Mutations in genes involved in axon development contribute to a wide spectrum of human diseases, including developmental, neuropsychiatric, and neurodegenerative disorders. The NTN1/DCC signaling pathway, interacting with UNC5C, plays a crucial role in central nervous system axon guidance and has been associated with psychiatric disorders during adolescence in humans. Whole-exome sequencing analysis unveiled two compound heterozygous causative mutations within the UNC5C gene in a patient diagnosed with psychiatric disorders. In silico analysis demonstrated that neither of the observed variants affected the allosteric linkage between UNC5C and NTN1. In fact, these mutations are located within crucial cytoplasmic domains, specifically ZU5 and the region required for the netrin-mediated axon repulsion of neuronal growth cones. These domains play a critical role in forming the supramodular protein structure and directly interact with microtubules, thereby ensuring the functionality of the axon repulsion process. We emphasize that these mutations disrupt the aforementioned processes, thereby associating the UNC5C gene with psychiatric disorders for the first time and expanding the number of genes related to psychiatric disorders. Further research is required to validate the correlation of the UNC5C gene with psychiatric disorders, but we suggest including it in the genetic analysis of patients with psychiatric disorders.


Subject(s)
Axon Guidance , Mental Disorders , Humans , Axon Guidance/genetics , Netrin-1/genetics , Netrin-1/metabolism , Netrin Receptors/genetics , Netrin Receptors/metabolism , Axons/metabolism , Mental Disorders/metabolism
6.
Int Immunopharmacol ; 125(Pt A): 111075, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864909

ABSTRACT

AIM: This study sought to identify potential biomarkers and miRNA-mRNA networks within extracellular vesicles (EVs) for detecting severe acute pancreatitis-associated lung injury (SAPALI). METHODS: Blood-derived EVs were isolated, and their miRNA transcriptomic profiles were comprehensively analyzed using miRBase v.21 database along with miRDeep2 tool to predict novel miRNAs. DEGseq R package was deployed for the identification of differentially expressed miRNAs (DEMs). Protein-protein interaction (PPI) networks were assembled using STRING and Cytoscape. A lung injury model was established using Lipopolysaccharide (LPS)-induced BEAS-2B cells, chosen for their respiratory epithelial origin and pertinent association with lung injury. The expression levels of targeted miRNA and associated proteins, TLR4, NF-κB mRNA were quantified via RT-PCR and Western Blot. Levels of IL-6, IL-1ß, TNF-α, and ROS were measured using designated kits. Dual-luciferase reporter assay was conducted to examine the interaction between miRNA and proteins. RESULTS: The comparisons between the SAPALI and the control group revealed 10 DEM, including miR-503-5p and miR-483-5p. The cytoHubba plugin in Cytoscape identified three principal miRNA-mRNA interactions: miR-483-5p with PTK2 and HDAC2; miR-28-5p with MAPK1, TP53BP1, SEMA3A; and miR-503-5p with PPP1CB, SEMA6D, EPHB2, UNC5B. The SAPALI model exhibited elevated miR-503-5p, HDAC2 and inflammatory markers, with a decline UNC5B, miR-483-5p and miR-28-5p. Transfection with miR-503-5p and miR-483-5p inhibitors increased the levels of their supposed binding proteins but not miR-28-5p inhibitor. The Dual-luciferase reporter gene assay identified the interaction of miR-503-5p with UNC5B, and miR-483-5p with HDAC2, but not miR-28-5p with TP53BP1. CONCLUSIONS: Our study maps miRNA-mRNA interactions in SAPALI, identifying miR-503-5p and miR-483-5p as critical regulatory miRNAs.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , MicroRNAs , Pancreatitis , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Transcriptome , Acute Disease , Pancreatitis/genetics , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , RNA, Messenger , Luciferases/genetics , Netrin Receptors/genetics
7.
Nature ; 620(7973): 402-408, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532929

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy1-7. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT. Pharmacological inhibition of netrin-1 by administration of NP137, a netrin-1-blocking monoclonal antibody currently used in clinical trials in human cancer (ClinicalTrials.gov identifier NCT02977195 ), decreased the proportion of EMT tumour cells in skin SCC, decreased the number of metastases and increased the sensitivity of tumour cells to chemotherapy. Single-cell RNA sequencing revealed the presence of different EMT states, including epithelial, early and late hybrid EMT, and full EMT states, in control SCC. By contrast, administration of NP137 prevented the progression of cancer cells towards a late EMT state and sustained tumour epithelial states. Short hairpin RNA knockdown of netrin-1 and its receptor UNC5B in EPCAM+ tumour cells inhibited EMT in vitro in the absence of stromal cells and regulated a common gene signature that promotes tumour epithelial state and restricts EMT. To assess the relevance of these findings to human cancers, we treated mice transplanted with the A549 human cancer cell line-which undergoes EMT following TGFß1 administration8,9-with NP137. Netrin-1 inhibition decreased EMT in these transplanted A549 cells. Together, our results identify a pharmacological strategy for targeting EMT in cancer, opening up novel therapeutic interventions for anti-cancer therapy.


Subject(s)
Antibodies, Monoclonal , Carcinoma, Squamous Cell , Epithelial-Mesenchymal Transition , Netrin-1 , Skin Neoplasms , Animals , Humans , Mice , A549 Cells , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Netrin Receptors/antagonists & inhibitors , Netrin Receptors/deficiency , Netrin Receptors/genetics , Netrin-1/antagonists & inhibitors , Netrin-1/deficiency , Netrin-1/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Disease Models, Animal , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Neoplasm Metastasis/drug therapy , Single-Cell Gene Expression Analysis , RNA-Seq , Epithelial Cell Adhesion Molecule/metabolism , Xenograft Model Antitumor Assays , Transforming Growth Factor beta1/pharmacology
8.
Front Immunol ; 14: 1178638, 2023.
Article in English | MEDLINE | ID: mdl-37388740

ABSTRACT

Introduction: The current approaches that are used to treat ischemic stroke suffer from poor targeting, lack of effectiveness, and potential off-target effects, necessitating the development of new therapeutic strategies to enhance neuronal cell survival and regeneration. This study aimed to investigate the role of microglial Netrin-1 in ischemic stroke, a topic that has not been fully understood. Methods: Netrin-1 levels and its primary receptor expressions were investigated in cerebral microglia from acute ischemic stroke patients and age-matched control subjects. A public database (GEO148350), which supplied RNAseq results for rat cerebral microglia in a middle cerebral artery occlusion (MCAO) model, was analyzed to assess the expression of Netrin-1, its major receptors, and genes related to macrophage function. A microglia-specific gene targeting approach and a delivery system allowing for crossing the blood-brain barrier were applied in a mouse model for ischemic stroke to investigate the role of microglial Netrin-1. Netrin-1 receptor signaling in microglia was observed and the effects on microglial phenotype, apoptosis, and migration were analyzed. Results: Across human patients, rat and mouse models, activation of Netrin-1 receptor signaling was mainly conducted via its receptor UNC5a in microglia, which resulted in a shift in microglial phenotype towards an anti-inflammatory or M2-like state, leading to a reduction in apoptosis and migration of microglia. Netrin-1-induced phenotypic change in microglia exerted protective effects on neuronal cells in vivo during ischemic stroke. Conclusion: Our study highlights the potential of targeting Netrin-1 and its receptors as a promising therapeutic strategy for promoting post-ischemic survival and functional recovery.


Subject(s)
Ischemic Stroke , Animals , Humans , Mice , Rats , Disease Models, Animal , Inflammation , Ischemic Stroke/genetics , Microglia , Netrin Receptors/genetics , Netrin-1/genetics , Phenotype
9.
Elife ; 122023 04 11.
Article in English | MEDLINE | ID: mdl-37039476

ABSTRACT

Mutations in the ubiquitin (Ub) chaperone Ubiquilin 2 (UBQLN2) cause X-linked forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) through unknown mechanisms. Here, we show that aggregation-prone, ALS-associated mutants of UBQLN2 (UBQLN2ALS) trigger heat stress-dependent neurodegeneration in Drosophila. A genetic modifier screen implicated endolysosomal and axon guidance genes, including the netrin receptor, Unc-5, as key modulators of UBQLN2 toxicity. Reduced gene dosage of Unc-5 or its coreceptor Dcc/frazzled diminished neurodegenerative phenotypes, including motor dysfunction, neuromuscular junction defects, and shortened lifespan, in flies expressing UBQLN2ALS alleles. Induced pluripotent stem cells (iPSCs) harboring UBQLN2ALS knockin mutations exhibited lysosomal defects while inducible motor neurons (iMNs) expressing UBQLN2ALS alleles exhibited cytosolic UBQLN2 inclusions, reduced neurite complexity, and growth cone defects that were partially reversed by silencing of UNC5B and DCC. The combined findings suggest that altered growth cone dynamics are a conserved pathomechanism in UBQLN2-associated ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Axon Guidance , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Mutation , Transcription Factors/genetics , Ubiquitins/metabolism , Netrin Receptors/genetics
10.
Biomolecules ; 12(12)2022 12 06.
Article in English | MEDLINE | ID: mdl-36551254

ABSTRACT

Unc-5 netrin receptor A (UNC5A), a netrin family receptor, plays a key role in neuronal development and subsequent differentiation. Recently, studies have found that UNC5A plays an important role in multiple cancers, such as bladder cancer, non-small cell lung carcinoma, and colon cancer but its pan-cancer function is largely unknown. Herein, the R software and multiple databases or online websites (The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx), The Tumor Immune Estimation Resource (TIMER), The Gene Set Cancer Analysis (GSCA), Gene Expression Profiling Interactive Analysis (GEPIA), and cBioPortal etc.) were utilized to examine the role of UNC5A in pan-cancer. UNC5A was found to be highly expressed across multiple human cancer tissues and cells, was linked to clinical outcomes of patients, and was a potential pan-cancer biomarker. The mutational landscape of UNC5A exhibited that patients with UNC5A mutations had poorer progress free survival (PFS) in head and neck squamous cell carcinoma (HNSC) and prostate adenocarcinoma (PRAD). Furthermore, UNC5A expression was associated with tumor mutation burden (TMB), neoantigen, tumor microenvironment (TME), tumor microsatellite instability (MSI), immunomodulators, immune infiltration, DNA methylation, immune checkpoint (ICP) genes, and drug responses. Our results suggest the potential of UNC5A as a pan-cancer biomarker and an efficient immunotherapy target, which may also guide drug selection for some specific cancer types in clinical practice.


Subject(s)
Biomarkers, Tumor , Neoplasms , Netrin Receptors , Humans , Male , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Netrin Receptors/genetics , Netrin Receptors/metabolism , Tumor Microenvironment , Neoplasms/genetics , Neoplasms/metabolism
11.
Front Immunol ; 13: 919231, 2022.
Article in English | MEDLINE | ID: mdl-35967366

ABSTRACT

Objective: Osteosarcoma (OS) is a common bone malignancy with poor prognosis. We aimed to investigate the relationship between cuproptosis-related lncRNAs (CRLncs) and the survival outcomes of patients with OS. Methods: Transcriptome and clinical data of 86 patients with OS were downloaded from The Cancer Genome Atlas (TCGA). The GSE16088 dataset was downloaded from the Gene Expression Omnibus (GEO) database. The 10 cuproptosis-related genes (CRGs) were obtained from a recently published article on cuproptosis in Science. Combined analysis of OS transcriptome data and the GSE16088 dataset identified differentially expressed CRGs related to OS. Next, pathway enrichment analysis was performed. Co-expression analysis obtained CRLncs related to OS. Univariate COX regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were used to construct the risk prognostic model of CRLncs. The samples were divided evenly into training and test groups to verify the accuracy of the model. Risk curve, survival, receiver operating characteristic (ROC) curve, and independent prognostic analyses were performed. Next, principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) analysis were performed. Single-sample gene set enrichment analysis (ssGSEA) was used to explore the correlation between the risk prognostic models and OS immune microenvironment. Drug sensitivity analysis identified drugs with potential efficacy in OS. Real-time quantitative PCR, Western blotting, and immunohistochemistry analyses verified the expression of CRGs in OS. Real-time quantitative PCR was used to verify the expression of CRLncs in OS. Results: Six CRLncs that can guide OS prognosis and immune microenvironment were obtained, including three high-risk CRLncs (AL645608.6, AL591767.1, and UNC5B-AS1) and three low-risk CRLncs (CARD8-AS1, AC098487.1, and AC005041.3). Immune cells such as B cells, macrophages, T-helper type 2 (Th2) cells, regulatory T cells (Treg), and immune functions such as APC co-inhibition, checkpoint, and T-cell co-inhibition were significantly downregulated in high-risk groups. In addition, we obtained four drugs with potential efficacy for OS: AUY922, bortezomib, lenalidomide, and Z.LLNle.CHO. The expression of LIPT1, DLAT, and FDX1 at both mRNA and protein levels was significantly elevated in OS cell lines compared with normal osteoblast hFOB1.19. The mRNA expression level of AL591767.1 was decreased in OS, and that of AL645608.6, CARD8-AS1, AC005041.3, AC098487.1, and UNC5B-AS1 was upregulated in OS. Conclusion: CRLncs that can guide OS prognosis and the immune microenvironment and drugs that may have a potential curative effect on OS obtained in this study provide a theoretical basis for OS survival research and clinical decision-making.


Subject(s)
Apoptosis , Osteosarcoma , RNA, Long Noncoding , Apoptosis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CARD Signaling Adaptor Proteins/metabolism , Copper/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Proteins/genetics , Netrin Receptors/genetics , Netrin Receptors/metabolism , Osteosarcoma/genetics , Osteosarcoma/metabolism , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , Tumor Microenvironment/genetics
12.
Genomics ; 114(4): 110403, 2022 07.
Article in English | MEDLINE | ID: mdl-35709926

ABSTRACT

BACKGROUND: Keloid is a benign proliferative disease characterized by excessive deposition of extracellular matrix collagen during skin wound healing. The mechanisms of keloid formation have not been fully elucidated, and the current treatment methods are not effective for all keloid patients. Therefore, there is an urgent need to find more effective therapies, and our research focused on identifying characteristic molecular signatures of keloid to explore potential therapeutic targets. METHODS: Gene expression profiles of keloid and control group samples were retrieved from the GEO database. Taking the GSE113619 dataset as the training set, the dataset collected skin tissues from non-lesion sites of healthy and keloid-prone individuals, denoted as Day0. The second sampling was performed 42 days later at the original sampling site of control and keloid groups, denoted as Day42.The 'limma' package and Venn diagram identified differentially expressed genes (DEGs) specific to keloid day42 versus day0 samples. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome pathway functional enrichment, and annotation of the characteristic genes were conducted on the Metascape website. Ingenuity canonical pathways, disease & function enrichment analysis and gene interaction network were performed and predicted in Ingenuity Pathway Analysis (IPA) software. Key module genes related to keloid were filtered out by Weighted Gene Co-expression Network Analysis (WGCNA). We utilized the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm to screen the characteristic genes in keloid by the 'glmnet' package. The area under the curve (AUC) of receiver operating characteristic (ROC) was utilized to determine the effectiveness of potential signatures in discriminating keloid samples from normal samples and performed by using the 'pROC' package. The enrich scores of 24 immune cells in each sample were calculated by the single-sample gene set enrichment analysis (ssGSEA) algorithm, and then the Gene Set Variation Analysis (GSVA) was performed. Finally, RNA from 4 normal and 6 keloid samples was extracted, and RT-qPCR and Western Blot validated the expression of characteristic genes. RESULTS: A total of 640 DEGs specific to keloid day42 versus day0 samples were detected. 69 key module genes were uncovered and implicated in 'NCAM signaling for neurite out-growth', 'oncogenic MAPK signaling', 'transmission across chemical synapses' pathways, and the mitotic cell cycle-related processes. Five characteristic genes (MTUS1, UNC5C, CEP57, NAA35, and HOXD3) of keloid were identified by LASSO, and among which UNC5C and HOXD3 were validated by ROC plot in external dataset, RT-qPCR and Western Blot in validation samples. The result of ssGSEA indicated that the infiltration of neutrophils showed a relatively higher abundance and natural killer cells with relatively low enrichment in the keloid group compared to the control group. UNC5C was correlated with more immune cells compared with other characteristic genes. CONCLUSION: In this study, characteristic genes associated with keloid were identified by bioinformatic approaches and verified in clinical validation samples, providing potential targets for the diagnosis and treatment of keloid.


Subject(s)
Homeodomain Proteins/metabolism , Keloid , Transcription Factors/metabolism , Computational Biology/methods , Gene Expression Regulation , Gene Ontology , Gene Regulatory Networks , Humans , Keloid/drug therapy , Keloid/genetics , Keloid/pathology , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/therapeutic use , Netrin Receptors/genetics , Nuclear Proteins/genetics , Tumor Suppressor Proteins/genetics
13.
Biochem Biophys Res Commun ; 611: 146-150, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35489200

ABSTRACT

Netrin-1, the protein product of the NTN1 gene, is an axon guidance molecule implicated in regulation of cell survival and tumorigenesis. Expression of the netrin-1 receptors deleted in colorectal cancer (DCC) and uncoordinated 5 homolog (UNC5H) is frequently silenced in colorectal cancer (CRC) by either loss of heterozygosity or epigenetic mechanisms. However, netrin-1 expression and regulation in CRC are mostly unknown. Here, we report that NTN1 expression is significantly reduced in most CRC tissues compared to the adjacent normal intestinal mucosa, and that NTN1 DNA methylation is significantly higher in CRCs (24.6%) than in the adjacent normal intestinal mucosa (4.0%). In 6 CRC cell lines, NTN1 expression is low. Treatment with 5-Aza-2'-deoxycytidine increased expression of NTN1 in CRC cell lines, indicating that DNA methylation represses NTN1 transcription in CRCs. NTN1 DNA hypermethylation was significantly associated with advanced CRC disease. Median netrin-1 serum levels were significantly decreased in CRC patients (330.1 pg/mL) compared with normal individuals (438.6 pg/mL). Our results suggest that netrin-1 is a candidate biomarker for CRC.


Subject(s)
Colorectal Neoplasms , Epigenesis, Genetic , Netrin-1 , Axon Guidance , Colorectal Neoplasms/genetics , Humans , Netrin Receptors/genetics , Netrin-1/genetics
14.
Nat Commun ; 13(1): 1169, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246514

ABSTRACT

Blood-brain barrier (BBB) integrity is critical for proper function of the central nervous system (CNS). Here, we show that the endothelial Unc5B receptor controls BBB integrity by maintaining Wnt/ß-catenin signaling. Inducible endothelial-specific deletion of Unc5B in adult mice leads to BBB leak from brain capillaries that convert to a barrier-incompetent state with reduced Claudin-5 and increased PLVAP expression. Loss of Unc5B decreases BBB Wnt/ß-catenin signaling, and ß-catenin overexpression rescues Unc5B mutant BBB defects. Mechanistically, the Unc5B ligand Netrin-1 enhances Unc5B interaction with the Wnt co-receptor LRP6, induces its phosphorylation and activates Wnt/ß-catenin downstream signaling. Intravenous delivery of antibodies blocking Netrin-1 binding to Unc5B causes a transient BBB breakdown and disruption of Wnt signaling, followed by neurovascular barrier resealing. These data identify Netrin-1-Unc5B signaling as a ligand-receptor pathway that regulates BBB integrity, with implications for CNS diseases.


Subject(s)
Blood-Brain Barrier , Netrin Receptors , Animals , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Ligands , Mice , Netrin Receptors/genetics , Netrin Receptors/metabolism , Netrin-1/genetics , Netrin-1/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
15.
Clin Epigenetics ; 13(1): 225, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34922605

ABSTRACT

BACKGROUND: Deregulated methylation of tumor suppressor genes is a hallmark event in colorectal cancer (CRC) carcinogenesis. UNC5 receptors, down-regulated in various human malignancies due to epigenetic alterations, have been proposed as putative tumor suppressor genes. In this study, we focused on the methylation-mediated inhibition of UNC5 receptors and the associated clinical significance in CRC. METHODS: Methylation and expression analysis was performed in TCGA datasets. And the results were confirmed in vitro in CRC cell lines treated with 5-aza-deoxycytidine. Then, the expression and epigenetic alterations of UNC5 receptors were evaluated in clinical specimens. Moreover, the diagnostic and prognostic values of the methylation alterations were also analyzed. RESULTS: Methylation-mediated repression was observed in UNC5C and UNC5D, but not in UNC5A and UNC5B, which was confirmed in CRC cell lines. Except for UNC5B, significantly elevated methylation was observed in UNC5A, UNC5C, and UNC5D in CRC. The discrimination efficiency of the three receptors was comparable with that of SEPT9. Kaplan-Meier curve survival analysis showed that hypermethylation of UNC5A, UNC5C and UNC5D was associated with poor progression-free and overall survival. Moreover, methylation levels of UNC5C and UNC5D were independent predictors of CRC progression-free (P = 0.001, P = 0.003, respectively) and overall survival (P = 0.008, P = 0.004, respectively). CONCLUSIONS: Hypermethylation of UNC5C and UNC5D mediates the repression and has promising diagnostic and prognostic values in CRC.


Subject(s)
Colorectal Neoplasms/genetics , DNA Methylation/physiology , Gene Silencing/physiology , Netrin Receptors/genetics , Receptors, Cell Surface/genetics , Colorectal Neoplasms/epidemiology , Humans , ROC Curve , Statistics, Nonparametric
16.
Development ; 148(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34910816

ABSTRACT

The Netrin receptor Frazzled/Dcc (Fra in Drosophila) functions in diverse tissue contexts to regulate cell migration, axon guidance and cell survival. Fra signals in response to Netrin to regulate the cytoskeleton and also acts independently of Netrin to directly regulate transcription during axon guidance in Drosophila. In other contexts, Dcc acts as a tumor suppressor by directly promoting apoptosis. In this study, we report that Fra is required in the Drosophila female germline for the progression of egg chambers through mid-oogenesis. Loss of Fra in the germline, but not the somatic cells of the ovary, results in the degeneration of egg chambers. Although a failure in nutrient sensing and disruptions in egg chamber polarity can result in degeneration at mid-oogenesis, these factors do not appear to be affected in fra germline mutants. However, similar to the degeneration that occurs in those contexts, the cell death effector Dcp-1 is activated in fra germline mutants. The function of Fra in the female germline is independent of Netrin and requires the transcriptional activation domain of Fra. In contrast to the role of Dcc in promoting cell death, our observations reveal a role for Fra in regulating germline survival by inhibiting apoptosis.


Subject(s)
Caspases/genetics , Drosophila Proteins/genetics , Netrin Receptors/genetics , Netrins/genetics , Oogenesis/genetics , Animals , Apoptosis/genetics , Axons/metabolism , Cell Movement/genetics , Cell Polarity/genetics , Cell Survival/genetics , Cytoskeleton/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Female , Germ Cells/cytology , Germ Cells/metabolism , Ovum/growth & development
17.
Cell Cycle ; 20(20): 2114-2124, 2021 10.
Article in English | MEDLINE | ID: mdl-34612138

ABSTRACT

Being one of the most prevalent malignancies, hepatocellular carcinoma (HCC) threatens the health of population all over the world. Numerous researches have confirmed that long noncoding RNAs (lncRNAs) play an important role in tumor progression. Nonetheless, the mechanisms of unc-5 netrin receptor B antisense RNA 1 (UNC5B-AS1) in HCC remain obscure. Thus, this study aims to investigate the regulatory role and mechanism of UNC5B-AS1 in HCC cells. In our research, UNC5B-AS1 was subjected to gene expression analysis by RT-qPCR. Biological functions of UNC5B-AS1 in HCC cells were measured by MTT, colony formation, EdU and transwell assays. The combination between UNC5B-AS1, lysine demethylase 2A (KDM2A) and miR-4306 was validated by mechanism assays. Result showed UNC5B-AS1 was upregulated in HCC tissues and cells, contributing to the development of cancer staging and survival rate of HCC patients. Moreover, UNC5B-AS1 deficiency inhibited the proliferation, migration and epithelial-mesenchymal transition (EMT) of HCC cells. Furthermore, UNC5B-AS1 could interact with miR-4306 in HCC cells. Similarly, KDM2A was proved as the target gene of miR-4306. Finally, miR-4306 downregulation or KDM2A overexpression reversed the prohibitive role of UNC5B-AS1 knockdown in HCC progression. In short, UNC5B-AS1 accelerates the proliferation, migration and EMT of HCC cells via the regulation of miR-4306/KDM2A axis.


Subject(s)
Carcinoma, Hepatocellular , F-Box Proteins , Jumonji Domain-Containing Histone Demethylases , Liver Neoplasms , MicroRNAs , Netrin Receptors , RNA, Long Noncoding , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , F-Box Proteins/genetics , F-Box Proteins/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Netrin Receptors/genetics , Netrin Receptors/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction
18.
Nat Commun ; 12(1): 4872, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381052

ABSTRACT

The Netrin-1 receptor UNC5B is an axon guidance regulator that is also expressed in endothelial cells (ECs), where it finely controls developmental and tumor angiogenesis. In the absence of Netrin-1, UNC5B induces apoptosis that is blocked upon Netrin-1 binding. Here, we identify an UNC5B splicing isoform (called UNC5B-Δ8) expressed exclusively by ECs and generated through exon skipping by NOVA2, an alternative splicing factor regulating vascular development. We show that UNC5B-Δ8 is a constitutively pro-apoptotic splicing isoform insensitive to Netrin-1 and required for specific blood vessel development in an apoptosis-dependent manner. Like NOVA2, UNC5B-Δ8 is aberrantly expressed in colon cancer vasculature where its expression correlates with tumor angiogenesis and poor patient outcome. Collectively, our data identify a mechanism controlling UNC5B's necessary apoptotic function in ECs and suggest that the NOVA2/UNC5B circuit represents a post-transcriptional pathway regulating angiogenesis.


Subject(s)
Apoptosis , Blood Vessels/growth & development , Netrin Receptors/metabolism , RNA Isoforms/metabolism , Alternative Splicing , Animals , Colonic Neoplasms/blood supply , Colonic Neoplasms/metabolism , Endothelial Cells , Humans , Morphogenesis , Neovascularization, Pathologic/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Netrin Receptors/genetics , Netrin-1/metabolism , Neuro-Oncological Ventral Antigen , RNA Isoforms/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Survival Analysis , Zebrafish
19.
J Gene Med ; 23(12): e3382, 2021 12.
Article in English | MEDLINE | ID: mdl-34350661

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are significant regulatory factors for the initiation and development of numerous malignant tumors, including cervical cancer (CC). The expression of lncRNA unc-5 netrin receptor B antisense RNA 1 (UNC5B-AS1, also known as UASR1) is up-regulated in tissues of cervical squamous cell carcinoma and endocervical adenocarcinoma compared to in normal tissues based on the GEPIA database. In the present study, we explored the functions of UNC5B-AS1 and its underlying mechanism with respect to CC development. METHODS: A real-time quantitative polymerase chain reaction was applied for the detection of UNC5B-AS1 expression in CC cells. Cell counting kit-8, colony formation and transwell assays, as well as western blot and flow cytometry analyses, were employed to detect the biological effects of UNC5B-AS1 knockdown on malignant phenotypes of CC cells in vitro. In addition, the combination between microRNA-4455 (miR-4455) and UNC5B-AS1 or R-spondin 4 (RSPO4) was explored by RNA immunoprecipitation, luciferase reporter and RNA pulldown assays. A tumor xenograft nude mice model was established to explore the effect of UNC5B-AS1 depletion or miR-4455 overexpression on tumor growth. RESULTS: UNC5B-AS1 is up-regulated in CC tissues and cells. The knockdown of UNC5B-AS1 inhibits CC cell proliferation, migration and invasion and promotes CC cell apoptosis. Mechanistically, UNC5B-AS1 binds with miR-4455 to up-regulate RSPO4 expression. RSPO4 is targeted by miR-4455 and its expression is negatively regulated by miR-4455 expression. In vivo assays revealed that UNC5B-AS1 depletion or miR-4455 overexpression inhibits tumor growth by regulating RSPO4 expression. CONCLUSIONS: Inhibition of UNC5B-AS1/miR-4455/RSPO4 reduces CC growth both in vitro and in vivo, furnishing new insights into molecular studies on UNC5B-AS1 with respect to CC development.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Uterine Cervical Neoplasms , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Netrin Receptors/genetics , Netrin Receptors/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Thrombospondins/genetics , Thrombospondins/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology
20.
Int J Mol Sci ; 22(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361013

ABSTRACT

Glioblastoma (GBM) is the most aggressive and common primary tumor of the central nervous system. It is characterized by having an infiltrating growth and by the presence of an excessive and aberrant vasculature. Some of the mechanisms that promote this neovascularization are angiogenesis and the transdifferentiation of tumor cells into endothelial cells or pericytes. In all these processes, the release of extracellular microvesicles by tumor cells plays an important role. Tumor cell-derived extracellular microvesicles contain pro-angiogenic molecules such as VEGF, which promote the formation of blood vessels and the recruitment of pericytes that reinforce these structures. The present study summarizes and discusses recent data from different investigations suggesting that Netrin-1, a highly versatile protein recently postulated as a non-canonical angiogenic ligand, could participate in the promotion of neovascularization processes in GBM. The relevance of determining the angiogenic signaling pathways associated with the interaction of Netrin-1 with its receptors is posed. Furthermore, we speculate that this molecule could form part of the microvesicles that favor abnormal tumor vasculature. Based on the studies presented, this review proposes Netrin-1 as a novel biomarker for GBM progression and vascularization.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Neovascularization, Pathologic/genetics , Netrin-1/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Neovascularization, Pathologic/metabolism , Netrin Receptors/genetics , Netrin Receptors/metabolism , Netrin-1/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL