Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 529
1.
Cell Biochem Funct ; 42(4): e4028, 2024 Jun.
Article En | MEDLINE | ID: mdl-38715125

Niemann-Pick disease (NPD) is another type of metabolic disorder that is classified as lysosomal storage diseases (LSDs). The main cause of the disease is mutation in the SMPD1 (type A and B) or NPC1 or NPC2 (type C) genes, which lead to the accumulation of lipid substrates in the lysosomes of the liver, brain, spleen, lung, and bone marrow cells. This is followed by multiple cell damage, dysfunction of lysosomes, and finally dysfunction of body organs. So far, about 346, 575, and 30 mutations have been reported in SMPD1, NPC1, and NPC2 genes, respectively. Depending on the type of mutation and the clinical symptoms of the disease, the treatment will be different. The general aim of the current study is to review the clinical and molecular characteristics of patients with NPD and study various treatment methods for this disease with a focus on gene therapy approaches.


Genetic Therapy , Mutation , Niemann-Pick C1 Protein , Humans , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Niemann-Pick Diseases/genetics , Niemann-Pick Diseases/metabolism , Niemann-Pick Diseases/therapy , Niemann-Pick Diseases/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Niemann-Pick Disease, Type C/therapy , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/pathology , Animals
2.
Article En | MEDLINE | ID: mdl-37956788

Acid sphingomyelinase deficiency is a neurodegenerative lysosomal storage disorder caused by mutations in the sphingomyelin-degrading enzyme acid sphingomyelinase (ASM) gene. Upregulated neuroinflammation has been well-characterized in an ASM knockout mouse model of acid sphingomyelinase deficiency disease, but lipid mediator pathways involved in 'mediating' inflammation and inflammation-resolution have yet to be characterized. In this study, we 1) measured free (bioactive) and esterified (inactive) lipid mediators involved in inflammation and inflammation resolution in cerebellum and neuronal cultures of ASM knockout (ASMko) mice and wildtype (WT) controls, and 2) quantified the esterification of labeled pro-resolving free d11-14(15)-epoxyeicosatrienoic acid in cultured neurons from ASMko and WT mice. We found elevated concentrations of esterified pro-resolving lipid mediators and hydroxyeicosatrienoic acids typically destined for pro-resolving lipid mediator synthesis (e.g. lipoxins) in the cerebellum and neurons of ASMko mice compared to controls. Free d11-14(15)-epoxyeicosatrienoic acid esterification within neurons of ASMko mice was significantly elevated compared to WT. Our findings show evidence of increased inactivation of free pro-resolving lipid mediators through esterification in ASMko mice, suggesting impaired resolution as a new pathway underlying ASM deficiency pathogenesis.


Niemann-Pick Disease, Type A , Niemann-Pick Diseases , Animals , Mice , Brain/metabolism , Esterification , Inflammation/metabolism , Mice, Knockout , Neurons/metabolism , Niemann-Pick Disease, Type A/genetics , Niemann-Pick Disease, Type A/metabolism , Niemann-Pick Disease, Type A/pathology , Niemann-Pick Diseases/metabolism , Niemann-Pick Diseases/pathology , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Sphingomyelins/metabolism
3.
J Inherit Metab Dis ; 47(2): 317-326, 2024 Mar.
Article En | MEDLINE | ID: mdl-38131230

Hundreds of NPC1 variants cause highly heterogeneous phenotypes. This study aims to explore the genotype-phenotype correlation of NPC1, especially for missense variants. In a well-characterized cohort, phenotypes are graded into three clinical forms: mild, intermediate, and severe. Missense residue structural location was stratified into three categories: surface, partially, and fully buried. The association of phenotypes with the topography of the amino acid substitution in the protein structure was investigated in our cohort and validated in two reported cohorts. One hundred six unrelated NPC1 patients were enrolled. A significant correlation of genotype-phenotype was found in 81 classified individuals with two or one (the second was null variant) missense variant (p < 0.001): of 25 patients with at least one missense variant of surface (group A), 19 (76%) mild, six (24%) intermediate, and none severe; of 31 cases with at least one missense variant of partially buried without surface variants (group B), 11 (35%) mild, 16 (52%) intermediate, and four (13%) severe; of the remaining 25 patients with two or one buried missense variants (group C), eight (32%) mild, nine (36%) intermediate, and eight (32%) severe. Additionally, 7-ketocholesterol, the biomarker, was lower in group A than in group B (p = 0.024) and group C (p = 0.029). A model was proposed that accurately predicted phenotypes of 72 of 90 (80%), 73 of85 (86%), and 64 of 69 (93%) patients in our cohort, Italian, and UK cohort, respectively. This study proposed a novel genotype-phenotype correlation in NPC1, linking the underlying molecular pathophysiology with clinical phenotype and aiding genetic counseling and evaluation in clinical practice.


Niemann-Pick Disease, Type C , Niemann-Pick Diseases , Humans , Genotype , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Phenotype , Niemann-Pick Diseases/genetics , Niemann-Pick Diseases/metabolism , Genetic Association Studies , Niemann-Pick Disease, Type C/genetics
4.
J Biol Chem ; 299(8): 105024, 2023 08.
Article En | MEDLINE | ID: mdl-37423302

Niemann-Pick type C1 (NPC1) protein is a multimembrane spanning protein of the lysosome limiting membrane that facilitates intracellular cholesterol and sphingolipid transport. Loss-of-function mutations in the NPC1 protein cause Niemann-Pick disease type C1, a lysosomal storage disorder characterized by the accumulation of cholesterol and sphingolipids within lysosomes. To investigate whether the NPC1 protein could also play a role in the maturation of the endolysosomal pathway, here, we have investigated its role in a lysosome-related organelle, the melanosome. Using a NPC1-KO melanoma cell model, we found that the cellular phenotype of Niemann-Pick disease type C1 is associated with a decreased pigmentation accompanied by low expression of the melanogenic enzyme tyrosinase. We propose that the defective processing and localization of tyrosinase, occurring in the absence of NPC1, is a major determinant of the pigmentation impairment in NPC1-KO cells. Along with tyrosinase, two other pigmentation genes, tyrosinase-related protein 1 and Dopachrome-tautomerase have lower protein levels in NPC1 deficient cells. In contrast with the decrease in pigmentation-related protein expression, we also found a significant intracellular accumulation of mature PMEL17, the structural protein of melanosomes. As opposed to the normal dendritic localization of melanosomes, the disruption of melanosome matrix generation in NPC1 deficient cells causes an accumulation of immature melanosomes adjacent to the plasma membrane. Together with the melanosomal localization of NPC1 in WT cells, these findings suggest that NPC1 is directly involved in tyrosinase transport from the trans-Golgi network to melanosomes and melanosome maturation, indicating a novel function for NPC1.


Niemann-Pick Disease, Type C , Niemann-Pick Diseases , Humans , Melanosomes/metabolism , Monophenol Monooxygenase/metabolism , Niemann-Pick C1 Protein/metabolism , Cholesterol/metabolism , Niemann-Pick Diseases/genetics , Niemann-Pick Diseases/metabolism , Niemann-Pick Disease, Type C/metabolism
5.
Indian J Pathol Microbiol ; 66(1): 91-95, 2023.
Article En | MEDLINE | ID: mdl-36656217

Introduction: Lysosomal storage disorders (LSDs) are rare disorders and pose a diagnostic challenge for clinicians owing to their generalized symptomatology. In this study, we aim to classify LSDs into two broad categories, namely, Gaucher disease (GD) and Niemann-Pick/Niemann-Pick-like diseases (NP/NP-like diseases) based on the morphology of the storage cells in the bone marrow (BM) aspiration smears and trephine biopsy sections. Materials and Method: This retrospective study includes 32 BM specimens morphologically diagnosed as LSDs at our institute, in the last 10 years. Subsequently, they were subclassified into GD and NP/NP-like diseases. Further, we have compared and analyzed the clinical, hematological, and biochemical parameters for the two groups of LSDs. Results: Based on BM morphology, 59.4% (n = 19) cases were diagnosed as NP/NP-like diseases and 40.6% (n = 13) cases as GD. Abdominal distension and failure to thrive were the most common clinical manifestations in both groups of LSDs. Anemia and thrombocytopenia were frequently seen in either of the LSDs. On the assessment of metabolic profile, elevated total/direct bilirubin and liver enzymes were more commonly seen in NP/NP-like diseases when compared with GD. Conclusion: We have classified LSDs into GD and NP/NP-like diseases based on the morphology of the storage cells in the BM specimen. The hallmark findings on BM biopsy annexed with the comparative features of the two proposed categories can aid the clinician in clinching the diagnosis. Formulation of such a methodology will prove instrumental for patient care in an underresourced setting.


Gaucher Disease , Lysosomal Storage Diseases , Niemann-Pick Diseases , Humans , Retrospective Studies , Bone Marrow/pathology , Lysosomal Storage Diseases/diagnosis , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/pathology , Niemann-Pick Diseases/diagnosis , Niemann-Pick Diseases/metabolism , Niemann-Pick Diseases/pathology , Gaucher Disease/diagnosis , Gaucher Disease/pathology , Lysosomes/metabolism , Lysosomes/pathology , Biopsy
6.
Int J Mol Sci ; 23(18)2022 Sep 12.
Article En | MEDLINE | ID: mdl-36142486

Mitochondrial dysfunction has been recognised a major contributory factor to the pathophysiology of a number of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs is as yet uncertain, but appears to be triggered by a number of different factors, although oxidative stress and impaired mitophagy appear to be common inhibitory mechanisms shared amongst this group of disorders, including Gaucher's disease, Niemann-Pick disease, type C, and mucopolysaccharidosis. Many LSDs resulting from defects in lysosomal hydrolase activity show neurodegeneration, which remains challenging to treat. Currently available curative therapies are not sufficient to meet patients' needs. In view of the documented evidence of mitochondrial dysfunction in the neurodegeneration of LSDs, along with the reciprocal interaction between the mitochondrion and the lysosome, novel therapeutic strategies that target the impairment in both of these organelles could be considered in the clinical management of the long-term neurodegenerative complications of these diseases. The purpose of this review is to outline the putative mechanisms that may be responsible for the reported mitochondrial dysfunction in LSDs and to discuss the new potential therapeutic developments.


Gaucher Disease , Lysosomal Storage Diseases , Niemann-Pick Diseases , Gaucher Disease/metabolism , Humans , Hydrolases/metabolism , Lysosomal Storage Diseases/metabolism , Lysosomes/metabolism , Mitochondria , Niemann-Pick Diseases/metabolism
7.
Mol Pharm ; 19(11): 3987-3999, 2022 11 07.
Article En | MEDLINE | ID: mdl-36125338

Messenger RNA (mRNA) holds great potential as a disease-modifying treatment for a wide array of monogenic disorders. Niemann-Pick disease type C1 (NP-C1) is an ultrarare monogenic disease that arises due to loss-of-function mutations in the NPC1 gene, resulting in the entrapment of unesterified cholesterol in the lysosomes of affected cells and a subsequent reduction in their capacity for cholesterol esterification. This causes severe damage to various organs including the brain, liver, and spleen. In this work, we describe the use of NPC1-encoded mRNA to rescue the protein insufficiency and pathogenic phenotype caused by biallelic NPC1 mutations in cultured fibroblasts derived from an NP-C1 patient. We first evaluated engineering strategies for the generation of potent mRNAs capable of eliciting high protein expression across multiple cell types. We observed that "GC3" codon optimization, coupled with N1-methylpseudouridine base modification, yielded an mRNA that was approximately 1000-fold more potent than wild-type, unmodified mRNA in a luciferase reporter assay and consistently superior to other mRNA variants. Our data suggest that the improved expression associated with this design strategy was due in large part to the increased secondary structure of the designed mRNAs. Both codon optimization and base modification appear to contribute to increased secondary structure. Applying these principles to the engineering of NPC1-encoded mRNA, we observed a normalization in NPC1 protein levels after mRNA treatment, as well as a rescue of the mutant phenotype. Specifically, mRNA treatment restored the cholesterol esterification capacity of patient cells to wild-type levels and induced a significant reduction in both unesterified cholesterol levels (>57% reduction compared to Lipofectamine-treated control in a cholesterol esterification assay) and lysosome size (157 µm2 reduction compared to Lipofectamine-treated control). These findings show that engineered mRNA can correct the deficit caused by NPC1 mutations. More broadly, they also serve to further validate the potential of this technology to correct diseases associated with loss-of-function mutations in genes coding for large, complex, intracellular proteins.


Membrane Glycoproteins , Niemann-Pick Diseases , Humans , Membrane Glycoproteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Fibroblasts/metabolism , Cholesterol/metabolism , Niemann-Pick Diseases/metabolism , Niemann-Pick Diseases/pathology
8.
Int J Mol Sci ; 23(15)2022 Aug 04.
Article En | MEDLINE | ID: mdl-35955821

Recent studies have highlighted the mechanisms controlling the formation of cerebral cholesterol, which is synthesized in situ primarily by astrocytes, where it is loaded onto apolipoproteins and delivered to neurons and oligodendrocytes through interactions with specific lipoprotein receptors. The "cholesterol shuttle" is influenced by numerous proteins or carbohydrates, which mainly modulate the lipoprotein receptor activity, function and signaling. These molecules, provided with enzymatic/proteolytic activity leading to the formation of peptide fragments of different sizes and specific sequences, could be also responsible for machinery malfunctions, which are associated with neurological, neurodegenerative and neurodevelopmental disorders. In this context, we have pointed out that purines, ancestral molecules acting as signal molecules and neuromodulators at the central nervous system, can influence the homeostatic machinery of the cerebral cholesterol turnover and vice versa. Evidence gathered so far indicates that purine receptors, mainly the subtypes P2Y2, P2X7 and A2A, are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's and Niemann-Pick C diseases, by controlling the brain cholesterol homeostasis; in addition, alterations in cholesterol turnover can hinder the purine receptor function. Although the precise mechanisms of these interactions are currently poorly understood, the results here collected on cholesterol-purine reciprocal control could hopefully promote further research.


Central Nervous System , Niemann-Pick Diseases , Central Nervous System/metabolism , Cholesterol/metabolism , Humans , Neurons/metabolism , Niemann-Pick Diseases/metabolism , Purines/metabolism , Receptors, Purinergic/metabolism
9.
J Mol Neurosci ; 72(7): 1482-1499, 2022 Jul.
Article En | MEDLINE | ID: mdl-35727525

Niemann-Pick type A disease (NPA) is a rare lysosomal storage disorder caused by mutations in the gene coding for the lysosomal enzyme acid sphingomyelinase (ASM). ASM deficiency leads to the consequent accumulation of its uncatabolized substrate, the sphingolipid sphingomyelin (SM), causing severe progressive brain disease. To study the effect of the aberrant lysosomal accumulation of SM on cell homeostasis, we loaded skin fibroblasts derived from a NPA patient with exogenous SM to mimic the levels of accumulation characteristic of the pathological neurons. In SM-loaded NPA fibroblasts, we found the blockage of the autophagy flux and the impairment of the mitochondrial compartment paralleled by the altered transcription of several genes, mainly belonging to the electron transport chain machinery and to the cholesterol biosynthesis pathway. In addition, SM loading induces the nuclear translocation of the transcription factor EB that promotes the lysosomal biogenesis and exocytosis. Interestingly, we obtained similar biochemical findings in the brain of the NPA mouse model lacking ASM (ASMKO mouse) at the neurodegenerative stage. Our work provides a new in vitro model to study NPA etiopathology and suggests the existence of a pathogenic lysosome-plasma membrane axis that with an impairment in the mitochondrial activity is responsible for the cell death.


Niemann-Pick Disease, Type A , Niemann-Pick Diseases , Animals , Apoptosis , Lysosomes/metabolism , Mice , Mitochondria/metabolism , Niemann-Pick Disease, Type A/genetics , Niemann-Pick Disease, Type A/pathology , Niemann-Pick Diseases/metabolism , Niemann-Pick Diseases/pathology , Sphingomyelins/metabolism , Sphingomyelins/pharmacology
10.
Int J Mol Sci ; 22(9)2021 Apr 26.
Article En | MEDLINE | ID: mdl-33925997

Sphingomyelin phosphodiesterase (SMPD1) is a key enzyme in the sphingolipid metabolism. Genetic SMPD1 variants have been related to the Niemann-Pick lysosomal storage disorder, which has different degrees of phenotypic severity ranging from severe symptomatology involving the central nervous system (type A) to milder ones (type B). They have also been linked to neurodegenerative disorders such as Parkinson and Alzheimer. In this paper, we leveraged structural, evolutionary and stability information on SMPD1 to predict and analyze the impact of variants at the molecular level. We developed the SMPD1-ZooM algorithm, which is able to predict with good accuracy whether variants cause Niemann-Pick disease and its phenotypic severity; the predictor is freely available for download. We performed a large-scale analysis of all possible SMPD1 variants, which led us to identify protein regions that are either robust or fragile with respect to amino acid variations, and show the importance of aromatic-involving interactions in SMPD1 function and stability. Our study also revealed a good correlation between SMPD1-ZooM scores and in vitro loss of SMPD1 activity. The understanding of the molecular effects of SMPD1 variants is of crucial importance to improve genetic screening of SMPD1-related disorders and to develop personalized treatments that restore SMPD1 functionality.


Niemann-Pick Diseases/genetics , Sphingomyelin Phosphodiesterase/genetics , Computer Simulation , Databases, Genetic , Exons/genetics , Genetic Variation/genetics , Humans , Mutation/genetics , Niemann-Pick Diseases/metabolism , Phenotype , Severity of Illness Index , Sphingolipids/genetics , Sphingolipids/metabolism , Sphingomyelin Phosphodiesterase/metabolism
11.
Neuropharmacology ; 171: 107851, 2020 07.
Article En | MEDLINE | ID: mdl-31734384

Most lysosomal storage disorders (LSDs) cause progressive neurodegeneration leading to early death. While the genetic defects that cause these disorders impact all cells of the body, neurons are particularly affected. This vulnerability may be explained by neuronal cells' critical dependence on the lysosomal degradative capacity, as they cannot use division to eliminate their waste. However, mounting evidence supports the extension of storage beyond lysosomes to other cellular compartments (mitochondria, plasma membrane and synapses) as a key event in pathogenesis. Impaired energy supply, oxidative stress, calcium imbalance, synaptic failure and glial alterations may all contribute to neuronal death and thus could be suitable therapeutic targets for these disorders. Here we review the pathological mechanisms underlying neurodegeneration in Niemann Pick diseases and therapeutic strategies developed in animal models and patients suffering from these devastating disorders. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.


Lysosomal Storage Diseases, Nervous System/pathology , Lysosomal Storage Diseases, Nervous System/therapy , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , Niemann-Pick Diseases/pathology , Niemann-Pick Diseases/therapy , Animals , Humans , Lysosomal Storage Diseases, Nervous System/metabolism , Neurodegenerative Diseases/metabolism , Niemann-Pick Diseases/metabolism
12.
Nat Cell Biol ; 21(10): 1206-1218, 2019 10.
Article En | MEDLINE | ID: mdl-31548609

Cholesterol activates the master growth regulator, mTORC1 kinase, by promoting its recruitment to the surface of lysosomes by the Rag guanosine triphosphatases (GTPases). The mechanisms that regulate lysosomal cholesterol content to enable mTORC1 signalling are unknown. Here, we show that oxysterol binding protein (OSBP) and its anchors at the endoplasmic reticulum (ER), VAPA and VAPB, deliver cholesterol across ER-lysosome contacts to activate mTORC1. In cells lacking OSBP, but not other VAP-interacting cholesterol carriers, the recruitment of mTORC1 by the Rag GTPases is inhibited owing to impaired transport of cholesterol to lysosomes. By contrast, OSBP-mediated cholesterol trafficking drives constitutive mTORC1 activation in a disease model caused by the loss of the lysosomal cholesterol transporter, Niemann-Pick C1 (NPC1). Chemical and genetic inactivation of OSBP suppresses aberrant mTORC1 signalling and restores autophagic function in cellular models of Niemann-Pick type C (NPC). Thus, ER-lysosome contacts are signalling hubs that enable cholesterol sensing by mTORC1, and targeting the sterol-transfer activity of these signalling hubs could be beneficial in patients with NPC.


Cholesterol/metabolism , Endoplasmic Reticulum/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Niemann-Pick Diseases/metabolism , Receptors, Steroid/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Mechanistic Target of Rapamycin Complex 1/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Niemann-Pick C1 Protein , Receptors, Steroid/genetics , Signal Transduction , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
13.
J Lipid Res ; 60(6): 1099-1111, 2019 06.
Article En | MEDLINE | ID: mdl-30988135

The catabolism of ganglioside GM2 is dependent on three gene products. Mutations in any of these genes result in a different type of GM2 gangliosidosis (Tay-Sachs disease, Sandhoff disease, and the B1 and AB variants of GM2 gangliosidosis), with GM2 as the major lysosomal storage compound. GM2 is also a secondary storage compound in lysosomal storage diseases such as Niemann-Pick disease types A-C, with primary storage of SM in type A and cholesterol in types B and C, respectively. The reconstitution of GM2 catabolism at liposomal surfaces carrying GM2 revealed that incorporating lipids into the GM2-carrying membrane such as cholesterol, SM, sphingosine, and sphinganine inhibits GM2 hydrolysis by ß-hexosaminidase A assisted by GM2 activator protein, while anionic lipids, ceramide, fatty acids, lysophosphatidylcholine, and diacylglycerol stimulate GM2 catabolism. In contrast, the hydrolysis of the synthetic, water-soluble substrate 4-methylumbelliferyl-6-sulfo-2-acetamido-2-deoxy-ß-d-glucopyranoside was neither significantly affected by membrane lipids such as ceramide or SM nor stimulated by anionic lipids such as bis(monoacylglycero)phosphate added as liposomes, detergent micelles, or lipid aggregates. Moreover, hydrolysis-inhibiting lipids also had an inhibiting effect on the solubilization and mobilization of membrane-bound lipids by the GM2 activator protein, while the stimulating lipids enhanced lipid mobilization.


G(M2) Activator Protein/metabolism , Membrane Lipids/metabolism , Cholesterol/metabolism , G(M2) Activator Protein/genetics , G(M2) Ganglioside/metabolism , Gangliosides/metabolism , Humans , Liposomes/metabolism , Lysophospholipids/metabolism , Membrane Lipids/genetics , Monoglycerides/metabolism , Niemann-Pick Diseases/metabolism , Sphingolipids/metabolism , Sphingomyelins/metabolism , Sphingosine/metabolism , Stearic Acids/metabolism
14.
Yakugaku Zasshi ; 139(2): 143-155, 2019.
Article Ja | MEDLINE | ID: mdl-30713223

Recently, the application of ß-cyclodextrins (ß-CDs) as therapeutic agents has received considerable attention. ß-CDs have been reported to have therapeutic effects on various diseases, such as Niemann-Pick type C (NPC) disease, a family of lysosomal storage disorders characterized by the lysosomal accumulation of cholesterol. To further improve the therapeutic efficacy of ß-CDs, the use of ß-CD-threaded polyrotaxanes (PRXs) has been proposed as a carrier of ß-CDs for NPC disease. PRXs are supramolecular polymers composed of many CDs threaded onto a linear polymer chain and capped with bulky stopper molecules. In this review, the design of PRXs and their therapeutic applications are described. To achieve the intracellular release of threaded ß-CDs from PRXs, stimuli-cleavable linkers are introduced in an axle polymer of PRXs. The stimuli-labile PRXs can dissociate into their constituent molecules by a cleavage reaction under specific stimuli, such as pH reduction in lysosomes. The release of the threaded ß-CDs from acid-labile PRXs in acidic lysosomes leads to the formation of an inclusion complex with the cholesterol that has accumulated in NPC disease patient-derived fibroblasts, thus promoting the extracellular excretion of the excess cholesterol. Moreover, the administration of PRXs to a mouse model of NPC disease caused significant suppression of the tissue accumulation of cholesterol, resulting in a prolonged life span in the model mice. Additionally, the induction of autophagy by the methylated ß-CD-threaded PRXs (Me-PRXs) is described. Accordingly, the stimuli-labile PRXs are expected to be effective carriers of CDs for therapeutic applications.


Cyclodextrins , Drug Carriers , Poloxamer , Rotaxanes , beta-Cyclodextrins/administration & dosage , Animals , Autophagy/drug effects , Cholesterol/metabolism , Cyclodextrins/chemistry , Cyclodextrins/metabolism , Disease Models, Animal , Drug Carriers/chemistry , Drug Carriers/metabolism , Drug Design , Fibroblasts/metabolism , Humans , Hydrogen-Ion Concentration , Lysosomes/metabolism , Macromolecular Substances , Methylation , Mice , Niemann-Pick Diseases/drug therapy , Niemann-Pick Diseases/metabolism , Poloxamer/chemistry , Poloxamer/metabolism , Rotaxanes/chemistry , Rotaxanes/metabolism , beta-Cyclodextrins/metabolism , beta-Cyclodextrins/pharmacology
15.
Endocr Rev ; 39(2): 192-220, 2018 04 01.
Article En | MEDLINE | ID: mdl-29325023

The Niemann-Pick type C1 (NPC1) protein regulates the transport of cholesterol and fatty acids from late endosomes/lysosomes and has a central role in maintaining lipid homeostasis. NPC1 loss-of-function mutations in humans cause NPC1 disease, a rare autosomal-recessive lipid-storage disorder characterized by progressive and lethal neurodegeneration, as well as liver and lung failure, due to cholesterol infiltration. In humans, genome-wide association studies and post-genome-wide association studies highlight the implication of common variants in NPC1 in adult-onset obesity, body fat mass, and type 2 diabetes. Heterozygous human carriers of rare loss-of-function coding variants in NPC1 display an increased risk of morbid adult obesity. These associations have been confirmed in mice models, showing an important interaction with high-fat diet. In this review, we describe the current state of knowledge for NPC1 variants in relationship to pleiotropic effects on metabolism. We provide evidence that NPC1 gene variations may predispose to common metabolic diseases by modulating steroid hormone synthesis and/or lipid homeostasis. We also propose several important directions of research to further define the complex roles of NPC1 in metabolism. This review emphasizes the contribution of NPC1 to obesity and its metabolic complications.


Carrier Proteins/genetics , Diabetes Mellitus , Dyslipidemias , Membrane Glycoproteins/genetics , Niemann-Pick Diseases , Obesity , Animals , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Dyslipidemias/genetics , Dyslipidemias/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Mice , Niemann-Pick C1 Protein , Niemann-Pick Diseases/genetics , Niemann-Pick Diseases/metabolism , Obesity/genetics , Obesity/metabolism
16.
Mol Genet Metab ; 123(2): 76-84, 2018 02.
Article En | MEDLINE | ID: mdl-29290526

BACKGROUND: In patients suspected of a lipid storage disorder (sphingolipidoses, lipidoses), confirmation of the diagnosis relies predominantly on the measurement of specific enzymatic activities and genetic studies. New UPLC-MS/MS methods have been developed to measure lysosphingolipids and oxysterols, which, combined with chitotriosidase activity may represent a rapid first tier screening for lipid storage disorders. MATERIAL AND METHODS: A lysosphingolipid panel consisting of lysoglobotriaosylceramide (LysoGb3), lysohexosylceramide (LysoHexCer: both lysoglucosylceramide and lysogalactosylceramide), lysosphingomyelin (LysoSM) and its carboxylated analogue lysosphingomyelin-509 (LysoSM-509) was measured in control subjects and plasma samples of predominantly untreated patients affected with lipid storage disorders (n=74). In addition, the oxysterols cholestane-3ß,5α,6ß-triol and 7-ketocholesterol were measured in a subset of these patients (n=36) as well as chitotriosidase activity (n=43). A systematic review of the literature was performed to assess the usefulness of these biochemical markers. RESULTS: Specific elevations of metabolites, i.e. without overlap between controls and other lipid storage disorders, were found for several lysosomal storage diseases: increased LysoSM levels in acid sphingomyelinase deficiency (Niemann-Pick disease type A/B), LysoGb3 levels in males with classical phenotype Fabry disease and LysoHexCer (i.e. lysoglucosylceramide/lysogalactosylceramide) in Gaucher and Krabbe diseases. While elevated levels of LysoSM-509 and cholestane-3ß,5α,6ß-triol did not discriminate between Niemann Pick disease type C and acid sphingomyelinase deficiency, LysoSM-509/LysoSM ratio was specifically elevated in Niemann-Pick disease type C. In Gaucher disease type I, mild increases in several lysosphingolipids were found including LysoGb3 with levels in the range of non-classical Fabry males and females. Chitotriosidase showed specific elevations in symptomatic Gaucher disease, and was mildly elevated in all other lipid storage disorders. Review of the literature identified 44 publications. Most findings were in line with our cohort. Several moderate elevations of biochemical markers were found across a wide range of other, mainly inherited metabolic, diseases. CONCLUSION: Measurement in plasma of LysoSLs and oxysterols by UPLC-MS/MS in combination with activity of chitotriosidase provides a useful first tier screening of patients suspected of lipid storage disease. The LysoSM-509/LysoSM ratio is a promising parameter in Niemann-Pick disease type C. Further studies in larger groups of untreated patients and controls are needed to improve the specificity of the findings.


Biomarkers/metabolism , Fabry Disease/diagnosis , Gaucher Disease/diagnosis , Niemann-Pick Diseases/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Fabry Disease/metabolism , Female , Gaucher Disease/metabolism , Humans , Infant , Infant, Newborn , Male , Middle Aged , Niemann-Pick Diseases/metabolism , Prognosis , Young Adult
17.
FEBS J ; 284(15): 2513-2526, 2017 08.
Article En | MEDLINE | ID: mdl-28626941

While the cytosolic events of Wnt/ß-catenin signaling (canonical Wnt signaling) pathway have been widely studied, only little is known about the molecular mechanisms involved in Wnt binding to its receptors at the plasma membrane. Here, we reveal the influence of the immediate plasma membrane environment on the canonical Wnt-receptor interaction. While the receptors are distributed both in ordered and disordered environments, Wnt binding to its receptors selectively occurs in more ordered membrane environments which appear to cointernalize with the Wnt-receptor complex. Moreover, Wnt/ß-catenin signaling is significantly reduced when the membrane order is disturbed by specific inhibitors of certain lipids that prefer to localize at the ordered environments. Similarly, a reduction in Wnt signaling activity is observed in Niemann-Pick Type C disease cells where trafficking of ordered membrane lipid components to the plasma membrane is genetically impaired. We thus conclude that ordered plasma membrane environments are essential for binding of canonical Wnts to their receptor complexes and downstream signaling activity.


Cell Membrane/metabolism , Cytoskeletal Proteins/metabolism , Membrane Microdomains/metabolism , Receptors, Wnt/agonists , Wnt Proteins/metabolism , Wnt Signaling Pathway , Wnt3 Protein/metabolism , Wnt3A Protein/metabolism , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified , CHO Cells , Cell Line, Tumor , Cells, Cultured , Cricetulus , Cytoskeletal Proteins/genetics , Embryo, Nonmammalian/metabolism , Genes, Reporter , HEK293 Cells , Humans , Low Density Lipoprotein Receptor-Related Protein-6/agonists , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Niemann-Pick Diseases/metabolism , Niemann-Pick Diseases/pathology , Receptors, Wnt/metabolism , Recombinant Fusion Proteins/metabolism , Wnt Proteins/genetics , Wnt3 Protein/genetics , Wnt3A Protein/genetics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
18.
Cell Rep ; 19(9): 1807-1818, 2017 05 30.
Article En | MEDLINE | ID: mdl-28564600

Lipoprotein cholesterol is delivered to the limiting membrane of late endosomes/lysosomes (LELs) by Niemann-Pick C1 (NPC1). However, the mechanism of cholesterol transport from LELs to the endoplasmic reticulum (ER) is poorly characterized. We report that oxysterol-binding protein-related protein 1L (ORP1L) is necessary for this stage of cholesterol export. CRISPR-mediated knockout of ORP1L in HeLa and HEK293 cells reduced esterification of cholesterol to the level in NPC1 knockout cells, and it increased the expression of sterol-regulated genes and de novo cholesterol synthesis, indicative of a block in cholesterol transport to the ER. In the absence of this transport pathway, cholesterol-enriched LELs accumulated in the Golgi/perinuclear region. Cholesterol delivery to the ER required the sterol-, phosphatidylinositol 4-phosphate-, and vesicle-associated membrane protein-associated protein (VAP)-binding activities of ORP1L, as well as NPC1 expression. These results suggest that ORP1L-dependent membrane contacts between LELs and the ER coordinate cholesterol transfer with the retrograde movement of endo-lysosomal vesicles.


Cholesterol/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Receptors, Steroid/metabolism , Biological Transport , CRISPR-Cas Systems , Endoplasmic Reticulum/metabolism , Esterification , HEK293 Cells , HeLa Cells , Humans , Niemann-Pick Diseases/metabolism , Phenotype , Phosphatidylinositol Phosphates/metabolism
19.
Methods Mol Biol ; 1594: 93-128, 2017.
Article En | MEDLINE | ID: mdl-28456978

Late endosomes and lysosomes (LE/LYSs) play a central role in trafficking of endocytic cargo, secretion of exosomes, and hydrolysis of ingested proteins and lipids. Failure in such processes can lead to lysosomal storage disorders in which a particular metabolite accumulates within LE/LYSs. Analysis of endocytic trafficking relies heavily on quantitative fluorescence microscopy, but evaluation of the huge image data sets is challenging and demands computer-assisted statistical tools. Here, we describe how to use SpatTrack ( www.sdu.dk/bmb/spattrack ), an imaging toolbox, which we developed for quantification of the distribution and dynamics of endo-lysosomal cargo from fluorescence images of living cells. First, we explain how to analyze experimental images of endocytic processes in Niemann Pick C2 disease fibroblasts using SpatTrack. We demonstrate how to quantify the location of the sterol-binding protein NPC2 in LE/LYSs relative to cholesterol -rich lysosomal storage organelles (LSOs) stained with filipin. Second, we show how to simulate realistic vesicle patterns in the cell geometry using Markov Chain Monte Carlo and suitable inter-vesicle and cell-vesicle interaction potentials. Finally, we use such synthetic vesicle patterns as "ground truth" for validation of two-channel analysis tools in SpatTrack, revealing their high reliability. An improved version of SpatTrack for microscopy-based quantification of cargo transport through the endo-lysosomal system accompanies this protocol.


Endocytosis/physiology , Endosomes/metabolism , Lysosomes/metabolism , Animals , Cholesterol/metabolism , Humans , Lysosomal Storage Diseases/metabolism , Microscopy, Fluorescence , Monte Carlo Method , Niemann-Pick Diseases/metabolism , Protein Transport/physiology
20.
Redox Biol ; 12: 274-284, 2017 08.
Article En | MEDLINE | ID: mdl-28282615

MLN64 is a late endosomal cholesterol-binding membrane protein that has been implicated in cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria, in toxin-induced resistance, and in mitochondrial dysfunction. Down-regulation of MLN64 in Niemann-Pick C1 deficient cells decreased mitochondrial cholesterol content, suggesting that MLN64 functions independently of NPC1. However, the role of MLN64 in the maintenance of endosomal cholesterol flow and intracellular cholesterol homeostasis remains unclear. We have previously described that hepatic MLN64 overexpression increases liver cholesterol content and induces liver damage. Here, we studied the function of MLN64 in normal and NPC1-deficient cells and we evaluated whether MLN64 overexpressing cells exhibit alterations in mitochondrial function. We used recombinant-adenovirus-mediated MLN64 gene transfer to overexpress MLN64 in mouse liver and hepatic cells; and RNA interference to down-regulate MLN64 in NPC1-deficient cells. In MLN64-overexpressing cells, we found increased mitochondrial cholesterol content and decreased glutathione (GSH) levels and ATPase activity. Furthermore, we found decreased mitochondrial membrane potential and mitochondrial fragmentation and increased mitochondrial superoxide levels in MLN64-overexpressing cells and in NPC1-deficient cells. Consequently, MLN64 expression was increased in NPC1-deficient cells and reduction of its expression restore mitochondrial membrane potential and mitochondrial superoxide levels. Our findings suggest that MLN64 overexpression induces an increase in mitochondrial cholesterol content and consequently a decrease in mitochondrial GSH content leading to mitochondrial dysfunction. In addition, we demonstrate that MLN64 expression is increased in NPC cells and plays a key role in cholesterol transport into the mitochondria.


Carrier Proteins/genetics , Carrier Proteins/metabolism , Cholesterol/metabolism , Liver/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/physiology , Niemann-Pick Diseases/metabolism , Animals , CHO Cells , Cricetulus , Dependovirus/genetics , Genetic Vectors/administration & dosage , Glutathione/metabolism , Hep G2 Cells , Humans , Liver/cytology , Membrane Potential, Mitochondrial , Mice , Mitochondria/metabolism , Niemann-Pick Diseases/genetics , Niemann-Pick Diseases/physiopathology , Superoxides/metabolism
...