Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000184

ABSTRACT

Microglia migrate to the cerebral cortex during early embryonic stages. However, the precise mechanisms underlying microglia migration remain incompletely understood. As an extracellular matrix protein, Netrin-1 is involved in modulating the motility of diverse cells. In this paper, we found that Netrin-1 promoted microglial BV2 cell migration in vitro. Mechanism studies indicated that the activation of GSK3ß activity contributed to Netrin-1-mediated microglia migration. Furthermore, Integrin α6/ß1 might be the relevant receptor. Single-cell data analysis revealed the higher expression of Integrin α6 subunit and ß1 subunit in microglia in comparison with classical receptors, including Dcc, Neo1, Unc5a, Unc5b, Unc5c, Unc5d, and Dscam. Microscale thermophoresis (MST) measurement confirmed the high binding affinity between Integrin α6/ß1 and Netrin-1. Importantly, activation of Integrin α6/ß1 with IKVAV peptides mirrored the microglia migration and GSK3 activation induced by Netrin-1. Finally, conditional knockout (CKO) of Netrin-1 in radial glial cells and their progeny led to a reduction in microglia population in the cerebral cortex at early developmental stages. Together, our findings highlight the role of Netrin-1 in microglia migration and underscore its therapeutic potential in microglia-related brain diseases.


Subject(s)
Cell Movement , Microglia , Netrin-1 , Netrin-1/metabolism , Netrin-1/genetics , Microglia/metabolism , Animals , Mice , Mice, Knockout , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Cell Line , Integrin beta1/metabolism , Integrin beta1/genetics
2.
Elife ; 122024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023520

ABSTRACT

Dormancy in cancer is a clinical state in which residual disease remains undetectable for a prolonged duration. At a cellular level, rare cancer cells cease proliferation and survive chemotherapy and disseminate disease. We created a suspension culture model of high-grade serous ovarian cancer (HGSOC) dormancy and devised a novel CRISPR screening approach to identify survival genes in this context. In combination with RNA-seq, we discovered the Netrin signaling pathway as critical to dormant HGSOC cell survival. We demonstrate that Netrin-1, -3, and its receptors are essential for low level ERK activation to promote survival, and that Netrin activation of ERK is unable to induce proliferation. Deletion of all UNC5 family receptors blocks Netrin signaling in HGSOC cells and compromises viability during the dormancy step of dissemination in xenograft assays. Furthermore, we demonstrate that Netrin-1 and -3 overexpression in HGSOC correlates with poor outcome. Specifically, our experiments reveal that Netrin overexpression elevates cell survival in dormant culture conditions and contributes to greater spread of disease in a xenograft model of abdominal dissemination. This study highlights Netrin signaling as a key mediator HGSOC cancer cell dormancy and metastasis.


High-grade serous ovarian cancer (or HGSOC for short) is the fifth leading cause of cancer-related deaths in women. It is generally diagnosed at an advanced stage of disease when the cancer has already spread to other parts of the body. Surgical removal of tumors and subsequent treatment with chemotherapy often reduces the signs and symptoms of the disease for a time but some cancer cells tend to survive so that patients eventually relapse. The HGSOC cells typically spread from the ovaries by moving through the liquid surrounding organs in the abdomen. The cells clump together and enter an inactive state known as dormancy that allows them to survive chemotherapy and low-nutrient conditions. Understanding how to develop new drug therapies that target dormant cancer cells is thought to be an important step in prolonging the life of HGSOC patients. Cancer cells are hardwired to multiply and grow, so Perampalam et al. reasoned that becoming dormant poses challenges for HGSOC cells, which may create unique vulnerabilities not shared by proliferating cancer cells. To find out more, the researchers used HGSOC cells that had been isolated from patients and grown in the laboratory. The team used a gene editing technique to screen HGSOC cells for genes required by the cells to survive when they are dormant. The experiments found that genes involved in a cell signaling pathway, known as Netrin signaling, were critical for the cells to survive. Previous studies have shown that Netrin signaling helps the nervous system form in embryos and inhibits a program of controlled cell death in some cancers. Perampalam et al. discovered that Netrins were present in the environment immediately surrounding dormant HGSOC cells. Human HGSOC patients with higher levels of Netrin gene expression had poorer prognoses than patients with lower levels of Netrin gene expression. Further experiments demonstrated that Netrins help dormant HGSOC cells to spread around the body. These findings suggest that Netrin signalling may provide useful targets for future drug therapies against dormant cells in some ovarian cancers. This could include repurposing drugs already in development or creating new inhibitors of this pathway.


Subject(s)
Carcinoma, Ovarian Epithelial , Cell Survival , Netrins , Ovarian Neoplasms , Signal Transduction , Humans , Female , Animals , Cell Line, Tumor , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Netrins/metabolism , Netrins/genetics , Mice , Netrin-1/metabolism , Netrin-1/genetics , Cell Proliferation , Netrin Receptors/metabolism , Netrin Receptors/genetics
3.
Elife ; 122024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056276

ABSTRACT

Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells - disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner - delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.


Subject(s)
Netrin Receptors , Netrin-1 , Animals , Netrin-1/metabolism , Netrin-1/genetics , Mice , Male , Female , Netrin Receptors/metabolism , Netrin Receptors/genetics , Phodopus , Axons/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/growth & development , Dopaminergic Neurons/metabolism
4.
Elife ; 122024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896465

ABSTRACT

Spinal pain affects individuals of all ages and is the most common musculoskeletal problem globally. Its clinical management remains a challenge as the underlying mechanisms leading to it are still unclear. Here, we report that significantly increased numbers of senescent osteoclasts (SnOCs) are observed in mouse models of spinal hypersensitivity, like lumbar spine instability (LSI) or aging, compared to controls. The larger population of SnOCs is associated with induced sensory nerve innervation, as well as the growth of H-type vessels, in the porous endplate. We show that deletion of senescent cells by administration of the senolytic drug Navitoclax (ABT263) results in significantly less spinal hypersensitivity, spinal degeneration, porosity of the endplate, sensory nerve innervation, and H-type vessel growth in the endplate. We also show that there is significantly increased SnOC-mediated secretion of Netrin-1 and NGF, two well-established sensory nerve growth factors, compared to non-senescent OCs. These findings suggest that pharmacological elimination of SnOCs may be a potent therapy to treat spinal pain.


Subject(s)
Cellular Senescence , Osteoclasts , Animals , Mice , Osteoclasts/metabolism , Osteoclasts/drug effects , Osteoclasts/physiology , Cellular Senescence/drug effects , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/physiology , Sensory Receptor Cells/metabolism , Disease Models, Animal , Male , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Netrin-1/metabolism , Netrin-1/genetics , Mice, Inbred C57BL
5.
Metallomics ; 16(7)2024 07 01.
Article in English | MEDLINE | ID: mdl-38936837

ABSTRACT

Ferric-tannic nanoparticles (FTs) are now considered to be new pharmaceuticals appropriate for the prevention of brain aging and related diseases. We have previously shown that FTs could activate axon guidance pathways and cellular clearance functioning in neuronal cell lines. Herein, we further investigated whether FTs could activate the two coordinated neuronal functions of axon guidance and synaptic function in rat brains and neuronal cell lines. A single intravenous injection of a safe dose of FTs has been shown to activate a protein expression of axon attractant Netrin-1 and neurotransmitter receptor GABRA4 in the cerebral cortexes of male Wistar rats. According to RNA-seq with targeted analysis, axon guidance and synapses have been enriched and Ephrin membered genes have been identified as coordinating a network of genes for such processes. In vitro, as expected, FTs are also found to activate axon guidance markers and promote neuronal tubes in neuronal cell lines. At the same time, pre-synaptic markers (synaptophysin), post-synaptic markers (synapsin), and GABRA4 neurotransmitter receptors have been found to be activated by FTs. Interestingly, synaptophysin has been found to localize along the promoted neuronal tubes, suggesting that enhanced axon guidance is associated with the formation and transportation of pre-synaptic vesicles. Preliminarily, repeated injection of FTs into adult rats every 3 days for 10 times could enhance an expression of synaptophysin in the cerebral cortex, as compared to control rats. This work demonstrates that FTs can be used for activating brain function associated with axon guidance and synaptic function.


Subject(s)
Axon Guidance , Rats, Wistar , Synapses , Animals , Male , Rats , Synapses/metabolism , Brain/metabolism , Synaptophysin/metabolism , Ferric Compounds/metabolism , Receptors, GABA-A/metabolism , Netrin-1/metabolism , Nanoparticles/chemistry , Biomarkers/metabolism , Neurons/metabolism , Axons/metabolism
6.
Sci Adv ; 10(26): eadm8454, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941462

ABSTRACT

The formation of vascular niche is pivotal during the early stage of peripheral nerve regeneration. Nevertheless, the mechanisms of vascular niche in the regulation of peripheral nerve repair remain unclear. Netrin-1 (NTN1) was found up-regulated in nerve stump after peripheral nerve injury (PNI). Herein, we demonstrated that NTN1-high endothelial cells (NTN1+ECs) were the critical component of vascular niche, fostering angiogenesis, axon regeneration, and repair-related phenotypes. We also found that NTN1+EC-derived exosomes (NTN1 EC-EXO) were involved in the formation of vascular niche as a critical role. Multi-omics analysis further verified that NTN1 EC-EXO carried a low-level expression of let7a-5p and activated key pathways associated with niche formation including focal adhesion, axon guidance, phosphatidylinositol 3-kinase-AKT, and mammalian target of rapamycin signaling pathway. Together, our study suggested that the construction of a pre-regenerative niche induced by NTN1 EC-EXO could establish a beneficial microenvironment for nerve repair and facilitate functional recovery after PNI.


Subject(s)
Endothelial Cells , Exosomes , Nerve Regeneration , Netrin-1 , Peripheral Nerve Injuries , Netrin-1/metabolism , Netrin-1/genetics , Exosomes/metabolism , Nerve Regeneration/genetics , Animals , Endothelial Cells/metabolism , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/pathology , Mice , Neovascularization, Physiologic , Signal Transduction , Humans , Peripheral Nerves/metabolism
7.
Alzheimers Dement ; 20(7): 4499-4511, 2024 07.
Article in English | MEDLINE | ID: mdl-38856164

ABSTRACT

INTRODUCTION: The ɛ4 allele of the apolipoprotein E gene (APOE ɛ4) is the strongest genetic risk factor for Alzheimer's disease (AD), but the mechanisms connecting APOE ɛ4 to AD are not clear. METHODS: Participants (n = 596) were from two clinical-pathological studies. Tissues from dorsolateral prefrontal cortex were examined to identify 8425 proteins. Post mortem pathological assessment used immunohistochemistry to obtain amyloid beta (Aß) load and tau tangle density. RESULTS: In separate models, APOE ɛ4 was associated with 18 proteins, which were associated with Aß and tau tangles. Examining the proteins in a single model identified Netrin-1 and secreted frizzled-related protein 1 (SFRP1) as the two proteins linking APOE ɛ4 with Aß with the largest effect sizes and Netrin-1 and testican-3 linking APOE ɛ4 with tau tangles. DISCUSSION: We identified Netrin-1, SFRP1, and testican-3 as the most promising proteins that link APOE ɛ4 with Aß and tau tangles. HIGHLIGHTS: Of 8425 proteins extracted from prefrontal cortex, 18 were related to APOE ɛ4. The 18 proteins were also related to amyloid beta (Aß) and tau. The 18 proteins were more related to APOE ɛ4 than other AD genetic risk variants. Netrin-1 and secreted frizzled-related protein 1 were the two most promising proteins linking APOE ɛ4 with Aß. Netrin-1 and testican-3 were two most promising proteins linking APOE ɛ4 with tau.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Membrane Proteins , Netrin-1 , Neurofibrillary Tangles , Prefrontal Cortex , Proteoglycans , Aged , Aged, 80 and over , Female , Humans , Male , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Netrin-1/metabolism , Netrin-1/genetics , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Prefrontal Cortex/metabolism , tau Proteins/metabolism , Membrane Proteins/metabolism , Proteoglycans/metabolism
8.
Cell Death Dis ; 15(5): 343, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760361

ABSTRACT

The corticospinal tract (CST) is the principal neural pathway responsible for conducting voluntary movement in the vertebrate nervous system. Netrin-1 is a well-known guidance molecule for midline crossing of commissural axons during embryonic development. Families with inherited Netrin-1 mutations display congenital mirror movements (CMM), which are associated with malformations of pyramidal decussation in most cases. Here, we investigated the role of Netrin-1 in CST formation by generating conditional knockout (CKO) mice using a Gfap-driven Cre line. A large proportion of CST axons spread laterally in the ventral medulla oblongata, failed to decussate and descended in the ipsilateral spinal white matter of Ntn1Gfap CKO mice. Netrin-1 mRNA was expressed in the ventral ventricular zone (VZ) and midline, while Netrin-1 protein was transported by radial glial cells to the ventral medulla, through which CST axons pass. The level of transported Netrin-1 protein was significantly reduced in Ntn1Gfap CKO mice. In addition, Ntn1Gfap CKO mice displayed increased symmetric movements. Our findings indicate that VZ-derived Netrin-1 deletion leads to an abnormal trajectory of the CST in the spinal cord due to the failure of CST midline crossing and provides novel evidence supporting the idea that the Netrin-1 signalling pathway is involved in the pathogenesis of CMM.


Subject(s)
Mice, Knockout , Netrin-1 , Pyramidal Tracts , Animals , Netrin-1/metabolism , Netrin-1/genetics , Mice , Pyramidal Tracts/metabolism , Pyramidal Tracts/pathology , Axons/metabolism , Axons/pathology
9.
Physiol Res ; 73(2): 305-314, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710054

ABSTRACT

Netrin-1 (NTN-1) plays a vital role in the progress of nervous system development and inflammatory diseases. However, the role and underlying mechanism of NTN-1 in inflammatory pain (IP) are unclear. BV2 microglia were treated with LPS to mimic the cell status under IP. Adeno-associated virus carrying the NTN-1 gene (AAV-NTN-1) was used to overexpress NTN-1. Complete Freund's Adjuvant (CFA)-induced mouse was recruited as an in vivo model. MTT and commercial kits were utilized to evaluate cell viability and cell death of BV2 cells. The mRNA expressions and secretions of cytokines were measured using the ELISA method. Also, the pyroptosis and activation of BV2 cells were investigated based on western blotting. To verify the role of Rac1/NF-kappaB signaling, isochamaejasmin (ISO) and AAV-Rac1 were presented. The results showed that NTN-1 expression was decreased in LPS-treated BV2 microglia and spinal cord tissues of CFA-injected mice. Overexpressing NTN-1 dramatically reversed cell viability and decreased cell death rate of BV2 microglia under lipopolysaccharide (LPS) stimulation, while the level of pyroptosis was inhibited. Besides, AAV-NTN-1 rescued the activation of microglia and inflammatory injury induced by LPS, decreasing IBA-1 expression, as well as iNOS, IL-1beta and IL-6 secretions. Meanwhile AAV-NTN-1 promoted the anti-inflammation response, including increases in Arg-1, IL-4 and IL-10 levels. In addition, the LPS-induced activation of Rac1/NF-kappaB signaling was depressed by NTN-1 overexpression. The same results were verified in a CFA-induced mouse model. In conclusion, NTN-1 alleviated IP by suppressing pyroptosis and promoting M2 type activation of microglia via inhibiting Rac1/NF-?B signaling, suggesting the protective role of NTN-1 in IP. Keywords: Netrin-1, Inflammatory pain, Pyroptosis, Microglia M2 activation, Rac1/NF-kappaB.


Subject(s)
Inflammation , Microglia , NF-kappa B , Netrin-1 , Neuropeptides , Pyroptosis , Signal Transduction , rac1 GTP-Binding Protein , Animals , Pyroptosis/physiology , Pyroptosis/drug effects , Microglia/metabolism , Mice , Netrin-1/metabolism , rac1 GTP-Binding Protein/metabolism , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/pathology , Male , Mice, Inbred C57BL , Pain/metabolism , Cell Line , Lipopolysaccharides
10.
Ann Anat ; 254: 152247, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38458575

ABSTRACT

Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.


Subject(s)
Larynx , Nerve Regeneration , Netrin-1 , Netrin-1/metabolism , Animals , Humans , Nerve Regeneration/physiology , Larynx/physiology , Nerve Growth Factors/metabolism , Nerve Growth Factors/physiology , Tumor Suppressor Proteins/metabolism , Axon Guidance/physiology
11.
Genes (Basel) ; 15(3)2024 02 27.
Article in English | MEDLINE | ID: mdl-38540364

ABSTRACT

The UNC-5 family of netrin receptor genes, predominantly expressed in brain tissues, plays a pivotal role in various neuronal processes. Mutations in genes involved in axon development contribute to a wide spectrum of human diseases, including developmental, neuropsychiatric, and neurodegenerative disorders. The NTN1/DCC signaling pathway, interacting with UNC5C, plays a crucial role in central nervous system axon guidance and has been associated with psychiatric disorders during adolescence in humans. Whole-exome sequencing analysis unveiled two compound heterozygous causative mutations within the UNC5C gene in a patient diagnosed with psychiatric disorders. In silico analysis demonstrated that neither of the observed variants affected the allosteric linkage between UNC5C and NTN1. In fact, these mutations are located within crucial cytoplasmic domains, specifically ZU5 and the region required for the netrin-mediated axon repulsion of neuronal growth cones. These domains play a critical role in forming the supramodular protein structure and directly interact with microtubules, thereby ensuring the functionality of the axon repulsion process. We emphasize that these mutations disrupt the aforementioned processes, thereby associating the UNC5C gene with psychiatric disorders for the first time and expanding the number of genes related to psychiatric disorders. Further research is required to validate the correlation of the UNC5C gene with psychiatric disorders, but we suggest including it in the genetic analysis of patients with psychiatric disorders.


Subject(s)
Axon Guidance , Mental Disorders , Humans , Axon Guidance/genetics , Netrin-1/genetics , Netrin-1/metabolism , Netrin Receptors/genetics , Netrin Receptors/metabolism , Axons/metabolism , Mental Disorders/metabolism
12.
J Biochem Mol Toxicol ; 38(1): e23623, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38229322

ABSTRACT

Ischemia/reperfusion (I/R)-induced neural damage and neuroinflammation have been associated with pathological progression during stroke. Netrin-1 is an important member of the family of laminin-related secreted proteins, which plays an important role in governing axon elongation. However, it is unknown whether Netrin-1 possesses a beneficial role in stroke. Here, we employed the middle cerebral artery occlusion (MCAO) model to study the function of Netrin-1 in alleviating brain injuries. Our results demonstrate that Netrin-1 rescued poststroke neurological deficits and inhibited production of the inflammatory cytokines such as interleukin 6 (IL-6) and endothelial chemokine (C-X-C motif) ligand 1 (Cxcl1). Importantly, Netrin-1 protected against MCAO-induced dysfunction of the blood-brain barrier (BBB) in mice and a reduction in the expression of the tight junction (TJ) protein occludin. Additionally, we report that Netrin-1 could ameliorate oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury and prevent aggravation in endothelial monolayer permeability in bEnd.3 human brain microvascular endothelial cells (HBMVECs). Mechanistically, Netrin-1 ameliorated OGD/R-induced decrease in occludin and Kruppel-like factor 2 (KLF2) in HBMVECs. Notably, silencing of KLF2 abolished the beneficial effects of Netrin-1 in protecting endothelial permeability and occludin expression, suggesting that these effects are mediated by KLF2. In conclusion, our findings suggest that Netrin-1 could constitute a novel therapeutic strategy for ischemic stroke.


Subject(s)
Blood-Brain Barrier , Brain Ischemia , Netrin-1 , Reperfusion Injury , Stroke , Animals , Humans , Mice , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Kruppel-Like Transcription Factors/metabolism , Netrin-1/metabolism , Occludin/metabolism , Reperfusion , Reperfusion Injury/metabolism , Transcription Factors/metabolism
13.
Article in English | MEDLINE | ID: mdl-37561046

ABSTRACT

Senescent cells that accumulate are regarded as promising therapeutic targets. However, senolytic therapy failed to achieve satisfactory results. We previously discovered that young human plasma improved vascular endothelial cell senescence, and UNC5B might be a novel intervention target. Netrin-1, as a natural ligand of UNC5B, plays roles in multiple age-related vascular disorders, but its involvement in aging is still unclear. Here, we observed a significant decrease in plasma Netrin-1 levels in old healthy subjects compared to the young. In vivo, adeno-associated-virus-mediated delivery of Netrin-1 into aged mice significantly improved functional recovery in a model of hindlimb ischemia, promoted angiogenesis in ischemic tissues, and activated the endothelial nitric oxide synthase. Furthermore, we revealed that low-dose Netrin-1 recombinant protein significantly reduced senescence-associated-ß-galactosidase-positive cells, inhibited the P53 pathway, promoted cell migration, increased tubule formation, and elevated nitric oxide production in senescent endothelial cells. However, UNC5B inhibition blocked the pro-angiogenesis effect of low-dose Netrin-1 on senescent cells or aortic rings. In summary, this study depicts that modulating Netrin-1 signaling can result in improved vascular health and Netrin-1 may have therapeutic potential for age-related ischemic diseases.


Subject(s)
Aging , Endothelial Cells , Netrin-1 , Animals , Humans , Mice , Angiogenesis , Cellular Senescence , Endothelial Cells/metabolism , Netrin Receptors/metabolism , Netrin-1/metabolism , Receptors, Cell Surface/metabolism , Aging/metabolism , Aging/pathology , Signal Transduction
14.
FASEB J ; 38(1): e9664, 2024 01.
Article in English | MEDLINE | ID: mdl-38038805

ABSTRACT

The α7 nicotinic acetylcholine receptor (α7nAChR) plays a crucial role in the cholinergic anti-inflammatory pathway (CAP) during sepsis-associated acute lung injury (ALI). Increasing evidence suggests that specialized pro-resolving mediators (SPMs) are important in resolving α7nAChR-mediated ALI resolution. Our study aims to elucidate the pivotal role of α7nAChR in the CAP during LPS-associated acute lung injury (ALI). By employing vagus nerve stimulation (VNS), we identified α7nAChR as the key CAP subunit in ALI mice, effectively reducing lung permeability and the release of inflammatory cytokines. We further investigated the alterations in SPMs regulated by α7nAChR, revealing a predominant synthesis of lipoxin A4 (LXA4). The significance of α7nAChR-netrin-1 pathway in governing SPM synthesis was confirmed through the use of netrin-1 knockout mice and siRNA-transfected macrophages. Additionally, our evaluation identified a synchronous alteration of LXA4 synthesis in the α7nAChR-netrin-1 pathway accompanied by 5-lipoxygenase (5-LOX), thereby confirming an ameliorative effect of LXA4 on lung injury and macrophage inflammatory response. Concurrently, inhibiting the function of LXA4 annulled the lung-protective effect of VNS. As a result, our findings reveal a novel anti-inflammatory pathway wherein VNS modulates netrin-1 expression via α7nAChR, ultimately leading to LXA4 synthesis and subsequent lung protection.


Subject(s)
Acute Lung Injury , Vagus Nerve Stimulation , Mice , Animals , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Lipopolysaccharides/toxicity , Netrin-1/metabolism , Acute Lung Injury/chemically induced
15.
J Diabetes Res ; 2023: 4193309, 2023.
Article in English | MEDLINE | ID: mdl-38033740

ABSTRACT

The kidneys have a high level of Netrin-1 expression, which protects against some acute and chronic kidney disorders. However, it is yet unknown how Netrin-1 affects renal proximal tubule cells in diabetic nephropathy (DN) under pathological circumstances. Research has shown that autophagy protects the kidneys in animal models of renal disease. In this study, we looked at the probable autophagy regulation mechanism of Netrin-1 and its function in the pathogenesis of DN. We proved that in HK-2 cell, high blood sugar levels caused Netrin-1 to be downregulated, which then triggered the Akt/mTOR signaling pathway and enhanced cell death and actin cytoskeleton disruption. By adding Netrin-1 or an autophagy activator in vitro, these pathogenic alterations were reverted. Our results indicate that Netrin-1 stimulates autophagy by blocking the Akt/mTOR signaling pathway, which underlies high-glucose-induced malfunction of the renal proximal tubules. After HK-2 cells were incubated with Netrin-1 recombination protein and rapamycin under HG conditions for 24 h, the apoptosis was significantly reduced, as shown by the higher levels of Bcl-2, as well as lower levels of Bax and cleaved caspase-3 (P = 0.012, Cohen's d = 0.489, Glass's delta = 0.23, Hedges' g = 0.641). This study reveals that targeting Netrin-1-related signaling has therapeutic potential for DN and advances our knowledge of the processes operating in renal proximal tubules in DN.


Subject(s)
Diabetic Nephropathies , Proto-Oncogene Proteins c-akt , Apoptosis , Autophagy , Diabetic Nephropathies/metabolism , Glucose/adverse effects , Kidney Tubules, Proximal/metabolism , Netrin-1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Humans
16.
ACS Nano ; 17(20): 19887-19902, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37793046

ABSTRACT

Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.


Subject(s)
Nanofibers , Netrin-1/metabolism , Neurons/metabolism , Neurogenesis , Central Nervous System/metabolism , Axons , Cells, Cultured
17.
Development ; 150(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37823339

ABSTRACT

The kidney vasculature has a complex architecture that is essential for renal function. The molecular mechanisms that direct development of kidney blood vessels are poorly characterized. We identified a regionally restricted, stroma-derived signaling molecule, netrin 1 (Ntn1), as a regulator of renal vascular patterning in mice. Stromal progenitor (SP)-specific ablation of Ntn1 (Ntn1SPKO) resulted in smaller kidneys with fewer glomeruli, as well as profound defects of the renal artery and transient blood flow disruption. Notably, Ntn1 ablation resulted in loss of arterial vascular smooth muscle cell (vSMC) coverage and in ectopic SMC deposition at the kidney surface. This was accompanied by dramatic reduction of arterial tree branching that perdured postnatally. Transcriptomic analysis of Ntn1SPKO kidneys revealed dysregulation of vSMC differentiation, including downregulation of Klf4, which we find expressed in a subset of SPs. Stromal Klf4 deletion similarly resulted in decreased smooth muscle coverage and arterial branching without, however, the disruption of renal artery patterning and perfusion seen in Ntn1SPKO. These data suggest a stromal Ntn1-Klf4 axis that regulates stromal differentiation and reinforces stromal-derived smooth muscle as a key regulator of renal blood vessel formation.


Subject(s)
Gene Expression Profiling , Kidney , Mice , Animals , Netrin-1/genetics , Netrin-1/metabolism , Kidney/physiology , Cell Differentiation/genetics , Morphogenesis , Myocytes, Smooth Muscle
18.
Tissue Cell ; 85: 102219, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37716176

ABSTRACT

BACKGROUND: Netrin-1 has a neuroprotective effect by regulating angiogenesis, autophagy, apoptosis, and neuroinflammation. This study investigated the effects of netrin-1 delivery to mouse Schwann cells and vascular endothelial cells using exosomes modified with rabies virus glycoprotein (RVG) peptides. MATERIALS AND METHODS: RVG-Lamp2b and/or Netrin-1 were overexpressed in human umbilical cord mesenchymal stem cells to obtain exosomes modified with RVG-Lamp2b and/or loaded with Netrin-1. Then, exosomes were labeled with carboxyfluorescein diacetate succinimidyl ester and co-cultured with mouse Schwann cells and endothelial cells. Netrin-1 expression in Schwann cells and endothelial cells was measured using quantitative polymerase chain reaction and immunoblotting. Moreover, methyl thiazolyl tetrazolium assays and Transwell assays were used to detect proliferation, migration, and invasion of Schwann cells and endothelial cells. RESULTS: Exosomes with RVG-Lamp2b entered Schwann cells more readily compared with the exosomes without RVG-Lamp2b. Meanwhile, this was not the case in endothelial cells. Netrin-1-loaded exosomes significantly promoted Netrin-1 expression, cell proliferation, migration, invasion, and epithelial-mesenchymal transition in Schwann cells and endothelial cells. These effects were further enhanced by Netrin-1-loaded exosomes modified with RVG-Lamp2b in Schwann cells, but not in endothelial cells. CONCLUSION: HucMSC-derived exosomes loaded with RVG-Lamp2b and Netrin-1 promote proliferation, migration, and invasion of Schwann cells.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Mice , Animals , Humans , Endothelial Cells , Exosomes/metabolism , Netrin-1/metabolism , Mesenchymal Stem Cells/metabolism , Umbilical Cord
19.
Stem Cells ; 41(11): 1022-1036, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37591511

ABSTRACT

Retinal ganglion cells (RGCs) connect the retina with the higher centers in the brain for visual perception. Their degeneration leads to irreversible vision loss in patients with glaucoma. The mechanism underlying human RGCs (hRGCs) axon growth and guidance remains poorly understood because hRGCs are born during development and connections with the central targets are established before birth. Here, using RGCs directly generated from human embryonic stem cells, we demonstrate that hRGCs express a battery of guidance receptors. These receptors allow hRGCs to read the spatially arrayed chemotropic cues in the developing rat retina for the centripetal orientation of axons toward the optic disc, suggesting that the mechanism of intraretinal guidance is conserved in hRGCs. The centripetal orientation of hRGCs axons is not only in response to chemorepulsion but also involves chemoattraction, mediated by Netrin-1/DCC interaction. The spatially arrayed chemotropic cues differentially influence hRGCs physiological responses, suggesting that neural activity of hRGCs and axon growth may be coupled during inter-retinal guidance. In addition, we demonstrate that Netrin-1/DCC interaction, besides promoting axon growth, facilitates hRGCs axon regeneration by recruiting the mTOR signaling pathway. The diverse influence of Netrin-1/DCC interaction ranging from axon growth to regeneration may involve recruitment of multiple intracellular signaling pathways as revealed by transcriptome analysis of hRGCs. From the perspective of ex vivo stem cell approach to glaucomatous degeneration, our findings posit that ex vivo generated hRGCs can read the intraretinal cues for guidance toward the optic disc, the first step required for connecting with the central target to restore vision.


Subject(s)
Axons , Retinal Ganglion Cells , Humans , Animals , Rats , Retinal Ganglion Cells/metabolism , Axons/physiology , Netrin-1/metabolism , Cues , Nerve Growth Factors/metabolism , Tumor Suppressor Proteins/metabolism , Nerve Regeneration , Retina/metabolism
20.
Cell Rep ; 42(8): 112947, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37572323

ABSTRACT

The molecular code that controls synapse formation and maintenance in vivo has remained quite sparse. Here, we identify that the secreted protein Adamtsl3 functions as critical hippocampal synapse organizer acting through the transmembrane receptor DCC (deleted in colorectal cancer). Traditionally, DCC function has been associated with glutamatergic synaptogenesis and plasticity in response to Netrin-1 signaling. We demonstrate that early post-natal deletion of Adamtsl3 in neurons impairs DCC protein expression, causing reduced density of both glutamatergic and GABAergic synapses. Adult deletion of Adamtsl3 in either GABAergic or glutamatergic neurons does not interfere with DCC-Netrin-1 function at glutamatergic synapses but controls DCC signaling at GABAergic synapses. The Adamtsl3-DCC signaling unit is further essential for activity-dependent adaptations at GABAergic synapses, involving DCC phosphorylation and Src kinase activation. These findings might be particularly relevant for schizophrenia because genetic variants in Adamtsl3 and DCC have been independently linked with schizophrenia in patients.


Subject(s)
Neurons , Synapses , Humans , DCC Receptor/metabolism , Netrin-1/metabolism , Neurons/metabolism , Signal Transduction , src-Family Kinases/metabolism , Synapses/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL