Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.600
Filter
1.
Physiol Plant ; 176(5): e14513, 2024.
Article in English | MEDLINE | ID: mdl-39262029

ABSTRACT

Pathogenesis-related proteins (PR), including osmotins, play a vital role in plant defense, being activated in response to diverse biotic and abiotic stresses. Despite their significance, the mechanistic insights into the role of osmotins in plant defense have not been extensively explored. The present study explores the cloning and characterization of the osmotin gene (WsOsm) from Withania somnifera, aiming to illuminate its role in plant defense mechanisms. Quantitative real-time PCR analysis revealed significant induction of WsOsm in response to various phytohormones e.g. abscisic acid, salicylic acid, methyl jasmonate, brassinosteroids, and ethrel, as well as biotic and abiotic stresses like heat, cold, salt, and drought. To further elucidate WsOsm's functional role, we overexpressed the gene in Nicotiana tabacum, resulting in heightened resistance against the Alternaria solani pathogen. Additionally, we observed enhancements in shoot length, root length, and root biomass in the transgenic tobacco plants compared to wild plants. Notably, the WsOsm- overexpressing seedlings demonstrated improved salt and drought stress tolerance, particularly at the seedling stage. Confocal histological analysis of H2O2 and biochemical studies of antioxidant enzyme activities revealed higher levels in the WsOsm overexpressing lines, indicating enhanced antioxidant defense. Furthermore, a pull-down assay and mass spectrometry analysis revealed a potential interaction between WsOsm and defensin, a known antifungal PR protein (WsDF). This suggests a novel role of WsOsm in mediating plant defense responses by interacting with other PR proteins. Overall, these findings pave the way for potential future applications of WsOsm in developing stress-tolerant crops and improving plant defense strategies against pathogens.


Subject(s)
Defensins , Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Plants, Genetically Modified , Stress, Physiological , Withania , Withania/genetics , Withania/physiology , Withania/metabolism , Withania/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/physiology , Nicotiana/drug effects , Nicotiana/microbiology , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Defensins/genetics , Defensins/metabolism , Plant Growth Regulators/metabolism , Alternaria/physiology , Droughts , Seedlings/genetics , Seedlings/physiology , Seedlings/drug effects , Salicylic Acid/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Hydrogen Peroxide/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/physiology
2.
J Agric Food Chem ; 72(33): 18423-18433, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39106460

ABSTRACT

Natural products are a valuable resource for the discovery of novel crop protection agents. A series of γ-butyrolactone derivatives, derived from the simplification of podophyllotoxin's structure, were synthesized and assessed for their efficacy against tobacco mosaic virus (TMV). Several derivatives exhibited notable antiviral properties, with compound 3g demonstrating the most potent in vivo anti-TMV activity. At 500 µg/mL, compound 3g achieved an inactivation effect of 87.8%, a protective effect of 71.7%, and a curative effect of 67.7%, surpassing the effectiveness of the commercial plant virucides ningnanmycin and ribavirin. Notably, the syn-diastereomer (syn-3g) exhibited superior antiviral activity compared to the anti-diastereomer (anti-3g). Mechanistic studies revealed that syn-3g could bind to the TMV coat protein and interfere with the self-assembly process of TMV particles. These findings indicate that compound 3g, with its simple chemical structure, could be a potential candidate for the development of novel antiviral agents for crop protection.


Subject(s)
4-Butyrolactone , Antiviral Agents , Podophyllotoxin , Tobacco Mosaic Virus , Podophyllotoxin/chemistry , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Tobacco Mosaic Virus/drug effects , Virus Assembly/drug effects , Capsid Proteins/metabolism , Crop Protection , Crystallography, X-Ray , Structure-Activity Relationship , Nicotiana/drug effects , Nicotiana/metabolism , Nicotiana/virology , Molecular Docking Simulation
3.
J Environ Manage ; 367: 121979, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39088904

ABSTRACT

Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 µM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.


Subject(s)
Cadmium , Plant Growth Regulators , Transcription Factors , Transcriptome , Cadmium/toxicity , Cadmium/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptome/drug effects , Plant Growth Regulators/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Stress, Physiological , Plant Roots/drug effects , Plant Roots/metabolism , Gene Expression Regulation, Plant/drug effects
4.
Plant Physiol Biochem ; 215: 108986, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39106769

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) and Chitooligosaccharide (COS) can increase the resistance of plants to disease. COS can also promote the symbiosis between AMF and plants. However, the effects of AMF & COS combined application on the rhizosphere soil microbial community of tobacco and the improvement of tobacco's resistance to black shank disease are poorly understood.·We treated tobacco with AMF, COS, and combined application of AMF & COS (AC), respectively. Then studied the incidence, physio-biochemical changes, root exudates, and soil microbial diversity of tobacco seedling that was inoculated with Phytophthora nicotianae. The antioxidant enzyme activity and root vigor of tobacco showed a regular of AC > AMF > COS > CK, while the severity of tobacco disease showed the opposite regular. AMF and COS enhance the resistance to black shank disease by enhancing root vigor, and antioxidant capacity, and inducing changes in the rhizosphere microecology of tobacco. We have identified key root exudates and critical soil microorganisms that can inhibit the growth of P. nicotianae. The presence of caprylic acid in root exudates and Bacillus (WdhR-2) in rhizosphere soil microorganisms is the key factor that inhibits P. nicotianae growth. AC can significantly increase the content of caprylic acid in tobacco root exudates compared to AMF and COS. Both AMF and COS can significantly increase the abundance of Bacillus in tobacco rhizosphere soil, but the abundance of Bacillus in AC is significantly higher than that in AMF and COS. This indicates that the combined application of AMF and COS is more effective than their individual use. These findings suggest that exogenous stimuli can induce changes in plant root exudates, regulate plant rhizosphere microbial community, and then inhibit the growth of pathogens, thereby improving plant resistance to diseases.


Subject(s)
Chitosan , Mycorrhizae , Nicotiana , Oligosaccharides , Phytophthora , Plant Diseases , Rhizosphere , Seedlings , Phytophthora/physiology , Mycorrhizae/physiology , Nicotiana/microbiology , Nicotiana/drug effects , Oligosaccharides/metabolism , Seedlings/microbiology , Seedlings/drug effects , Seedlings/metabolism , Chitosan/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Chitin/analogs & derivatives , Chitin/metabolism , Soil Microbiology , Plant Roots/microbiology , Plant Roots/metabolism , Disease Resistance/drug effects
5.
Planta ; 260(4): 80, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192071

ABSTRACT

MAIN CONCLUSION: Mutation at A126 in lycopene-ß-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene without affecting lycopene binding, thereby diverting metabolic flux towards ß-carotene and apocarotenoid biosynthesis. Crocus sativus, commonly known as saffron, has emerged as an important crop for research because of its ability to synthesize unique apocarotenoids such as crocin, picrocrocin and safranal. Metabolic engineering of the carotenoid pathway can prove a beneficial strategy for enhancing the quality of saffron and making it resilient to changing climatic conditions. Here, we demonstrate that introducing a novel mutation at A126 in stigma-specific lycopene-ß-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene, but does not affect lycopene binding, thereby diverting metabolic flux towards ß-carotene formation. Thus, A126L-CstLcyB2a expression in lycopene-accumulating bacterial strains resulted in enhanced production of ß-carotene. Transient expression of A126L-CstLcyB2a in C. sativus stigmas enhanced biosynthesis of crocin. Its stable expression in Nicotiana tabacum enhanced ß-branch carotenoids and phyto-hormones such as abscisic acid (ABA) and gibberellic acids (GA's). N. tabacum transgenic lines showed better growth performance and photosynthetic parameters including maximum quantum efficiency (Fv/Fm) and light-saturated capacity of linear electron transport. Exogenous application of hormones and their inhibitors demonstrated that a higher ratio of GA4/ABA has positive effects on biomass of wild-type and transgenic plants. Thus, these findings provide a platform for the development of new-generation crops with improved productivity, quality and stress tolerance.


Subject(s)
Biomass , Carotenoids , Crocus , Mutation , Stress, Physiological , Crocus/genetics , Crocus/physiology , Crocus/enzymology , Carotenoids/metabolism , Stress, Physiological/genetics , cis-trans-Isomerases/genetics , cis-trans-Isomerases/metabolism , Plants, Genetically Modified , beta Carotene/metabolism , Abscisic Acid/metabolism , Gibberellins/metabolism , Cyclohexenes/metabolism , Terpenes/metabolism , Lycopene/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cyclohexane Monoterpenes , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Gene Expression Regulation, Plant , Glucosides
6.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 237-242, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097868

ABSTRACT

Recently, nanocarriers have been utilized for encapsulating and sustained release of agrochemicals specifically auxins. Due to their potential applications such as increased bioavailability and improved crop yield and nutritional quality. Herein, the efficacy of alginate/chitosan nanocapsules as a nanocarrier for the hormone indole-3-butyric acid (IBA) loading and its effect on rooting tobacco plants has been carried out in the present study. The average particle size of IBA-alginate/chitosan nanocapsules was measured by Dynamic light scattering analysis at 321 nm. Scanning electron microscope studies revealed the spherical shape of nanoparticles with an average size of 97 nm. The average particle size of IBA-alginate/chitosan nanocapsules was measured by Dynamic light scattering analysis at 321 nm. The characteristic peaks of IBA on alginate/chitosan nanocapsules were identified by Fourier transform infrared spectroscopic analysis. Also, high efficiency (35%) of IBA hormone loading was observed. The findings indicated that the concentration of 3 mgL-1 of IBA-alginate/chitosan nanocapsules has the highest efficiency in increasing the rooting in tobacco (Nicotiana tabacum) plants compared to other treatments. According to our results, we can introduce alginate/chitosan nanocapsules as an efficient nanocarrier in IBA hormone transfer applications and their use in agriculture.


Subject(s)
Alginates , Chitosan , Indoles , Nanocapsules , Nicotiana , Plant Roots , Chitosan/chemistry , Nicotiana/drug effects , Nicotiana/growth & development , Nicotiana/metabolism , Alginates/chemistry , Indoles/chemistry , Nanocapsules/chemistry , Plant Roots/drug effects , Plant Roots/growth & development , Particle Size , Spectroscopy, Fourier Transform Infrared , Hexuronic Acids/chemistry , Glucuronic Acid/chemistry , Plant Growth Regulators/pharmacology , Plant Growth Regulators/chemistry
7.
New Phytol ; 244(1): 318-331, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39081031

ABSTRACT

Chemical-inducible gene expression systems are commonly used to regulate gene expression for functional genomics in various plant species. However, a convenient system that can tightly regulate transgene expression in Nicotiana benthamiana is still lacking. In this study, we developed a tightly regulated copper-inducible system that can control transgene expression and conduct cell death assays in N. benthamiana. We tested several chemical-inducible systems using Agrobacterium-mediated transient expression and found that the copper-inducible system exhibited the least concerns regarding leakiness in N. benthamiana. Although the copper-inducible system can control the expression of some tested reporters, it is not sufficiently tight to regulate certain tested hypersensitive cell death responses. Using the MoClo-based synthetic biology approach, we incorporated the suicide exon HyP5SM/OsL5 and Cre/LoxP as additional regulatory elements to enhance the tightness of the regulation. This new design allowed us to tightly control the hypersensitive cell death induced by several tested leucine-rich repeat-containing proteins and their matching avirulence factors, and it can be easily applied to regulate the expression of other transgenes in transient expression assays. Our findings offer new approaches for both fundamental and translational studies in plant functional genomics.


Subject(s)
Cell Death , Copper , Exons , Gene Expression Regulation, Plant , Integrases , Nicotiana , Plants, Genetically Modified , Transgenes , Nicotiana/genetics , Nicotiana/drug effects , Integrases/metabolism , Exons/genetics , Gene Expression Regulation, Plant/drug effects , Copper/pharmacology , Copper/toxicity , Cell Death/drug effects , Cell Death/genetics
8.
Plant Physiol Biochem ; 215: 108977, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084167

ABSTRACT

Silicon (Si) can significantly improve the salt tolerance of plants, but its mechanism remains unclear. In this study, role of abscisic acid (ABA) in Si derived salt resistance in tobacco seedling was investigated. Under salt stress, the photosynthetic rate, stomatal conductance, and transpiration rate of tobacco seedlings were reduced by 86.17%, 80.63%, and 67.54% respectively, resulting in a decrease in biomass. The application of Si found to mitigate these stress-induced markers. However, positive role of Si was mainly attributed to the enhanced expression of aquaporin genes, which helped in enhancing root hydraulic conductance (Lpr) and ultimately maintaining the leaf relative water content (RWC). Moreover, sodium tungstate, an ABA biosynthesis inhibitor, was used to test the role of ABA on Si-regulating Lpr. The results indicated that the improvement of Lpr by Si was diminished in the presence of ABA inhibitor. In addition, it was observed that the ABA content was increased due to the Si-upregulated of ABA biosynthesis genes, namely NtNCED1 and NtNCED5. Conversely, the expression of ABA metabolism gene NtCYP7O7A was found to be reduced by Si. Together, this study suggested that Si increased ABA content, leading to enhanced efficiency of water uptake by the roots, ultimately facilitating an adequate water supply to maintain leaf water balance. As a result, there was an improvement in salt resistance in tobacco seedling.


Subject(s)
Abscisic Acid , Aquaporins , Gene Expression Regulation, Plant , Nicotiana , Salt Tolerance , Silicon , Nicotiana/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Abscisic Acid/metabolism , Silicon/pharmacology , Silicon/metabolism , Aquaporins/metabolism , Aquaporins/genetics , Salt Tolerance/genetics , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Seedlings/metabolism , Seedlings/drug effects , Seedlings/genetics , Plant Roots/metabolism , Plant Roots/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects
9.
Plant Physiol ; 196(2): 1163-1179, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39074204

ABSTRACT

Phased small interfering RNAs (phasiRNAs) are a distinct class of endogenous small interfering RNAs, which regulate plant growth, development, and environmental stress response. To determine the effect of phasiRNAs on maize (Zea mays L.) tolerance to lead (Pb) stress, the roots of 305 maize lines under Pb treatment were subjected to generation of individual databases of small RNAs. We identified 55 high-confidence phasiRNAs derived from 13 PHAS genes (genes producing phasiRNAs) in this maize panel, of which 41 derived from 9 PHAS loci were negatively correlated with Pb content in the roots. The potential targets of the 41 phasiRNAs were enriched in ion transport and import. Only the expression of PHAS_1 (ZmTAS3j, Trans-Acting Short Interference RNA3) was regulated by its cis-expression quantitative trait locus and thus affected the Pb content in the roots. Using the Nicotiana benthamiana transient expression system, 5'-rapid amplification of cDNA ends, and Arabidopsis heterologously expressed, we verified that ZmTAS3j was cleaved by zma-miR390 and thus generated tasiRNA targeting ARF genes (tasiARFs), and that the 5' and 3' zma-miR390 target sites of ZmTAS3j were both necessary for efficient biosynthesis and functional integrity of tasiARFs. We validated the involvement of the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-ZmHMA3 pathway in Pb accumulation in maize seedlings using genetic, molecular, and cytological methods. Moreover, the increased Pb tolerance in ZmTAS3j-overexpressed lines was likely attributed to the zma-miR390-ZmTAS3j-tasiARF-ZmARF3-SAURs pathway, which elevated indole acetic acid levels and thus reactive oxygen species-scavenging capacity in maize roots. Our study reveals the importance of the TAS3-derived tasiRNA pathway in plant adaptation to Pb stress.


Subject(s)
Gene Expression Regulation, Plant , Lead , RNA, Small Interfering , Stress, Physiological , Zea mays , Zea mays/genetics , Zea mays/physiology , Zea mays/drug effects , Zea mays/metabolism , Lead/metabolism , Stress, Physiological/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Plant Roots/genetics , Plant Roots/metabolism , RNA, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Nicotiana/physiology
10.
BMC Plant Biol ; 24(1): 680, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020266

ABSTRACT

Hydrogen sulfide (H2S) has emerged as a novel endogenous gas signaling molecule, joining the ranks of nitric oxide (NO) and carbon monoxide (CO). Recent research has highlighted its involvement in various physiological processes, such as promoting root organogenesis, regulating stomatal movement and photosynthesis, and enhancing plant growth, development, and stress resistance. Tobacco, a significant cash crop crucial for farmers' economic income, relies heavily on root development to affect leaf growth, disease resistance, chemical composition, and yield. Despite its importance, there remains a scarcity of studies investigating the role of H2S in promoting tobacco growth. This study exposed tobacco seedlings to different concentrations of NaHS (an exogenous H2S donor) - 0, 200, 400, 600, and 800 mg/L. Results indicated a positive correlation between NaHS concentration and root length, wet weight, root activity, and antioxidant enzymatic activities (CAT, SOD, and POD) in tobacco roots. Transcriptomic and metabolomic analyses revealed that treatment with 600 mg/L NaHS significantly effected 162 key genes, 44 key enzymes, and two metabolic pathways (brassinosteroid synthesis and aspartate biosynthesis) in tobacco seedlings. The addition of exogenous NaHS not only promoted tobacco root development but also potentially reduced pesticide usage, contributing to a more sustainable ecological environment. Overall, this study sheds light on the primary metabolic pathways involved in tobacco root response to NaHS, offering new genetic insights for future investigations into plant root development.


Subject(s)
Nicotiana , Plant Roots , Sulfides , Nicotiana/genetics , Nicotiana/drug effects , Nicotiana/physiology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Sulfides/pharmacology , Transcriptome/drug effects , Metabolomics , Metabolic Networks and Pathways/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seedlings/genetics , Seedlings/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects
11.
Planta ; 260(2): 41, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954109

ABSTRACT

MAIN CONCLUSION: In this study, six ZaBZRs were identified in Zanthoxylum armatum DC, and all the ZaBZRs were upregulated by abscisic acid (ABA) and drought. Overexpression of ZaBZR1 enhanced the drought tolerance of transgenic Nicotiana benthamian. Brassinosteroids (BRs) are a pivotal class of sterol hormones in plants that play a crucial role in plant growth and development. BZR (brassinazole resistant) is a crucial transcription factor in the signal transduction pathway of BRs. However, the BZR gene family members have not yet been identified in Zanthoxylum armatum DC. In this study, six members of the ZaBZR family were identified by bioinformatic methods. All six ZaBZRs exhibited multiple phosphorylation sites. Phylogenetic and collinearity analyses revealed a closest relationship between ZaBZRs and ZbBZRs located on the B subgenomes. Expression analysis revealed tissue-specific expression patterns of ZaBZRs in Z. armatum, and their promoter regions contained cis-acting elements associated with hormone response and stress induction. Additionally, all six ZaBZRs showed upregulation upon treatment after abscisic acid (ABA) and polyethylene glycol (PEG), indicating their participation in drought response. Subsequently, we conducted an extensive investigation of ZaBZR1. ZaBZR1 showed the highest expression in the root, followed by the stem and terminal bud. Subcellular localization analysis revealed that ZaBZR1 is present in the cytoplasm and nucleus. Overexpression of ZaBZR1 in transgenic Nicotiana benthamiana improved seed germination rate and root growth under drought conditions, reducing water loss rates compared to wild-type plants. Furthermore, ZaBZR1 increased proline content (PRO) and decreased malondialdehyde content (MDA), indicating improved tolerance to drought-induced oxidative stress. The transgenic plants also showed a reduced accumulation of reactive oxygen species. Importantly, ZaBZR1 up-regulated the expression of drought-related genes such as NbP5CS1, NbDREB2A, and NbWRKY44. These findings highlight the potential of ZaBZR1 as a candidate gene for enhancing drought resistance in transgenic N. benthamiana and provide insight into the function of ZaBZRs in Z. armatum.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Plants, Genetically Modified , Zanthoxylum , Plants, Genetically Modified/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Zanthoxylum/genetics , Zanthoxylum/physiology , Zanthoxylum/metabolism , Nicotiana/genetics , Nicotiana/physiology , Nicotiana/drug effects , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Multigene Family , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Drought Resistance
12.
BMC Plant Biol ; 24(1): 655, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987695

ABSTRACT

BACKGROUND: Biochar, a carbon-rich source and natural growth stimulant, is usually produced by the pyrolysis of agricultural biomass. It is widely used to enhance plant growth, enzyme activity, and crop productivity. However, there are no conclusive studies on how different levels of biochar application influence these systems. METHODS AND RESULTS: The present study elucidated the dose-dependent effects of biochar application on the physiological performance, enzyme activity, and dry matter accumulation of tobacco plants via field experiments. In addition, transcriptome analysis was performed on 60-day-old (early growth stage) and 100-day-old (late growth stage) tobacco leaves to determine the changes in transcript levels at the molecular level under various biochar application levels (0, 600, and 1800 kg/ha). The results demonstrated that optimum biochar application enhances plant growth, regulates enzymatic activity, and promotes biomass accumulation in tobacco plants, while higher biochar doses had adverse effects. Furthermore, transcriptome analysis revealed a total of 6561 differentially expressed genes (DEGs) that were up- or down-regulated in the groupwise comparison under different treatments. KEGG pathways analysis demonstrated that carbon fixation in photosynthetic organisms (ko00710), photosynthesis (ko00195), and starch and sucrose metabolism (ko00500) pathways were significantly up-regulated under the optimal biochar dosage (600 kg/ha) and down-regulated under the higher biochar dosage (1800 kg/ha). CONCLUSION: Collectively, these results indicate that biochar application at an optimal rate (600 kg/ha) could positively affect photosynthesis and carbon fixation, which in turn increased the synthesis and accumulation of sucrose and starch, thus promoting the growth and dry matter accumulation of tobacco plants. However, a higher biochar dosage (1800 kg/ha) disturbs the crucial source-sink balance of organic compounds and inhibits the growth of tobacco plants.


Subject(s)
Charcoal , Gene Expression Profiling , Nicotiana , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/drug effects , Transcriptome , Biomass , Gene Expression Regulation, Plant/drug effects , Plant Leaves/growth & development , Plant Leaves/drug effects , Plant Leaves/genetics , Photosynthesis/drug effects
13.
J Hazard Mater ; 476: 134905, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38941827

ABSTRACT

Numerous studies shown that silicon (Si) enhanced plants' resistance to cadmium (Cd). Most studies primarily focused on investigating the impact of Si on Cd accumulation. However, there is a lack of how Si enhanced Cd resistance through regulation of water balance. The study demonstrated that Si had a greater impact on increasing fresh weight compared to dry weight under Cd stress. This effect was mainly attributed to Si enhanced plant relative water content (RWC). Plant water content depends on the dynamic balance of water loss and water uptake. Our findings revealed that Si increased transpiration rate and stomatal conductance, leading to higher water loss. This, in turn, negatively impacted water content. The increased water content caused by Si could ascribe to improve root water uptake. The Si treatment significantly increased root hydraulic conductance (Lpr) by 131 % under Cd stress. This enhancement was attributed to Si upregulation genes expression of NtPIP1;1, NtPIP1;2, NtPIP1;3, and NtPIP2;1. Through meticulously designed scientific experiments, this study showed that Si enhanced AQP activity, leading to increased water content that diluted Cd concentration and ultimately improved plant Cd resistance. These findings offered fresh insights into the role of Si in bolstering plant resistance to Cd.


Subject(s)
Aquaporins , Cadmium , Nicotiana , Plant Roots , Seedlings , Silicon , Water , Cadmium/toxicity , Silicon/pharmacology , Silicon/chemistry , Plant Roots/metabolism , Plant Roots/drug effects , Seedlings/drug effects , Seedlings/metabolism , Nicotiana/drug effects , Nicotiana/metabolism , Aquaporins/metabolism , Water/chemistry , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Transpiration/drug effects
14.
J Plant Physiol ; 300: 154297, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38945071

ABSTRACT

Programmed cell death (PCD) is a genetically regulated process of cell suicide essential for plant development. The 'malate valve' is a mechanism that ensures redox balance across different subcellular compartments. In broccoli, the BomMDH1 gene encodes malate dehydrogenase in mitochondria, a critical enzyme in the 'malate circulation' pathway. This study investigates the functional role of BomMDH1 in malate (MA)-induced apoptosis in bright yellow-2 (BY-2) suspension cells. Findings revealed that transgenic cells overexpressing BomMDH1 showed enhanced viability under MA-induced oxidative stress compared to wild-type (WT) cells. Overexpression of BomMDH1 also reduced levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), and malondialdehyde (MDA), while increasing the expression of antioxidant enzyme genes such as NtAPX, NtAOX1a, NtSOD, and NtMDHAR. Additionally, treatment with salicylhydroxamic acid (SHAM), a characteristic inhibitor of mitochondrial respiration, further improved the anti-apoptotic activity of BY-2 cells. Overall, these results highlighted the function of the BomMDH1 gene and the potential of SHAM treatment in mitigating oxidative stress in BY-2 suspension cells.


Subject(s)
Malates , Nicotiana , Oxidative Stress , Reactive Oxygen Species , Oxidative Stress/drug effects , Malates/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Mitochondria/metabolism , Malondialdehyde/metabolism , Gene Expression Regulation, Plant
15.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928476

ABSTRACT

Salt stress seriously affects crop growth, leading to a decline in crop quality and yield. Application of exogenous substances to improve the salt tolerance of crops and promote their growth under salt stress has become a widespread and effective means. Eugenol is a small molecule of plant origin with medicinal properties such as antibacterial, antiviral, and antioxidant properties. In this study, tobacco seedlings were placed in Hoagland's solution containing NaCl in the presence or absence of eugenol, and physiological indices related to stress tolerance were measured along with transcriptome sequencing. The results showed that eugenol improved the growth of tobacco seedlings under salt stress. It promoted carbon and nitrogen metabolism, increased the activities of nitrate reductase (NR), sucrose synthase (SS), and glutamine synthetase (GS) by 31.03, 5.80, and 51.06%. It also activated the enzymatic and non-enzymatic antioxidant systems, reduced the accumulation of reactive oxygen species in the tobacco seedlings, and increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) by 24.38%, 18.22%, 21.60%, and 28.8%, respectively. The content of glutathione (GSH) was increased by 29.49%, and the content of superoxide anion (O2-) and malondialdehyde (MDA) were reduced by 29.83 and 33.86%, respectively. Promoted osmoregulation, the content of Na+ decreased by 34.34, K+ increased by 41.25%, and starch and soluble sugar increased by 7.72% and 25.42%, respectively. It coordinated hormone signaling in seedlings; the content of abscisic acid (ABA) and gibberellic acid 3 (GA3) increased by 51.93% and 266.28%, respectively. The transcriptome data indicated that the differentially expressed genes were mainly enriched in phenylpropanoid biosynthesis, the MAPK signaling pathway, and phytohormone signal transduction pathways. The results of this study revealed the novel role of eugenol in regulating plant resistance and provided a reference for the use of exogenous substances to alleviate salt stress.


Subject(s)
Antioxidants , Eugenol , Gene Expression Regulation, Plant , Nicotiana , Plant Growth Regulators , Salt Stress , Seedlings , Signal Transduction , Nicotiana/drug effects , Nicotiana/metabolism , Nicotiana/genetics , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Antioxidants/metabolism , Signal Transduction/drug effects , Eugenol/pharmacology , Eugenol/metabolism , Gene Expression Regulation, Plant/drug effects , Salt Stress/drug effects , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Salt Tolerance/drug effects , Reactive Oxygen Species/metabolism
16.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928379

ABSTRACT

Stylo (Stylosanthes spp.) is an important pasture legume with strong aluminum (Al) resistance. However, the molecular mechanisms underlying its Al tolerance remain fragmentary. Due to the incomplete genome sequence information of stylo, we first conducted full-length transcriptome sequencing for stylo root tips treated with and without Al and identified three Snakin/GASA genes, namely, SgSnakin1, SgSnakin2, and SgSnakin3. Through quantitative RT-PCR, we found that only SgSnakin1 was significantly upregulated by Al treatments in stylo root tips. Histochemical localization assays further verified the Al-enhanced expression of SgSnakin1 in stylo root tips. Subcellular localization in both tobacco and onion epidermis cells showed that SgSnakin1 localized to the cell wall. Overexpression of SgSnakin1 conferred Al tolerance in transgenic Arabidopsis, as reflected by higher relative root growth and cell vitality, as well as lower Al concentration in the roots of transgenic plants. Additionally, overexpression of SgSnakin1 increased the activities of SOD and POD and decreased the levels of O2·- and H2O2 in transgenic Arabidopsis in response to Al stress. These findings indicate that SgSnakin1 may function in Al resistance by enhancing the scavenging of reactive oxygen species through the regulation of antioxidant enzyme activities.


Subject(s)
Aluminum , Arabidopsis , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Reactive Oxygen Species , Aluminum/toxicity , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects , Fabaceae/metabolism , Fabaceae/genetics , Fabaceae/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/genetics , Hydrogen Peroxide/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/drug effects
17.
Nat Commun ; 15(1): 4279, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769297

ABSTRACT

The identification of genes involved in salinity tolerance has primarily focused on model plants and crops. However, plants naturally adapted to highly saline environments offer valuable insights into tolerance to extreme salinity. Salicornia plants grow in coastal salt marshes, stimulated by NaCl. To understand this tolerance, we generated genome sequences of two Salicornia species and analyzed the transcriptomic and proteomic responses of Salicornia bigelovii to NaCl. Subcellular membrane proteomes reveal that SbiSOS1, a homolog of the well-known SALT-OVERLY-SENSITIVE 1 (SOS1) protein, appears to localize to the tonoplast, consistent with subcellular localization assays in tobacco. This neo-localized protein can pump Na+ into the vacuole, preventing toxicity in the cytosol. We further identify 11 proteins of interest, of which SbiSALTY, substantially improves yeast growth on saline media. Structural characterization using NMR identified it as an intrinsically disordered protein, localizing to the endoplasmic reticulum in planta, where it can interact with ribosomes and RNA, stabilizing or protecting them during salt stress.


Subject(s)
Chenopodiaceae , Plant Proteins , Salt Tolerance , Chenopodiaceae/metabolism , Chenopodiaceae/genetics , Chenopodiaceae/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Salt Tolerance/genetics , Gene Expression Regulation, Plant/drug effects , Vacuoles/metabolism , Salinity , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Endoplasmic Reticulum/metabolism , Salt Stress , Proteomics , Nicotiana/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Transcriptome
18.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791101

ABSTRACT

Many studies have shown that melatonin (an indoleamine) is an important molecule in plant physiology. It is known that this indoleamine is crucial during plant stress responses, especially by counteracting secondary oxidative stress (efficient direct and indirect antioxidant) and switching on different defense plant strategies. In this report, we present exogenous melatonin's potential to protect lipid profile modification and membrane integrity in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) cell culture exposed to lead. There are some reports of the positive effect of melatonin on animal cell membranes; ours is the first to report changes in the lipid profile in plant cells. The experiments were performed in the following variants: LS: cells cultured on unmodified LS medium-control; (ii) MEL: BY-2 cells cultured on LS medium with melatonin added from the beginning of culture; (iii) Pb: BY-2 cells cultured on LS medium with Pb2+ added on the 4th day of culture; (iv) MEL+Pb: BY-2 cells cultured on LS medium with melatonin added from the start of culture and stressed with Pb2+ added on the 4th day of culture. Lipidomic analysis of BY-2 cells revealed the presence of 40 different phospholipids. Exposing cells to lead led to the overproduction of ROS, altered fatty acid composition and increased PLD activity and subsequently elevated the level of phosphatidic acid at the cost of dropping the phosphatidylcholine. In the presence of lead, double-bond index elevation, mainly by higher quantities of linoleic (C18:2) and linolenic (C18:3) acids in the log phase of growth, was observed. In contrast, cells exposed to heavy metal but primed with melatonin showed more similarities with the control. Surprisingly, the overproduction of ROS caused of lipid peroxidation only in the stationary phase of growth, although considerable changes in lipid profiles were observed in the log phase of growth-just 4 h after lead administration. Our results indicate that the pretreatment of BY-2 with exogenous melatonin protected tobacco cells against membrane dysfunctions caused by oxidative stress (lipid oxidation), but also findings on a molecular level suggest the possible role of this indoleamine in the safeguarding of the membrane lipid composition that limited lead-provoked cell death. The presented research indicates a new mechanism of the defense strategy of plant cells generated by melatonin.


Subject(s)
Lead , Melatonin , Nicotiana , Oxidative Stress , Phospholipids , Melatonin/pharmacology , Nicotiana/metabolism , Nicotiana/drug effects , Oxidative Stress/drug effects , Phospholipids/metabolism , Lead/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Lipidomics/methods , Cell Line , Plant Cells/metabolism , Plant Cells/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects
19.
J Agric Food Chem ; 72(20): 11351-11359, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38720167

ABSTRACT

Tobacco mosaic virus (TMV), as one of the most traditional and extensive biological stresses, poses a serious threat to plant growth and development. In this work, a series of 1-phenyl/tertbutyl-5-amino-4-pyrazole oxadiazole and arylhydrazone derivatives was synthesized. Bioassay evaluation demonstrated that the title compounds (P1-P18) without a "thioether bond" lost their anti-TMV activity, while some of the ring-opening arylhydrazone compounds exhibited superior in vivo activity against TMV in tobacco. The EC50 value of title compound T8 for curative activity was 139 µg/mL, similar to that of ningnanmycin (NNM) (EC50 = 152 µg/mL). Safety analysis revealed that compound T8 had no adverse effects on plant growth or seed germination at a concentration of 250 µg/mL. Morphological observation revealed that compound T8 could restore the leaf tissue of a TMV-stressed host and the leaf stomatal aperture to normal. A mechanism study further revealed that compound T8 not only restored the photosynthetic and growth ability of the damaged host to normal levels but also enhanced catalase (CAT) activity and reduced the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the damaged host, thereby reducing the oxidation damage to the host. TMV-green fluorescent protein (GFP) experiments further demonstrated that compound T8 not only slowed the transmission speed of TMV in the host but also inhibited its reproduction. All of the experimental results demonstrated that compound T8 could reduce the oxidative damage caused by TMV stress and regulate the photosynthetic ability of the host, achieving the ability to repair damage, to make the plant grow normally.


Subject(s)
Antiviral Agents , Hydrazones , Nicotiana , Oxadiazoles , Plant Diseases , Tobacco Mosaic Virus , Tobacco Mosaic Virus/drug effects , Tobacco Mosaic Virus/physiology , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Nicotiana/virology , Nicotiana/drug effects , Plant Diseases/virology , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Drug Design , Structure-Activity Relationship , Plant Leaves/chemistry , Plant Leaves/drug effects , Molecular Structure
20.
J Hazard Mater ; 473: 134610, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38776812

ABSTRACT

Mg-K homeostasis is essential for plant response to abiotic stress, but its regulation remains largely unknown. MsWRKY44 cloned from alfalfa was highly expressed in leaves and petioles. Overexpression of it inhibited alfalfa growth, and promoted leaf senescence and alfalfa sensitivities to acid and Al stresses. The leaf tips, margins and interveins of old leaves occurred yellow spots in MsWRKY44-OE plants under pH4.5 and pH4.5 +Al conditions. Meanwhile, Mg-K homeostasis was substantially changed with reduction of K accumulation and increases of Mg as well as Al accumulation in shoots of MsWRKY44-OE plants. Further, MsWRKY44 was found to directly bind to the promoters of MsMGT7 and MsCIPK23, and positively activated their expression. Transiently overexpressed MsMGT7 and MsCIPK23 in tobacco leaves increased the Mg and Al accumulations but decreased K accumulation. These results revealed a novel regulatory module MsWRKY44-MsMGT7/MsCIPK23, which affects the transport and accumulation of Mg and K in shoots, and promotes alfalfa sensitivities to acid and Al stresses.


Subject(s)
Aluminum , Homeostasis , Magnesium , Medicago sativa , Plant Proteins , Plant Shoots , Potassium , Stress, Physiological , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/metabolism , Plant Shoots/drug effects , Potassium/metabolism , Aluminum/toxicity , Magnesium/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL