Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.760
Filter
1.
J Psychiatry Neurosci ; 49(4): E233-E241, 2024.
Article in English | MEDLINE | ID: mdl-38960626

ABSTRACT

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental condition that often persists into adulthood. Underlying alterations in brain connectivity have been identified but some relevant connections, such as the middle, superior, and inferior cerebellar peduncles (MCP, SCP, and ICP, respectively), have remained largely unexplored; thus, we sought to investigate whether the cerebellar peduncles contribute to ADHD pathophysiology among adults. METHODS: We applied diffusion-weighted spherical deconvolution tractography to dissect the cerebellar peduncles of male adults with ADHD (including those who did or did not respond to methylphenidate, based on at least 30% symptom improvement at 2 months) and controls. We investigated differences in tract metrics between controls and the whole ADHD sample and between controls and treatment-response groups using sensitivity analyses. Finally, we analyzed the association between the tract metrics and cliniconeuropsychological profiles. RESULTS: We included 60 participants with ADHD (including 42 treatment responders and 18 nonresponders) and 20 control participants. In the whole ADHD sample, MCP fractional anisotropy (FA; t 78 = 3.24, p = 0.002) and hindrance modulated orientational anisotropy (HMOA; t 78 = 3.01, p = 0.004) were reduced, and radial diffusivity (RD) in the right ICP was increased (t 78 = -2.84, p = 0.006), compared with controls. Although case-control differences in MCP FA and HMOA, which reflect white-matter microstructural organization, were driven by both treatment response groups, only responders significantly differed from controls in right ICP RD, which relates to myelination (t 60 = 3.14, p = 0.003). Hindrance modulated orientational anisotropy of the MCP was significantly positively associated with hyperactivity measures. LIMITATIONS: This study included only male adults with ADHD. Further research needs to investigate potential sex- and development-related differences. CONCLUSION: These results support the role of the cerebellar networks, especially of the MCP, in adult ADHD pathophysiology and should encourage further investigation. CLINICAL TRIAL REGISTRATION: NCT03709940.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Cerebellum , Diffusion Tensor Imaging , Methylphenidate , Adult , Humans , Male , Young Adult , Anisotropy , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/pathology , Case-Control Studies , Central Nervous System Stimulants , Cerebellum/diagnostic imaging , Cerebellum/pathology , Cerebellum/physiopathology , Methylphenidate/therapeutic use , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/pathology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , White Matter/diagnostic imaging , White Matter/pathology
2.
Ann Clin Transl Neurol ; 11(7): 1691-1702, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952134

ABSTRACT

OBJECTIVE: The dentato-thalamo-cortical tract (DTT) is the main cerebellar efferent pathway. Degeneration of the DTT is a core feature of Friedreich ataxia (FRDA). However, it remains unclear whether DTT disruption is spatially specific, with some segments being more impacted than others. This study aimed to investigate microstructural integrity along the DTT in FRDA using a profilometry diffusion MRI (dMRI) approach. METHODS: MRI data from 45 individuals with FRDA (mean age: 33.2 ± 13.2, Male/Female: 26/19) and 37 healthy controls (mean age: 36.5 ± 12.7, Male/Female:18/19) were included in this cross-sectional multicenter study. A profilometry analysis was performed on dMRI data by first using tractography to define the DTT as the white matter pathway connecting the dentate nucleus to the contralateral motor cortex. The tract was then divided into 100 segments, and dMRI metrics of microstructural integrity (fractional anisotropy, mean diffusivity and radial diffusivity) at each segment were compared between groups. The process was replicated on the arcuate fasciculus for comparison. RESULTS: Across all diffusion metrics, the region of the DTT connecting the dentate nucleus and thalamus was more impacted in FRDA than downstream cerebral sections from the thalamus to the cortex. The arcuate fasciculus was minimally impacted. INTERPRETATION: Our study further expands the current knowledge about brain involvement in FRDA, showing that microstructural abnormalities within the DTT are weighted to early segments of the tract (i.e., the superior cerebellar peduncle). These findings are consistent with the hypothesis of DTT undergoing anterograde degeneration arising from the dentate nuclei and progressing to the primary motor cortex.


Subject(s)
Diffusion Tensor Imaging , Friedreich Ataxia , White Matter , Humans , Male , Female , Adult , Friedreich Ataxia/pathology , Friedreich Ataxia/diagnostic imaging , Middle Aged , Cross-Sectional Studies , Young Adult , White Matter/diagnostic imaging , White Matter/pathology , Cerebellar Nuclei/diagnostic imaging , Cerebellar Nuclei/pathology , Motor Cortex/pathology , Motor Cortex/diagnostic imaging , Thalamus/diagnostic imaging , Thalamus/pathology , Neural Pathways/pathology , Neural Pathways/diagnostic imaging , Diffusion Magnetic Resonance Imaging
3.
Neuroimage ; 297: 120731, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39002786

ABSTRACT

Comprehension and pragmatic deficits are prevalent in autism spectrum disorder (ASD) and are potentially linked to altered connectivity in the ventral language networks. However, previous magnetic resonance imaging studies have not sufficiently explored the microstructural abnormalities in the ventral fiber tracts underlying comprehension dysfunction in ASD. Additionally, the precise locations of white matter (WM) changes in the long tracts of patients with ASD remain poorly understood. In the current study, we applied the automated fiber-tract quantification (AFQ) method to investigate the fine-grained WM properties of the ventral language pathway and their relationships with comprehension and symptom manifestation in ASD. The analysis included diffusion/T1 weighted imaging data of 83 individuals with ASD and 83 age-matched typically developing (TD) controls. Case-control comparisons were performed on the diffusion metrics of the ventral tracts at both the global and point-wise levels. We also explored correlations between diffusion metrics, comprehension performance, and ASD traits, and conducted subgroup analyses based on age range to examine developmental moderating effects. Individuals with ASD exhibited remarkable hypoconnectivity in the ventral tracts, particularly in the temporal portions of the left inferior longitudinal fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF). These WM abnormalities were associated with poor comprehension and more severe ASD symptoms. Furthermore, WM alterations in the ventral tract and their correlation with comprehension dysfunction were more prominent in younger children with ASD than in adolescents. These findings indicate that WM disruptions in the temporal portions of the left ILF/IFOF are most notable in ASD, potentially constituting the core neurological underpinnings of comprehension and communication deficits in autism. Moreover, impaired WM connectivity and comprehension ability in patients with ASD appear to improve with age.


Subject(s)
Autism Spectrum Disorder , Diffusion Tensor Imaging , Language , White Matter , Humans , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/pathology , White Matter/diagnostic imaging , White Matter/pathology , Male , Adolescent , Female , Child , Young Adult , Diffusion Tensor Imaging/methods , Adult , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/pathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/pathology , Comprehension/physiology , Case-Control Studies
4.
Neurobiol Dis ; 199: 106577, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38914171

ABSTRACT

Proper topographically organized neural connections between the thalamus and the cerebral cortex are mandatory for thalamus function. Thalamocortical (TC) fiber growth begins during the embryonic period and completes by the third trimester of gestation, so that human neonates at birth have a thalamus with a near-facsimile of adult functional parcellation. Whether congenital neocortical anomaly (e.g., lissencephaly) affects TC connection in humans is unknown. Here, via diffusion MRI fiber-tractography analysis of long-term formalin-fixed postmortem fetal brain diagnosed as lissencephaly in comparison with an age-matched normal one, we found similar topological patterns of thalamic subregions and of internal capsule parcellated by TC fibers. However, lissencephaly fetal brain showed white matter structural changes, including fewer/less organized TC fibers and optic radiations, and much less cortical plate invasion by TC fibers - particularly around the shallow central sulcus. Diffusion MRI fiber tractography of normal fetal brains at 15, 23, and 26 gestational weeks (GW) revealed dynamic volumetric change of each parcellated thalamic subregion, suggesting coupled developmental progress of the thalamus with the corresponding cortex. Moreover, from GW23 and GW26 normal fetal brains, TC endings in the cortical plate could be delineated to reflect cumulative progressive TC invasion of cortical plate. By contrast, lissencephaly brain showed a dramatic decrease in TC invasion of the cortical plate. Our study thus shows the feasibility of diffusion MRI fiber tractography in postmortem long-term formalin-fixed fetal brains to disclose the developmental progress of TC tracts coordinating with thalamic and neocortical growth both in normal and lissencephaly fetal brains at mid-gestational stage.


Subject(s)
Cerebral Cortex , Diffusion Tensor Imaging , Lissencephaly , Neural Pathways , Thalamus , Humans , Thalamus/diagnostic imaging , Thalamus/pathology , Thalamus/embryology , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/embryology , Lissencephaly/pathology , Lissencephaly/diagnostic imaging , Neural Pathways/pathology , Neural Pathways/diagnostic imaging , Neural Pathways/embryology , Diffusion Tensor Imaging/methods , Fetus/pathology , Fetus/diagnostic imaging , Gestational Age , Female , Male , White Matter/diagnostic imaging , White Matter/pathology , White Matter/embryology , Diffusion Magnetic Resonance Imaging/methods
5.
J Neurooncol ; 169(2): 247-256, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38837018

ABSTRACT

OBJECTIVE: Survivors of pediatric brain tumors (SPBT) are at risk for social deficits, fewer friendships, and poor peer relations. SPBT also experience reduced brain connectivity via microstructural disruptions to white matter from neurological insults. Research with other populations implicates white matter connectivity as a key contributor to poor social functioning. This case-controlled diffusion-weighted imaging study evaluated structural connectivity in SPBT and typically developing controls (TDC) and associations between metrics of connectivity and social functioning. METHODS: Diffusion weighted-imaging results from 19 SPBT and 19 TDC were analyzed using probabilistic white matter tractography. Survivors were at least 5 years post-diagnosis and 2 years off treatment. Graph theory statistics measured group differences across several connectivity metrics, including average strength, global efficiency, assortativity, clustering coefficient, modularity, and betweenness centrality. Analyses also evaluated the effects of neurological risk on connectivity among SPBT. Correlational analyses evaluated associations between connectivity and indices of social behavior. RESULTS: SPBT demonstrated reduced global connectivity compared to TDC. Several medical factors (e.g., chemotherapy, recurrence, multimodal therapy) were related to decreased connectivity across metrics of integration (e.g., average strength, global efficiency) in SPBT. Connectivity metrics were related to peer relationship quality and social challenges in the SPBT group and to social challenges in the total sample. CONCLUSIONS: Microstructural white matter connectivity is diminished in SPBT and related to neurological risk and peer relationship quality. Additional neuroimaging research is needed to evaluate associations between brain connectivity metrics and social functioning in SPBT.


Subject(s)
Brain Neoplasms , Cancer Survivors , White Matter , Humans , Brain Neoplasms/psychology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Female , Male , White Matter/diagnostic imaging , White Matter/pathology , Child , Adolescent , Cancer Survivors/psychology , Case-Control Studies , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Brain/diagnostic imaging , Brain/pathology , Social Behavior , Young Adult , Neural Pathways/diagnostic imaging , Neural Pathways/pathology
6.
J Clin Neurosci ; 124: 130-136, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703473

ABSTRACT

OBJECTIVE: Anatomy and connections of the supplementary motor area (SMA) are studied essentially to analyze the SMA syndrome. Experience with surgical treatment of 19 tumors located in SMA is analyzed. MATERIAL AND METHODS: The cortical anatomy and subcortical connectivity of the SMA was studied on ten previously frozen and formalin fixed human cadaveric brain specimens. The white fiber dissection was performed using Klingler's method. Nineteen patients with low grade gliomas in the region of the SMA treated surgically were clinically analyzed. RESULTS: The white fiber connections of the SMA include short arcuate connections with the pre-central, middle and inferior frontal gyri, the medial part of the SLF, the cingulum, the frontal aslant tract (FAT), the claustro-cortical fibers, the fronto-striatal tract and the crossed frontal aslant tract. All tumors were operated using en-masse surgical technique described by us and its subsequent modifications that focused on attempts towards preservation of related critical fiber tracts namely FAT, cingulum and corpus callosum presumed to be responsible for postoperative SMA syndrome. Eight patients developed an SMA syndrome in the immediate post-operative period. Eleven patients did not develop any post-operative neurological deficits. In all these 11 patients it was apparent that the cingulum, FAT and the corpus callosal fibers were preserved during surgery by modifying the tumor resection technique. CONCLUSIONS: SMA syndrome is a frequent occurrence following surgery in patients with tumors in the region of the SMA complex. Surgical strategy that preserves the cingulum and the FAT can prevent the occurrence of the SMA syndrome.


Subject(s)
Brain Neoplasms , Glioma , Motor Cortex , White Matter , Humans , Female , Male , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Adult , Middle Aged , White Matter/surgery , White Matter/pathology , White Matter/diagnostic imaging , Glioma/surgery , Glioma/pathology , Motor Cortex/surgery , Motor Cortex/pathology , Young Adult , Adolescent , Neurosurgical Procedures/methods , Neural Pathways/surgery , Neural Pathways/pathology , Child
7.
J Comp Neurol ; 532(5): e25623, 2024 May.
Article in English | MEDLINE | ID: mdl-38803103

ABSTRACT

In Alzheimer´s disease (AD), hyperphosphorylated tau spreads along the cerebral cortex in a stereotypical pattern that parallels cognitive deterioration. Tau seems to spread transsynaptically along cortico-cotical pathways that, according to synaptic tract-tracing studies in nonhuman primates, have specific laminar patterns related to the cortical type of the connected areas. This relation is described in the Structural Model. In the present article, we study the laminar distribution of hyperphosphorylated tau, labeled with the antibody AT8, along temporal cortical types in postmortem human brains with different AD stages to test the predictions of the Structural Model. Brains from donors without dementia had scant AT8-immunorreactive (AT8-ir) neurons in allo-, meso-, and isocortical types. In early AD stages, the mesocortical dysgranular type, including part of the transentorhinal cortex, had the highest AT8 immunostaining and AT8-ir neurons density. In advanced AD stages, AT8 immunostaining increased along the isocortical types until reaching the auditory koniocortex. Regarding laminar patterns, in early AD stages there were more AT8-ir neurons in supragranular layers in each de novo involved neocortical type; in advanced AD stages, AT8-ir neurons were equally distributed in supra- and infragranular layers. These AT8-ir laminar patterns are compatible with the predictions of the Structural Model. In summary, we show that hyperphosphorylated tau initially accumulates in allo-, meso-, and isocortical types, offer a proof of concept for the validity of the Structural Model to predict synaptic pathway organization in the human cerebral cortex, and highlight the relevance of nonhuman primate tract-tracing studies to understand human neuropathology.


Subject(s)
Alzheimer Disease , Cerebral Cortex , Neural Pathways , tau Proteins , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Humans , tau Proteins/metabolism , Male , Female , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Aged , Phosphorylation , Aged, 80 and over , Neural Pathways/metabolism , Neural Pathways/pathology , Neural Pathways/chemistry , Middle Aged , Models, Neurological , Neurons/metabolism , Neurons/pathology
8.
Brain Res ; 1837: 148986, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38714227

ABSTRACT

The major depressive disorder (MDD) is a common and severe mental disorder. To identify a reliable biomarker for MDD is important for early diagnosis and prevention. Given easy access and high reproducibility, the structural magnetic resonance imaging (sMRI) is an ideal method to identify the biomarker for depression. In this study, sMRI data of first episode, treatment-naïve 66 MDD patients and 54 sex-, age-, and education-matched healthy controls (HC) were used to identify the differences in gray matter volume (GMV), group-level, individual-level covariance connections. Finally, the abnormal GMV and individual covariance connections were applied to classify MDD from HC. MDD patients showed higher GMV in middle occipital gyrus (MOG) and precuneus (PCun), and higher structural covariance connections between MOG and PCun. In addition, the Allen Human Brain Atlas (AHBA) was applied and revealed the genetic basis for the changes of gray matter volume. Importantly, we reported that GMV in MOG, PCun and structural covariance connectivity between MOG and PCun are able to discriminate MDD from HC. Our results revealed structural underpinnings for MDD, which may contribute towards early discriminating for depression.


Subject(s)
Biomarkers , Depressive Disorder, Major , Gray Matter , Magnetic Resonance Imaging , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Male , Female , Magnetic Resonance Imaging/methods , Adult , Young Adult , Brain/pathology , Brain/diagnostic imaging , Neural Pathways/pathology , Neural Pathways/diagnostic imaging , Organ Size , Middle Aged
9.
Sleep Breath ; 28(4): 1671-1678, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38730205

ABSTRACT

PURPOSE: The objective of this research was to examine changes in the neural networks of both gray and white matter in individuals with obstructive sleep apnea (OSA) in comparison to those without the condition, employing a comprehensive multilayer network analysis. METHODS: Patients meeting the criteria for OSA were recruited through polysomnography, while a control group of healthy individuals matched for age and sex was also assembled. Utilizing T1-weighted imaging, a morphometric similarity network was crafted to represent gray matter, while diffusion tensor imaging provided structural connectivity for constructing a white matter network. A multilayer network analysis was then performed, employing graph theory methodologies. RESULTS: We included 40 individuals diagnosed with OSA and 40 healthy participants in our study. Analysis revealed significant differences in various global network metrics between the two groups. Specifically, patients with OSA exhibited higher average degree overlap and average multilayer clustering coefficient (28.081 vs. 23.407, p < 0.001; 0.459 vs. 0.412, p = 0.004), but lower multilayer modularity (0.150 vs. 0.175, p = 0.001) compared to healthy controls. However, no significant differences were observed in average multiplex participation, average overlapping strength, or average weighted multiplex participation between the patients with OSA and healthy controls. Moreover, several brain regions displayed notable differences in degree overlap at the nodal level between patients with OSA and healthy controls. CONCLUSION: Remarkable alterations in the multilayer network, indicating shifts in both gray and white matter, were detected in patients with OSA in contrast to their healthy counterparts. Further examination at the nodal level unveiled notable changes in regions associated with cognition, underscoring the effectiveness of multilayer network analysis in exploring interactions across brain layers.


Subject(s)
Diffusion Tensor Imaging , Gray Matter , Nerve Net , Polysomnography , Sleep Apnea, Obstructive , White Matter , Humans , Sleep Apnea, Obstructive/physiopathology , Male , White Matter/pathology , White Matter/diagnostic imaging , Female , Adult , Gray Matter/pathology , Gray Matter/diagnostic imaging , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Reference Values , Neural Pathways/physiopathology , Neural Pathways/pathology , Magnetic Resonance Imaging , Image Processing, Computer-Assisted
10.
Brain Struct Funct ; 229(6): 1433-1445, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801538

ABSTRACT

Previous studies on structural covariance network (SCN) suggested that patients with insomnia disorder (ID) show abnormal structural connectivity, primarily affecting the somatomotor network (SMN) and default mode network (DMN). However, evaluating a single structural index in SCN can only reveal direct covariance relationship between two brain regions, failing to uncover synergistic changes in multiple structural features. To cover this research gap, the present study utilized novel morphometric similarity networks (MSN) to examine the morphometric similarity between cortical areas in terms of multiple sMRI parameters measured at each area. With seven T1-weighted imaging morphometric features from the Desikan-Killiany atlas, individual MSN was constructed for patients with ID (N = 87) and healthy control groups (HCs, N = 84). Two-sample t-test revealed differences in MSN between patients with ID and HCs. Correlation analyses examined associations between MSNs and sleep quality, insomnia symptom severity, and depressive symptoms severity in patients with ID. The right paracentral lobule (PCL) exhibited decreased morphometric similarity in patients with ID compared to HCs, mainly manifested by its de-differentiation (meaning loss of distinctiveness) with the SMN, DMN, and ventral attention network (VAN), as well as its decoupling with the visual network (VN). Greater PCL-based de-differentiation correlated with less severe insomnia and fewer depressive symptoms in the patients group. Additionally, patients with less depressive symptoms showed greater PCL de-differentiation from the SMN. As an important pilot step in revealing the underlying morphometric similarity alterations in insomnia disorder, the present study identified the right PCL as a hub region that is de-differentiated with other high-order networks. Our study also revealed that MSN has an important potential to capture clinical significance related to insomnia disorder.


Subject(s)
Brain , Magnetic Resonance Imaging , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/pathology , Sleep Initiation and Maintenance Disorders/diagnostic imaging , Sleep Initiation and Maintenance Disorders/physiopathology , Female , Male , Adult , Middle Aged , Brain/pathology , Brain/diagnostic imaging , Nerve Net/pathology , Nerve Net/diagnostic imaging , Neural Pathways/pathology , Neural Pathways/diagnostic imaging , Brain Mapping , Young Adult
11.
J Neurosci ; 44(21)2024 May 22.
Article in English | MEDLINE | ID: mdl-38565290

ABSTRACT

Left-sided spatial neglect is a very common and challenging issue after right-hemispheric stroke, which strongly and negatively affects daily living behavior and recovery of stroke survivors. The mechanisms underlying recovery of spatial neglect remain controversial, particularly regarding the involvement of the intact, contralesional hemisphere, with potential contributions ranging from maladaptive to compensatory. In the present prospective, observational study, we assessed neglect severity in 54 right-hemispheric stroke patients (32 male; 22 female) at admission to and discharge from inpatient neurorehabilitation. We demonstrate that the interaction of initial neglect severity and spared white matter (dis)connectivity resulting from individual lesions (as assessed by diffusion tensor imaging, DTI) explains a significant portion of the variability of poststroke neglect recovery. In mildly impaired patients, spared structural connectivity within the lesioned hemisphere is sufficient to attain good recovery. Conversely, in patients with severe impairment, successful recovery critically depends on structural connectivity within the intact hemisphere and between hemispheres. These distinct patterns, mediated by their respective white matter connections, may help to reconcile the dichotomous perspectives regarding the role of the contralesional hemisphere as exclusively compensatory or not. Instead, they suggest a unified viewpoint wherein the contralesional hemisphere can - but must not necessarily - assume a compensatory role. This would depend on initial impairment severity and on the available, spared structural connectivity. In the future, our findings could serve as a prognostic biomarker for neglect recovery and guide patient-tailored therapeutic approaches.


Subject(s)
Diffusion Tensor Imaging , Perceptual Disorders , Recovery of Function , Stroke , White Matter , Humans , Male , Female , Perceptual Disorders/etiology , Perceptual Disorders/physiopathology , Perceptual Disorders/rehabilitation , Stroke/complications , Stroke/diagnostic imaging , Stroke/physiopathology , Aged , White Matter/diagnostic imaging , White Matter/pathology , Middle Aged , Recovery of Function/physiology , Functional Laterality/physiology , Prospective Studies , Severity of Illness Index , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Aged, 80 and over
12.
Alzheimers Dement ; 20(6): 3958-3971, 2024 06.
Article in English | MEDLINE | ID: mdl-38676563

ABSTRACT

INTRODUCTION: Animal research has shown that tau pathology in the locus coeruleus (LC) is associated with reduced norepinephrine signaling, lower projection density to the medial temporal lobe (MTL), atrophy, and cognitive impairment. We investigated the contribution of LC-MTL functional connectivity (FCLC-MTL) on cortical atrophy across Braak stage regions and its impact on cognition. METHODS: We analyzed functional magnetic resonance imaging and amyloid beta (Aß) positron emission tomography data from 128 cognitively normal participants, associating novelty-related FCLC-MTL with longitudinal atrophy and cognition with and without Aß moderation. RESULTS: Cross-sectionally, lower FCLC-MTL was associated with atrophy in Braak stage II regions. Longitudinally, atrophy in Braak stage 2 to 4 regions related to lower baseline FCLC-MTL at elevated levels of Aß, but not to other regions. Atrophy in Braak stage 2 regions mediated the relation between FCLC-MTL and subsequent cognitive decline. DISCUSSION: FCLC-MTL is implicated in Aß-related cortical atrophy, suggesting that LC-MTL connectivity could confer neuroprotective effects in preclinical AD. HIGHLIGHTS: Novelty-related functional magnetic resonance imaging (fMRI) LC-medial temporal lobe (MTL) connectivity links to longitudinal Aß-dependent atrophy. This relationship extended to higher Braak stage regions with increasing Aß burden. Longitudinal MTL atrophy mediated the LC-MTL connectivity-cognition relationship. Our findings mirror the animal data on MTL atrophy following NE signal dysfunction.


Subject(s)
Alzheimer Disease , Atrophy , Cognitive Dysfunction , Locus Coeruleus , Magnetic Resonance Imaging , Positron-Emission Tomography , Humans , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Male , Female , Atrophy/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Cross-Sectional Studies , Temporal Lobe/pathology , Temporal Lobe/diagnostic imaging , Amyloid beta-Peptides/metabolism , Longitudinal Studies , Neural Pathways/diagnostic imaging , Neural Pathways/pathology
13.
Epilepsia ; 65(6): 1756-1767, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38517477

ABSTRACT

OBJECTIVE: Focal to bilateral tonic-clonic seizures (FBTCS) represent a challenging subtype of focal temporal lobe epilepsy (TLE) in terms of both severity and treatment response. Most studies have focused on regional brain analysis that is agnostic to the distribution of white matter (WM) pathways associated with a node. We implemented a more selective, edge-wise approach that allowed for identification of the individual connections unique to FBTCS. METHODS: T1-weighted and diffusion-weighted images were obtained from 22 patients with solely focal seizures (FS), 43 FBTCS patients, and 65 age/sex-matched healthy participants (HPs), yielding streamline (STR) connectome matrices. We used diffusion tensor-derived STRs in an edge-wise approach to determine specific structural connectivity changes associated with seizure generalization in FBTCS compared to matched FS and HPs. Graph theory metrics were computed on both node- and edge-based connectivity matrices. RESULTS: Edge-wise analyses demonstrated that all significantly abnormal cross-hemispheric connections belonged to the FBTCS group. Abnormal connections associated with FBTCS were mostly housed in the contralateral hemisphere, with graph metric values generally decreased compared to HPs. In FBTCS, the contralateral amygdala showed selective decreases in the structural connection pathways to the contralateral frontal lobe. Abnormal connections in TLE involved the amygdala, with the ipsilateral side showing increases and the contralateral decreases. All the FS findings indicated higher graph metrics for connections involving the ipsilateral amygdala. Data also showed that some FBTCS connectivity effects are moderated by aging, recent seizure frequency, and longer illness duration. SIGNIFICANCE: Data showed that not all STR pathways are equally affected by the seizure propagation of FBTCS. We demonstrated two key biases, one indicating a large role for the amygdala in the propagation of seizures, the other pointing to the prominent role of cross-hemispheric and contralateral hemisphere connections in FBTCS. We demonstrated topographic reorganization in FBTCS, pointing to the specific WM tracts involved.


Subject(s)
Seizures , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Female , Male , Adult , Seizures/diagnostic imaging , Seizures/pathology , Seizures/physiopathology , Middle Aged , Connectome/methods , Diffusion Tensor Imaging/methods , Young Adult , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Magnetic Resonance Imaging/methods
14.
Brain Res Bull ; 210: 110925, 2024 May.
Article in English | MEDLINE | ID: mdl-38493835

ABSTRACT

Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies have widely explored the temporal connection changes in the human brain following long-term sleep deprivation (SD). However, the frequency-specific topological properties of sleep-deprived functional networks remain virtually unclear. In this study, thirty-seven healthy male subjects underwent resting-state fMRI during rested wakefulness (RW) and after 36 hours of SD, and we examined frequency-specific spectral connection changes (0.01-0.08 Hz, interval = 0.01 Hz) caused by SD. First, we conducted a multivariate pattern analysis combining linear SVM classifiers with a robust feature selection algorithm, and the results revealed that accuracies of 74.29%-84.29% could be achieved in the classification between RW and SD states in leave-one-out cross-validation at different frequency bands, moreover, the spectral connection at the lowest and highest frequency bands exhibited higher discriminative power. Connection involving the cingulo-opercular network increased most, while connection involving the default-mode network decreased most following SD. Then we performed a graph-theoretic analysis and observed reduced low-frequency modularity and high-frequency global efficiency in the SD state. Moreover, hub regions, which were primarily situated in the cerebellum and the cingulo-opercular network after SD, exhibited high discriminative power in the aforementioned classification consistently. The findings may indicate the frequency-dependent effects of SD on the functional network topology and its efficiency of information exchange, providing new insights into the impact of SD on the human brain.


Subject(s)
Brain Mapping , Sleep Deprivation , Humans , Male , Sleep Deprivation/diagnostic imaging , Neural Pathways/pathology , Brain/pathology , Wakefulness , Magnetic Resonance Imaging/methods
15.
Hum Brain Mapp ; 45(3): e26629, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38379508

ABSTRACT

The corpus callosum (CC) is the principal white matter bundle supporting communication between the two brain hemispheres. Despite its importance, a comprehensive mapping of callosal connections is still lacking. Here, we constructed the first bidirectional population-based callosal connectional atlas between the midsagittal section of the CC and the cerebral cortex of the human brain by means of diffusion-weighted imaging tractography. The estimated connectional topographic maps within this atlas have the most fine-grained spatial resolution, demonstrate histological validity, and were reproducible in two independent samples. This new resource, a complete and comprehensive atlas, will facilitate the investigation of interhemispheric communication and come with a user-friendly companion online tool (CCmapping) for easy access and visualization of the atlas.


Subject(s)
Cerebral Cortex , Corpus Callosum , Humans , Young Adult , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Diffusion Magnetic Resonance Imaging/methods , Brain , Brain Mapping/methods
16.
Biol Psychiatry ; 95(12): 1091-1099, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38215816

ABSTRACT

BACKGROUND: Extensive neuroimaging research on brain structural and functional correlates of suicide has produced inconsistent results. Despite increasing recognition that damage in multiple different brain locations that causes the same symptom can map to a common brain network, there is still a paucity of research investigating network localization of suicide. METHODS: To clarify this issue, we initially identified brain structural and functional damage locations in relation to suicide from 63 published studies with 2135 suicidal and 2606 nonsuicidal individuals. By applying novel functional connectivity network mapping to large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 suicide brain damage networks corresponding to different imaging modalities. RESULTS: The suicide gray matter volume damage network comprised widely distributed brain areas primarily involving the dorsal default mode, basal ganglia, and anterior salience networks. The suicide task-induced activation damage network was similar to but less extensive than the gray matter volume damage network, predominantly implicating the same canonical networks. The suicide resting-state activity damage network manifested as a localized set of brain regions encompassing the orbitofrontal cortex and middle cingulate cortex. CONCLUSIONS: Our findings not only may help reconcile prior heterogeneous neuroimaging results, but also may provide insights into the neurobiological mechanisms of suicide from a network perspective, which may ultimately inform more targeted and effective strategies to prevent suicide.


Subject(s)
Brain , Gray Matter , Magnetic Resonance Imaging , Suicide , Humans , Brain/pathology , Brain/diagnostic imaging , Gray Matter/pathology , Gray Matter/diagnostic imaging , Nerve Net/diagnostic imaging , Nerve Net/pathology , Nerve Net/physiopathology , Brain Mapping , Male , Female , Adult , Neural Pathways/pathology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
17.
Neurol Sci ; 45(7): 3359-3368, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38289560

ABSTRACT

OBJECTIVE: Lower white matter integrity of frontal-subcortical circuitry has been associated with late-life depression in normally aging older adults and with the presence of multiple sclerosis (MS). Frontal-striatal white matter tracts involved in executive, cognitive, emotion, and motor function may underlie depression in older adults with MS. The present study examined the association between depression score and frontal-striatal white matter integrity in older adults with MS and controls. METHODS: Older adults with MS (OAMS) (n = 67, mean age = 64.55 ± 3.89) and controls (n = 74, mean age = 69.04 ± 6.32) underwent brain MRI, cognitive assessment, psychological, and motoric testing. Depression was assessed through the 30-item Geriatric Depression Scale. Fractional anisotropy (FA) was extracted from two bilateral tracts: dorsolateral prefrontal cortex to putamen nucleus (DLPFC-pn) and dorsolateral prefrontal cortex to caudate nucleus (DLPFC-cn). RESULTS: OAMS reported significantly worse (i.e., higher) depression symptoms (ß = .357, p < .001) compared to healthy controls. Adjusted moderation analyses revealed, via group by FA interactions, significantly stronger associations between FA of the left DLPFC-pn tract and total depression (B = - 61.70, p = .011) among OAMS compared to controls. Conditional effects revealed that lower FA of the left DLPFC-pn was significantly associated with worse (i.e., higher) depression symptoms (b = - 38.0, p = .028) only among OAMS. The other three tracts were not significant in moderation models. CONCLUSIONS: We provided first evidence that lower white matter integrity of the left DLPFC-pn tract was related to worse depression in older adults with MS.


Subject(s)
Depression , Multiple Sclerosis , White Matter , Humans , Male , Aged , Female , Depression/diagnostic imaging , Depression/pathology , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Multiple Sclerosis/complications , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Tensor Imaging , Corpus Striatum/diagnostic imaging , Corpus Striatum/pathology , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Magnetic Resonance Imaging
18.
Brain Imaging Behav ; 18(2): 378-386, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38147272

ABSTRACT

Gray matter (GM) atrophy is well documented in patients with major depressive disorder (MDD), but its underlying mechanism remains unknown. This study aimed to examine the GM atrophy in MDD patients with diverse suicidal ideations (SIs) and to explore whether those alterations were driven by connections. GM volume was estimated in 163 patients with recurrent MDD (comprising 122 with SI [MDDSI] and 41 without SI [MDDNSI]) and 134 health controls (HCs). A two-sample t-test was used to identify GM volume abnormalities in MDD patients and their subgroups. Functional connectivity was computed between pairs of aberrant GM in both patients and HCs, which were further compared with the connectivity of random brain regions. A permutation test was performed to assess its significance. Propensity score matching (PSM) was further performed to validate the main results. Compared with HCs, the MDDNSI group exhibited GM atrophy in 24 regions, with the largest effect sizes found in the frontal and parietal lobes, while the MDDSI group exhibited more widespread GM atrophy involving 49 regions, with the largest effect sizes in the frontal lobe, parietal lobe, temporal lobe, and the limbic system. Furthermore, patients and HCs exhibited significantly increased functional connectivity between regions with GM atrophy compared with randomly selected regions (p < 0.05). PSM analysis presented similar results to the main analysis. MDD patients had diverse GM atrophy features according to their SI tendency. Moreover, connectome architecture modulates the GM atrophy in MDD patients, implying the possibility that connections drive these pathological changes.


Subject(s)
Atrophy , Brain , Connectome , Depressive Disorder, Major , Gray Matter , Magnetic Resonance Imaging , Suicidal Ideation , Humans , Depressive Disorder, Major/pathology , Depressive Disorder, Major/diagnostic imaging , Gray Matter/pathology , Gray Matter/diagnostic imaging , Male , Female , Connectome/methods , Magnetic Resonance Imaging/methods , Adult , Brain/pathology , Brain/diagnostic imaging , Middle Aged , Neural Pathways/pathology , Neural Pathways/diagnostic imaging
19.
Brain Imaging Behav ; 18(2): 387-395, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38147273

ABSTRACT

We aim to investigate the alterations in gray matter for subjective cognitive decline (SCD) and mild cognitive impairment (MCI) from the perspective of the human connectome. High-resolution T1-weighted images were acquired from 54 patients with SCD, 95 patients with MCI, and 65 healthy controls (HC). Morphological brain networks (MBN) were constructed using similarities in the distribution of gray matter volumes between regions. The strength of morphological connections and topographic metrics derived from the graph-theoretical analysis were compared. Furthermore, we assessed the relationship between the observed morphological abnormalities and disease severity. According to the results, we found a significantly decreased morphological connection between the somatomotor network and ventral attention network in SCD compared to HC and MCI compared to SCD. The graph-theoretic analysis illustrated disruptions in the whole network organization, where the normalized shortest path increased and the global efficiency (Eg) decreased in MCI compared to SCD. In addition, Montreal Cognitive Assessment scores of SCD patients had a significantly negative correlation with Eg. The primary limitations of the present study include the cross-sectional design, no enrolled AD patients, no assessment of amyloidosis, and the need for more comprehensive neuropsychological tests. Our findings indicate the abnormalities of morphological networks at early stages in the AD continuum, which could be interpreted as compensatory changes to retain a normal level of cognitive function. The present study could provide new insight into the mechanism of AD.


Subject(s)
Brain , Cognitive Dysfunction , Connectome , Magnetic Resonance Imaging , Nerve Net , Humans , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Female , Male , Brain/pathology , Brain/diagnostic imaging , Aged , Magnetic Resonance Imaging/methods , Connectome/methods , Nerve Net/diagnostic imaging , Nerve Net/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Middle Aged , Neuropsychological Tests , Cross-Sectional Studies , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Neural Pathways/physiopathology
20.
Brain Imaging Behav ; 17(6): 689-701, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37695507

ABSTRACT

Survivors of pediatric brain tumors experience significant cognitive deficits from their diagnosis and treatment. The exact mechanisms of cognitive injury are poorly understood, and validated predictors of long-term cognitive outcome are lacking. Resting state functional magnetic resonance imaging allows for the study of the spontaneous fluctuations in bulk neural activity, providing insight into brain organization and function. Here, we evaluated cognitive performance and functional network architecture in pediatric brain tumor patients. Forty-nine patients (7-18 years old) with a primary brain tumor diagnosis underwent resting state imaging during regularly scheduled clinical visits. All patients were tested with a battery of cognitive assessments. Extant data from 139 typically developing children were used as controls. We found that obtaining high-quality imaging data during routine clinical scanning was feasible. Functional network organization was significantly altered in patients, with the largest disruptions observed in patients who received propofol sedation. Awake patients demonstrated significant decreases in association network segregation compared to controls. Interestingly, there was no difference in the segregation of sensorimotor networks. With a median follow-up of 3.1 years, patients demonstrated cognitive deficits in multiple domains of executive function. Finally, there was a weak correlation between decreased default mode network segregation and poor picture vocabulary score. Future work with longer follow-up, longitudinal analyses, and a larger cohort will provide further insight into this potential predictor.


Subject(s)
Brain Neoplasms , Cognition Disorders , Child , Humans , Adolescent , Magnetic Resonance Imaging/methods , Brain , Brain Neoplasms/complications , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Mapping/methods , Cognition , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Nerve Net/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL