Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.525
Filter
1.
Cell Death Dis ; 15(7): 478, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961086

ABSTRACT

A recent approach to promote central nervous system (CNS) regeneration after injury or disease is direct conversion of somatic cells to neurons. This is achieved by transduction of viral vectors that express neurogenic transcription factors. In this work we propose adult human mucosal olfactory ensheathing glia (hmOEG) as a candidate for direct reprogramming to neurons due to its accessibility and to its well-characterized neuroregenerative capacity. After induction of hmOEG with the single neurogenic transcription factor NEUROD1, the cells under study exhibited morphological and immunolabeling neuronal features, fired action potentials and expressed glutamatergic and GABAergic markers. In addition, after engraftment of transduced hmOEG cells in the mouse hippocampus, these cells showed specific neuronal labeling. Thereby, if we add to the neuroregenerative capacity of hmOEG cultures the conversion to neurons of a fraction of their population through reprogramming techniques, the engraftment of hmOEG and hmOEG-induced neurons could be a procedure to enhance neural repair after central nervous system injury.


Subject(s)
Neuroglia , Neurons , Humans , Animals , Neuroglia/metabolism , Neuroglia/cytology , Neurons/metabolism , Neurons/cytology , Mice , Adult , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Lineage , Hippocampus/cytology , Hippocampus/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Cells, Cultured
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38927995

ABSTRACT

Neural precursor cells (NPCs) that persist in the postnatal/adult subventricular zone (SVZ) express connexins that form hemichannels and gap junctions. Gap junctional communication plays a role in NPC proliferation and differentiation during development, but its relevance on postnatal age remains to be elucidated. In this work we aimed to evaluate the effect of the blockade of gap junctional communication on proliferation and cell fate of NPCs obtained from the SVZ of postnatal rats. NPCs were isolated and expanded in culture as neurospheres. Electron microscopy revealed the existence of gap junctions among neurosphere cells. Treatment of cultures with octanol, a broad-spectrum gap junction blocker, or with Gap27, a specific blocker for gap junctions formed by connexin43, produced a significant decrease in bromodeoxyuridine incorporation. Octanol treatment also exerted a dose-dependent antiproliferative effect on glioblastoma cells. To analyze possible actions on NPC fate, cells were seeded in the absence of mitogens. Treatment with octanol led to an increase in the percentage of astrocytes and oligodendrocyte precursors, whereas the percentage of neurons remained unchanged. Gap27 treatment, in contrast, did not modify the differentiation pattern of SVZ NPCs. Our results indicate that general blockade of gap junctions with octanol induces significant effects on the behavior of postnatal SVZ NPCs, by reducing proliferation and promoting glial differentiation.


Subject(s)
Cell Differentiation , Cell Proliferation , Gap Junctions , Neural Stem Cells , Neuroglia , Octanols , Animals , Gap Junctions/drug effects , Gap Junctions/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Rats , Octanols/pharmacology , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/cytology , Cells, Cultured , Lateral Ventricles/cytology , Lateral Ventricles/metabolism , Lateral Ventricles/drug effects , Connexin 43/metabolism , Rats, Wistar , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/cytology , Animals, Newborn , Humans
3.
Neural Dev ; 19(1): 10, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907299

ABSTRACT

Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.


Subject(s)
Biological Evolution , Neuroglia , Animals , Neuroglia/physiology , Neuroglia/cytology , Cnidaria/genetics , Cnidaria/cytology , Ctenophora/genetics , Ctenophora/cytology , Placozoa/genetics , Placozoa/cytology
4.
STAR Protoc ; 5(2): 103057, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38762883

ABSTRACT

Here, we present our protocol to culture enteric glial cells from the submucosal and myenteric plexus of neonatal and juvenile pig colons. We describe steps for colon isolation, microdissection, and enzymatic and mechanical dissociation. We include procedures for passaging and analyzing cell yield, freeze/thaw efficiency, and purity. This protocol allows for the generation of primary cultures of enteric glial cells from single-cell suspensions of microdissected layers of the colon wall and can be used to culture enteric glia from human colon specimens. For complete details on the use and execution of this protocol, please refer to Ziegler et al.1.


Subject(s)
Animals, Newborn , Cell Culture Techniques , Colon , Myenteric Plexus , Neuroglia , Animals , Neuroglia/cytology , Swine , Myenteric Plexus/cytology , Colon/cytology , Colon/innervation , Cell Culture Techniques/methods , Submucous Plexus/cytology , Cells, Cultured
5.
Sci Signal ; 17(838): eadq5728, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805584
6.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713624

ABSTRACT

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cerebral Cortex , ErbB Receptors , Hedgehog Proteins , Nerve Tissue Proteins , Neural Stem Cells , Neurogenesis , Oligodendrocyte Transcription Factor 2 , PAX6 Transcription Factor , Animals , Neurogenesis/physiology , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Mice , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendrocyte Transcription Factor 2/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , PAX6 Transcription Factor/metabolism , PAX6 Transcription Factor/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Paired Box Transcription Factors/metabolism , Paired Box Transcription Factors/genetics , Neuroglia/metabolism , Neuroglia/cytology , Gene Expression Regulation, Developmental , Signal Transduction , Olfactory Bulb/metabolism , Olfactory Bulb/cytology , Cell Lineage , Humans
7.
Nat Commun ; 15(1): 3873, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719882

ABSTRACT

Human glial progenitor cells (hGPCs) exhibit diminished expansion competence with age, as well as after recurrent demyelination. Using RNA-sequencing to compare the gene expression of fetal and adult hGPCs, we identify age-related changes in transcription consistent with the repression of genes enabling mitotic expansion, concurrent with the onset of aging-associated transcriptional programs. Adult hGPCs develop a repressive transcription factor network centered on MYC, and regulated by ZNF274, MAX, IKZF3, and E2F6. Individual over-expression of these factors in iPSC-derived hGPCs lead to a loss of proliferative gene expression and an induction of mitotic senescence, replicating the transcriptional changes incurred during glial aging. miRNA profiling identifies the appearance of an adult-selective miRNA signature, imposing further constraints on the expansion competence of aged GPCs. hGPC aging is thus associated with acquisition of a MYC-repressive environment, suggesting that suppression of these repressors of glial expansion may permit the rejuvenation of aged hGPCs.


Subject(s)
Aging , MicroRNAs , Neuroglia , Transcription Factors , Humans , Neuroglia/metabolism , Neuroglia/cytology , Aging/genetics , Aging/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cellular Senescence/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/cytology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Adult , Gene Regulatory Networks , Cell Proliferation/genetics , Gene Expression Regulation, Developmental , Gene Expression Profiling
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732109

ABSTRACT

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Subject(s)
Cell Differentiation , Melatonin , Mesenchymal Stem Cells , Melatonin/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Humans , Cell Differentiation/drug effects , Cells, Cultured , Adipose Tissue/cytology , Neurons/cytology , Neurons/metabolism , Neurons/drug effects , Culture Media, Conditioned/pharmacology , Schwann Cells/cytology , Schwann Cells/metabolism , Schwann Cells/drug effects , Neurogenesis/drug effects , Adult , Nestin/metabolism , Nestin/genetics , Glial Fibrillary Acidic Protein/metabolism , Neuroglia/drug effects , Neuroglia/cytology , Neuroglia/metabolism , Synapsins/metabolism
9.
Dev Cell ; 59(9): 1210-1230.e9, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38569548

ABSTRACT

The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage. Using fluorescence-activated cell sorting (FACS)-enriched populations, we separate all motor neuron bundles and link individual neuron clusters to morphologically characterized known subtypes. We discovered a glutamate receptor subunit required for basal neurotransmission and homeostasis at the larval neuromuscular junction. We describe larval glia and endorse the general view that glia perform consistent activities throughout development. This census represents an extensive resource and a powerful platform for future discoveries of cellular and molecular mechanisms in repair, regeneration, plasticity, homeostasis, and behavioral coordination.


Subject(s)
Drosophila melanogaster , Larva , Motor Neurons , Animals , Larva/genetics , Larva/metabolism , Motor Neurons/metabolism , Motor Neurons/cytology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Neuroglia/metabolism , Neuroglia/cytology , Neuromuscular Junction/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , RNA-Seq/methods , Single-Cell Gene Expression Analysis
10.
STAR Protoc ; 5(2): 102989, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38568817

ABSTRACT

CNS injuries are associated with profound changes in cell organization. This protocol presents a stepwise approach to quantitatively describe the spatiotemporal changes in glial cell rearrangement in the injured murine brain, which is applicable to other biological contexts. Herein, we apply common immunolabeling of neurons and glial cells and wide-field microscopy imaging. Then, we employ computational tools for alignment to the Allen Brain Atlas, unbiased/automatic detection of cells, generation of point patterns, and data analysis. For complete details on the use and execution of this protocol, please refer to Manrique-Castano et al.1.


Subject(s)
Brain , Neuroglia , Neurons , Animals , Mice , Neurons/cytology , Neurons/metabolism , Neuroglia/cytology , Neuroglia/metabolism , Brain/cytology , Brain/metabolism , Image Processing, Computer-Assisted/methods
11.
Cell Rep ; 43(4): 114031, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38583153

ABSTRACT

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.


Subject(s)
Cell Differentiation , Lateral Ventricles , Leukemia Inhibitory Factor , Organoids , Pluripotent Stem Cells , Humans , Organoids/metabolism , Organoids/cytology , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/pharmacology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Lateral Ventricles/cytology , Lateral Ventricles/metabolism , STAT3 Transcription Factor/metabolism , Neuroglia/metabolism , Neuroglia/cytology , Signal Transduction
12.
Nature ; 626(8001): 1073-1083, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38355792

ABSTRACT

Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.


Subject(s)
Amyotrophic Lateral Sclerosis , C-Reactive Protein , DNA-Binding Proteins , Frontotemporal Lobar Degeneration , Nerve Net , Nerve Tissue Proteins , Neurons , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , C-Reactive Protein/metabolism , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Nerve Net/metabolism , Nerve Net/pathology , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neuroglia/cytology , Neurons/cytology , Neurons/metabolism , Reproducibility of Results
13.
Invest Ophthalmol Vis Sci ; 64(14): 8, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37934159

ABSTRACT

Purpose: The proliferative and neurogenic potential of retinal Müller glia after injury varies widely across species. To identify the endogenous mechanisms regulating the proliferative response of mammalian Müller glia, we comparatively analyzed the expression and function of nestin, an intermediate filament protein established as a neural stem cell marker, in the mouse and rat retinas after injury. Methods: Nestin expression in the retinas of C57BL/6 mice and Wistar rats after methyl methanesulfonate (MMS)-induced photoreceptor injury was examined by immunofluorescence and Western blotting. Adeno-associated virus (AAV)-delivered control and nestin short hairpin RNA (shRNA) were intravitreally injected to rats and Müller glia proliferation after MMS-induced injury was analyzed by BrdU incorporation and immunofluorescence. Photoreceptor removal and microglia/macrophage infiltration were also analyzed by immunofluorescence. Results: Rat Müller glia re-entered the cell cycle and robustly upregulated nestin after injury whereas Müller glia proliferation and nestin upregulation were not observed in mice. In vivo knockdown of nestin in the rat retinas inhibited Müller glia proliferation while transiently stimulating microglia/macrophage infiltration and phagocytic removal of dead photoreceptors. Conclusions: Our findings suggest a critical role for nestin in the regulation of Müller glia proliferation after retinal injury and highlight the importance of cross species analysis to identify the molecular mechanisms regulating the injury responses of the mammalian retina.


Subject(s)
Eye Injuries , Nestin , Neuroglia , Animals , Mice , Rats , Cell Proliferation , Methyl Methanesulfonate , Mice, Inbred C57BL , Rats, Wistar , Neuroglia/cytology
14.
Nature ; 619(7971): 801-810, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438528

ABSTRACT

The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.


Subject(s)
Cellular Microenvironment , Heart , Multiomics , Myocardium , Humans , Cell Communication , Fibroblasts/cytology , Glutamic Acid/metabolism , Heart/anatomy & histology , Heart/innervation , Ion Channels/metabolism , Myocardium/cytology , Myocardium/immunology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Neuroglia/cytology , Pericardium/cytology , Pericardium/immunology , Plasma Cells/immunology , Receptors, G-Protein-Coupled/metabolism , Sinoatrial Node/anatomy & histology , Sinoatrial Node/cytology , Sinoatrial Node/physiology , Heart Conduction System/anatomy & histology , Heart Conduction System/cytology , Heart Conduction System/metabolism
15.
Biochemistry (Mosc) ; 88(3): 337-352, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37076281

ABSTRACT

Lipids comprise an extremely heterogeneous group of compounds that perform a wide variety of biological functions. Traditional view of lipids as important structural components of the cell and compounds playing a trophic role is currently being supplemented by information on the possible participation of lipids in signaling, not only intracellular, but also intercellular. The review article discusses current data on the role of lipids and their metabolites formed in glial cells (astrocytes, oligodendrocytes, microglia) in communication of these cells with neurons. In addition to metabolic transformations of lipids in each type of glial cells, special attention is paid to the lipid signal molecules (phosphatidic acid, arachidonic acid and its metabolites, cholesterol, etc.) and the possibility of their participation in realization of synaptic plasticity, as well as in other possible mechanisms associated with neuroplasticity. All these new data can significantly expand our knowledge about the regulatory functions of lipids in neuroglial relationships.


Subject(s)
Cell Communication , Lipids , Neuroglia , Neurons , Arachidonic Acid/metabolism , Astrocytes/cytology , Astrocytes/metabolism , Cholesterol/metabolism , Microglia/cytology , Microglia/metabolism , Neuroglia/cytology , Neuroglia/metabolism , Neuronal Plasticity , Neurons/cytology , Neurons/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Phosphatidic Acids/metabolism , Signal Transduction , Humans , Animals
16.
Mol Neurobiol ; 60(8): 4472-4487, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37118325

ABSTRACT

The study of psychiatric and neurological diseases requires the substrate in which the disorders occur, that is, the nervous tissue. Currently, several types of human bio-specimens are being used for research, including postmortem brains, cerebrospinal fluid, induced pluripotent stem (iPS) cells, and induced neuronal (iN) cells. However, these samples are far from providing a useful predictive, diagnostic, or prognostic biomarker. The olfactory epithelium is a region close to the brain that has received increased interest as a research tool for the study of brain mechanisms in complex neuropsychiatric and neurological diseases. The olfactory sensory neurons are replaced by neurogenesis throughout adult life from stem cells on the basement membrane. These stem cells are multipotent and can be propagated in neurospheres, proliferated in vitro and differentiated into multiple cell types including neurons and glia. For all these reasons, olfactory epithelium provides a unique resource for investigating neuronal molecular markers of neuropsychiatric and neurological diseases. Here, we describe the isolation and culture of human differentiated neurons and glial cells from olfactory epithelium of living subjects by an easy and non-invasive exfoliation method that may serve as a useful tool for the research in brain diseases.


Subject(s)
Cell Culture Techniques , Cell Differentiation , Cell Separation , Neurogenesis , Neuroglia , Neurons , Olfactory Mucosa , Humans , Basement Membrane/cytology , Biomarkers/analysis , Cell Adhesion , Cell Culture Techniques/methods , Cell Proliferation , Cell Separation/methods , Cells, Cultured , Culture Media/chemistry , Flow Cytometry , Immunohistochemistry , Magnetics , Neural Stem Cells/cytology , Neuroglia/cytology , Neurons/cytology , Olfactory Mucosa/cytology , Organ Specificity
17.
Cell Rep ; 42(3): 112194, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36857184

ABSTRACT

The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition.


Subject(s)
Enteric Nervous System , Ganglia , Multiomics , Neurogenesis , Neuroglia , Single-Cell Analysis , Neuroglia/classification , Neuroglia/cytology , Neuroglia/metabolism , Neurogenesis/genetics , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , RNA/analysis , RNA/genetics , Ganglia/cytology , Male , Female , Animals , Mice , Enteric Nervous System/cytology , Single-Cell Gene Expression Analysis , Cell Culture Techniques , Intestine, Small/cytology , Weaning
18.
Sci Data ; 10(1): 150, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944675

ABSTRACT

The ability of Timm's sulphide silver method to stain zincergic terminal fields has made it a useful neuromorphological marker. Beyond its roles in zinc-signalling and neuromodulation, zinc is involved in the pathophysiology of ischemic stroke, epilepsy, degenerative diseases and neuropsychiatric conditions. In addition to visualising zincergic terminal fields, the method also labels transition metals in neuronal perikarya and glial cells. To provide a benchmark reference for planning and interpretation of experimental investigations of zinc-related phenomena in rat brains, we have established a comprehensive repository of serial microscopic images from a historical collection of coronally, horizontally and sagittally oriented rat brain sections stained with Timm's method. Adjacent Nissl-stained sections showing cytoarchitecture, and customised atlas overlays from a three-dimensional rat brain reference atlas registered to each section image are included for spatial reference and guiding identification of anatomical boundaries. The Timm-Nissl atlas, available from EBRAINS, enables experimental researchers to navigate normal rat brain material in three planes and investigate the spatial distribution and density of zincergic terminal fields across the entire brain.


Subject(s)
Brain , Neuroglia , Rats , Animals , Brain/anatomy & histology , Brain/cytology , Metals , Neuroglia/cytology , Neuroglia/metabolism , Zinc
19.
J Pineal Res ; 74(3): e12854, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36692235

ABSTRACT

Photoreceptors in the vertebrate eye are dependent on the retinal pigmented epithelium for a variety of functions including retinal re-isomerization and waste disposal. The light-sensitive pineal gland of fish, birds, and amphibians is evolutionarily related to the eye but lacks a pigmented epithelium. Thus, it is unclear how these functions are performed. Here, we ask whether a subpopulation of zebrafish pineal cells, which express glial markers and visual cycle genes, is involved in maintaining photoreceptors. Selective ablation of these cells leads to a loss of pineal photoreceptors. Moreover, these cells internalize exorhodopsin that is secreted by pineal rod-like photoreceptors, and in turn release CD63-positive extracellular vesicles (EVs) that are taken up by pdgfrb-positive phagocytic cells in the forebrain meninges. These results identify a subpopulation of glial cells that is critical for pineal photoreceptor survival and indicate the existence of cells in the forebrain meninges that receive EVs released by these pineal cells and potentially function in waste disposal.


Subject(s)
Neuroglia , Photoreceptor Cells, Vertebrate , Pineal Gland , Visual Perception , Animals , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Gene Expression , Melatonin , Meninges/cytology , Meninges/physiology , Neuroglia/cytology , Neuroglia/metabolism , Photoreceptor Cells/cytology , Photoreceptor Cells/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/physiology , Pineal Gland/cytology , Pineal Gland/metabolism , Rhodopsin/metabolism , Tetraspanin 30/metabolism , Visual Perception/genetics , Visual Perception/physiology , Zebrafish/genetics , Zebrafish/metabolism
20.
J Virol ; 96(19): e0112222, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36121298

ABSTRACT

Zika virus (ZIKV) is an arbovirus member of the Flaviviridae family that causes severe congenital brain anomalies in infected fetuses. The key target cells of ZIKV infection, human neural progenitor cells (hNPCs), are highly permissive to infection that causes the inhibition of cell proliferation and induces cell death. We have previously shown that pharmaceutical-grade heparin inhibits virus-induced cell death with negligible effects on in vitro virus replication in ZIKV-infected hNPCs at the "high" multiplicity of infection (MOI) of 1. Here, we show that heparin inhibits formation of ZIKV-induced intracellular vacuoles, a signature of paraptosis, and inhibits necrosis and apoptosis of hNPCs grown as neurospheres (NS). To test whether heparin preserved the differentiation of ZIKV-infected hNPCs into neuroglial cells, hNPCs were infected at the MOI of 0.001. In this experimental condition, heparin inhibited ZIKV replication by ca. 2 log10, mostly interfering with virion attachment, while maintaining its protective effect against ZIKV-induced cytopathicity. Heparin preserved differentiation into neuroglial cells of hNPCs that were obtained from either human-induced pluripotent stem cells (hiPSC) or by fetal tissue. Quite surprisingly, multiple additions of heparin to hNPCs enabled prolonged virus replication while preventing virus-induced cytopathicity. Collectively, these results highlight the potential neuroprotective effect of heparin that could serve as a lead compound to develop novel agents for preventing the damage of ZIKV infection on the developing brain. IMPORTANCE ZIKV is a neurotropic virus that invades neural progenitor cells (NPCs), causing inhibition of their proliferation and maturation into neurons and glial cells. We have shown previously that heparin, an anticoagulant also used widely during pregnancy, prevents ZIKV-induced cell death with negligible inhibition of virus replication. Here, we demonstrate that heparin also exerts antiviral activity against ZIKV replication using a much lower infectious inoculum. Moreover, heparin interferes with different modalities of virus-induced cell death. Finally, heparin-induced prevention of virus-induced NPC death allows their differentiation into neuroglial cells despite the intracellular accumulation of virions. These results highlight the potential use of heparin, or pharmacological agents derived from it, in pregnant women to prevent the devastating effects of ZIKV infection on the developing brain of their fetuses.


Subject(s)
Heparin , Neural Stem Cells , Neuroprotective Agents , Zika Virus , Anticoagulants/pharmacology , Antiviral Agents/pharmacology , Cell Death/drug effects , Cell Differentiation , Heparin/pharmacology , Humans , Neural Stem Cells/cytology , Neural Stem Cells/virology , Neuroglia/cytology , Neuroglia/virology , Neuroprotective Agents/pharmacology , Virus Replication , Zika Virus/drug effects , Zika Virus/physiology , Zika Virus Infection/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...