Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.067
Filter
1.
Sci Rep ; 14(1): 17808, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090195

ABSTRACT

Antimicrobial peptides, such as nisin, are proposed as promising agents for cancer treatment. While glycation has been recognized as an effective method for enhancing various physicochemical properties of nisin, its anticancer effects remain unexplored. Therefore, we aimed to assess the anticancer potential of glycated nisin against MDA-MB-231 cells. The MDA-MB cells were treated with increasing concentrations of nisin and glycated nisin for 24, 48, and 72 h. The IC50 values for nisin were higher than those for glycated nisin. Glycated nisin at concentrations of 20 and 40 µg/mL decreased cell viability more than nisin at the same concentrations. The rate of apoptosis in the group treated with 20 µg/mL of nisin was lower compared to other treatment groups, and no significant difference in apoptosis rates was observed at different time points (p > 0.05). However, in the glycated nisin groups with concentrations of 10, 20, and 40 µg/mL, the level of apoptosis was very high after 24 h (73-81% of cells undergoing apoptosis). Overall, our study suggests that glycated nisin exhibits stronger cytotoxic effects on MDA-MB-231 cells, primarily involving the induction of apoptosis. This indicates its potential utilization as an alternative approach to address the issue of drug resistance in cancer cells.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Survival , Nisin , Nisin/pharmacology , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Glycosylation/drug effects , Cell Survival/drug effects , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
2.
Food Res Int ; 192: 114765, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147557

ABSTRACT

In this study, Listeria monocytogenes from minced pork was evaluated for changes in resistance to thermal treatment and gastric fluid following environmental stresses during food processing. Bacteria were exposed to cold stress, followed by successive exposures to different stressors (lactic acid (LA), NaCl, or Nisin), followed by thermal treatments, and finally, their gastrointestinal tolerance was determined. Adaptation to NaCl stress reduced the tolerance of L. monocytogenes to subsequent LA and Nisin stress. Adaptation to LA stress increased bacterial survival in NaCl and Nisin-stressed environments. Bacteria adapted to Nisin stress showed no change in tolerance to subsequent stress conditions. In addition, treatment with NaCl and LA enhanced the thermal tolerance of L. monocytogenes, but treatment with Nisin decreased the thermal tolerance of the bacteria. Almost all of the sequential stresses reduced the effect of a single stress on bacterial thermal tolerance. The addition of LA and Nisin as a second step of stress reduced the tolerance of L. monocytogenes to gastric fluid, whereas the addition of NaCl enhanced its tolerance. The results of this study are expected to inform processing conditions and sequences for meat preservation and processing and reduce uncertainty in risk assessment of foodborne pathogens due to stress adaptation.


Subject(s)
Food Handling , Food Microbiology , Listeria monocytogenes , Meat Products , Nisin , Listeria monocytogenes/drug effects , Listeria monocytogenes/physiology , Nisin/pharmacology , Meat Products/microbiology , Animals , Food Handling/methods , Hot Temperature , Sodium Chloride , Swine , Stress, Physiological , Food Preservation/methods , Adaptation, Physiological
3.
BMC Microbiol ; 24(1): 257, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997643

ABSTRACT

BACKGROUND: The increase in the resistance of bacterial strains to antibiotics has led to research into the bactericidal potential of non-antibiotic compounds. This study aimed to evaluate in vitro antibacterial/ antibiofilm properties of nisin and selenium encapsulated in thiolated chitosan nanoparticles (N/Se@TCsNPs) against prevalent enteric pathogens including standard isolates of Vibrio (V.) cholerae O1 El Tor ATCC 14,035, Campylobacter (C.) jejuni ATCC 29,428, Salmonella (S.) enterica subsp. enterica ATCC 19,430, Shigella (S.) dysenteriae PTCC 1188, Escherichia (E.) coli O157:H7 ATCC 25,922, Listeria (L.) monocytogenes ATCC 19,115, and Staphylococcus (S.) aureus ATCC 29,733. METHODS: The synthesis and comprehensive analysis of N/Se@TCsNPs have been completed. Antibacterial and antibiofilm capabilities of N/Se@TCsNPs were evaluated through broth microdilution and crystal violet assays. Furthermore, the study included examining the cytotoxic effects on Caco-2 cells and exploring the immunomodulatory effects of N/Se@TCsNPs. This included assessing the levels of both pro-inflammatory (IL-6 and TNFα) and anti-inflammatory (IL-10 and TGFß) cytokines and determining the gene expression of TLR2 and TLR4. RESULTS: The N/Se@TCsNPs showed an average diameter of 136.26 ± 43.17 nm and a zeta potential of 0.27 ± 0.07 mV. FTIR spectroscopy validated the structural features of N/Se@TCsNPs. Scanning electron microscopy (SEM) images confirmed their spherical shape and uniform distribution. Thermogravimetric Analysis (TGA)/Differential Scanning Calorimetry (DSC) tests demonstrated the thermal stability of N/Se@TCsNPs, showing minimal weight loss of 0.03%±0.06 up to 80 °C. The prepared N/Se@TCsNPs showed a thiol content of 512.66 ± 7.33 µmol/g (p < 0.05), an encapsulation efficiency (EE) of 69.83%±0.04 (p ≤ 0.001), and a drug release rate of 74.32%±3.45 at pH = 7.2 (p ≤ 0.004). The synthesized nanostructure demonstrated potent antibacterial activity against various isolates, with effective concentrations ranging from 1.5 ± 0.08 to 25 ± 4.04 mg/mL. The ability of N/Se@TCsNPs to reduce bacterial adhesion and internalization in Caco-2 cells underscored their antibiofilm properties (p ≤ 0.0001). Immunological studies indicated that treatment with N/Se@TCsNPs led to decreased levels of inflammatory cytokines IL-6 (14.33 ± 2.33 pg/mL) and TNFα (25 ± 0.5 pg/mL) (p ≤ 0.0001), alongside increased levels of anti-inflammatory cytokines IL-10 (46.00 ± 0.57 pg/mL) and TGFß (42.58 ± 2.10 pg/mL) in infected Caco-2 cells (p ≤ 0.0001). Moreover, N/Se@TCsNPs significantly reduced the expression of TLR2 (0.22 ± 0.09) and TLR4 (0.16 ± 0.05) (p < 0.0001). CONCLUSION: In conclusion, N/Se@TCsNPs exhibited significant antibacterial/antibiofilm/anti-attachment/immunomodulatory effectiveness against selected Gram-positive and Gram-negative enteric pathogens. However, additional ex-vivo and in-vivo investigations are needed to fully assess the performance of nanostructured N/Se@TCsNPs.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chitosan , Microbial Sensitivity Tests , Nanoparticles , Nisin , Selenium , Nisin/pharmacology , Nisin/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Biofilms/drug effects , Humans , Caco-2 Cells , Nanoparticles/chemistry , Selenium/chemistry , Selenium/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Toll-Like Receptor 2/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Bacterial Adhesion/drug effects , Cytokines/metabolism , Toll-Like Receptor 4/metabolism
4.
Open Vet J ; 14(6): 1370-1383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39055763

ABSTRACT

Background: Antibiotic resistance is a global health problem related to the transmission of bacteria and genes between humans and animals. The development of new drugs with antimicrobial activity research is an urgent task of modern science. Aim: The article presents data of in vitro and in vivo experiments on new pharmaceutical composition based on nisin. Methods: The antimicrobial activity was studied on the mastitis pathogens. To identify microorganisms the Matrix-Assisted Lazer Desorption/Ionization Time-of-Flight (MALDI-TOF) (mass spectrometry) method was performed using. To determine sensitivity, the serial dilution method and the diffusion method were used. On laboratory animals, biochemical, hematological, and histological research methods were used. Female nonlinear white laboratory rats were used, which were divided into one control group and three experimental ones. Results: "Duration" factor was statistically significant for the following indicators: hemoglobin, hematocrit, leukocytes, lymphocytes, erythrocyte sedimentation rate, and eosinophils. The "Dose" factor did not show significance for any indicator, which means that the effect was similar regardless of the dose chosen. When analyzing the biochemical indicators, significant differences were found in the "Duration" and "Dose" factors, in the direction of a decrease in the indicators of total protein, globulins, urea, and an increase in the concentration of alkaline phosphatase. When conducting histological studies in the first experimental group, it was established that there were no changes in the structural and functional units of the organs. In animals of the second experimental group, the presence of reversible pathological processes of a compensatory nature was noted. More profound changes in the structure of the studied organs were recorded in the third experimental group. Conclusion: An in vitro study on cell cultures showed that the pharmacological composition has high antimicrobial activity against isolates from the mammary gland secretion of cows with mastitis. An in vivo study on laboratory animals showed that the developed composition belongs to the IV class of substances "low-hazard substances". Histological examination made it possible to select the safest dose of the pharmacological composition of no more than 500 mg/kg.


Subject(s)
Anti-Bacterial Agents , Nisin , Animals , Female , Rats , Anti-Bacterial Agents/pharmacology , Nisin/pharmacology , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy , Microbial Sensitivity Tests/veterinary , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/veterinary
5.
Food Res Int ; 191: 114685, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059942

ABSTRACT

This study focused on the isolation and characterization of bacteriophages with specific activity against toxin-producing and multidrug-resistant strains of Bacillus cereus sensu stricto (B. cereus s. s.). Ten different samples yielded six bacteriophages by utilizing the double-layer agar technique. The most promising phage, vB_BceS-M2, was selected based on its broad host range and robust lytic activity against various B. cereus s. s. strains. The phage vB_BceS-M2 had a circular double-stranded DNA genome of 56,482 bp. This phage exhibited stability over a wide range of temperatures and pH values, which is crucial for its potential application in food matrices. The combined effect of phage vB_BceS-M2 and nisin, a widely used antimicrobial peptide, was investigated to enhance antimicrobial efficacy against B. cereus in food. The results suggested that nisin showed synergy and combined effect with the phage, potentially overcoming the growth of phage-resistant bacteria in the broth. Furthermore, practical applications were conducted in various liquid and solid food matrices, including whole and skimmed milk, boiled rice, cheese, and frozen meatballs, both at 4 and 25 °C. Phage vB_BceS-M2, either alone or in combination with nisin, reduced the growth rate of B. cereus in foods other than whole milk. The combination of bacteriophage and nisin showed promise for the development of effective antimicrobial interventions to counteract toxigenic and antibiotic-resistant B. cereus in food.


Subject(s)
Anti-Bacterial Agents , Bacillus cereus , Drug Resistance, Multiple, Bacterial , Food Microbiology , Nisin , Anti-Bacterial Agents/pharmacology , Bacillus cereus/virology , Bacillus cereus/drug effects , Bacillus Phages/genetics , Bacteriophages , Cheese/microbiology , Hydrogen-Ion Concentration , Milk/microbiology , Nisin/pharmacology , Oryza/microbiology , Temperature
6.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38970380

ABSTRACT

Alternative strategies for controlling Staphylococcus aureus and other pathogens have been continuously investigated, with nisin, a bacteriocin widely used in the food industry as a biopreservative, gaining increasing attention. In addition to its antimicrobial properties, bacteriocins have significant effects on genome functionality even at inhibitory concentrations. This study investigated the impact of subinhibitory concentrations of nisin on S. aureus. Culturing in the presence of 0.625 µmol l-1 nisin, led to the increased relative expression of hla, saeR, and sarA, genes associated with virulence while expression of the sea gene, encoding staphylococcal enterotoxin A (SEA), decreased. In an in vivo experiment, Galleria mellonella larvae inoculated with S. aureus cultured in the presence of nisin exhibited 97% mortality at 72 h post-infection, compared to over 40% of larvae mortality in larvae infected with S. aureus. A comprehensive understanding of the effect of nisin on the transcriptional response of virulence genes and the impact of these changes on the virulence of S. aureus can contribute to assessing the application of this bacteriocin in food and medical contexts.


Subject(s)
Anti-Bacterial Agents , Larva , Moths , Nisin , Staphylococcus aureus , Nisin/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Animals , Virulence/genetics , Larva/microbiology , Larva/drug effects , Anti-Bacterial Agents/pharmacology , Moths/microbiology , Staphylococcal Infections/microbiology , Gene Expression Regulation, Bacterial/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence Factors/genetics , Microbial Sensitivity Tests
7.
J Appl Microbiol ; 135(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39066499

ABSTRACT

AIMS: This study evaluates the antibacterial characteristics and mechanisms of combined tea polyphenols (TPs), Nisin, and ε-polylysine (PL) against Streptococcus canis, Streptococcus minor, Streptococcus mutans, and Actinomyces oris, common zoonotic pathogens in companion animals. METHODS AND RESULTS: Pathogenic strains were isolated from feline oral cavities and assessed using minimum inhibitory concentration (MIC) tests, inhibition zone assays, growth kinetics, and biofilm inhibition studies. Among single agents, PL exhibited the lowest MIC values against all four pathogens. TP showed significant resistance against S. minor, and Nisin against S. mutans. The combination treatment (Comb) of TP, Nisin, and PL in a ratio of 13:5:1 demonstrated broad-spectrum antibacterial activity, maintaining low MIC values, forming large inhibition zones, prolonging the bacterial lag phase, reducing growth rates, and inhibiting biofilm formation. RNA sequencing and metabolomic analysis indicated that TP, Nisin, and PL inhibited various membrane-bound carbohydrate-specific transferases through the phosphoenolpyruvate-dependent phosphotransferase system in S. canis, disrupting carbohydrate uptake. They also downregulated glycolysis and the citric acid cycle, inhibiting cellular energy metabolism. Additionally, they modulated the activities of peptidoglycan glycosyltransferases and d-alanyl-d-alanine carboxypeptidase, interfering with peptidoglycan cross-linking and bacterial cell wall stability. CONCLUSIONS: The Comb therapy significantly enhances antibacterial efficacy by targeting multiple bacterial pathways, offering potential applications in food and pharmaceutical antimicrobials.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Nisin , Polylysine , Polyphenols , Tea , Animals , Nisin/pharmacology , Anti-Bacterial Agents/pharmacology , Polylysine/pharmacology , Polyphenols/pharmacology , Cats , Tea/chemistry , Biofilms/drug effects , Streptococcus/drug effects , Streptococcus/genetics , Transcriptome , Mouth/microbiology , Metabolomics
8.
Biomed Mater ; 19(5)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39079550

ABSTRACT

Nisin is a bacteriocin produced by Gram-positive lactic acid bacterium,Lactococcus lactisand currently recognized in the Generally Recognized as Safe (GRAS) category due to its non-toxicity. Herein, nisin has been grafted to chitosan structure to obtain natural bio-active films with enhanced antibacterial activity. Grafting was performed using ethyl ester lysine diisocyanate and dimer fatty acid-based diisocyanate (DDI); two different close to fully bio-based diisocyanates and Disuccinimidyl suberate; a homo-bifunctional molecule acting as a crosslinker between amino groups. The grafting process allowed the chemical immobilization of nisin to chitosan structure. Physicochemical characterization studies showed the successful grafting of nisin. The antibacterial activity againstStaphylococcus aureuswas evident for all nisin modified chitosan films and best pronounced when DDI was used as a crosslinker with a maximum zone of inhibition of ∼13 mm. All nisin grafted chitosan films were cytocompatible and the cell viability of L929 fibroblasts were >80% pointing out the non-toxic structure. Considering the results of the presented study, bio-based diisocyanates and homo-bifunctional crosslinkers are effective molecules in synthesis of nisin grafted chitosan structures and the new chitosan based antibacterial biopolymers obtained after nisin modification come forward as promising non-toxic and bioactive candidates to be applied in medical devices, implants, and various food coating products.


Subject(s)
Anti-Bacterial Agents , Chitosan , Nisin , Staphylococcus aureus , Nisin/chemistry , Nisin/pharmacology , Chitosan/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Animals , Staphylococcus aureus/drug effects , Cell Survival/drug effects , Fibroblasts/drug effects , Materials Testing , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Microbial Sensitivity Tests , Cross-Linking Reagents/chemistry , Cell Line
9.
BMC Oral Health ; 24(1): 822, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033294

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the effect of in-vivo produced Nisin which is an antimicrobial peptide (AMP) added to adhesive resin on shear bond strength (SBS) and the adhesive remnant index (ARI) of orthodontic brackets. METHODS: Bacterial AMP was produced by fermentation and the ideal AMP/Bond concentration and antimicrobial efficacy of the mixture were tested. To evaluate the SBS and ARI scores of AMP-added adhesive resins, 80 maxillary premolar teeth extracted for orthodontic purposes were used and randomly assigned into 2 groups (n = 40). Group 1: Control Group (teeth bonded with standard adhesive resin); Group 2: Experimental Group (teeth bonded with AMP-added adhesive resin). Statistical analysis was performed using the SPSS package program and applying the Mann-Whitney U and Fisher's exact tests. P < 0.05 was considered as statistically significant. RESULTS: Nisin synthesized in-vivo from Lactococcus lactis (L. lactis) (ATCC 7962) bacteria was provided to form a homogenous solution at an ideal concentration To find the minimum AMP/Bond mixture ratio that showed maximum antimicrobial activity, AMP and Bond mixtures were tested at various concentration levels between 1/160 and 1/2 (AMP/Bond). As a result, the optimum ratio was determined as 1/40. The antimicrobial efficacy of Nisin-added adhesive resin was tested against Streptococcus mutans (S. mutans) (ATCC 35,688) and Lactobacillus strains (cariogenic microorganisms). AMP formed a 2.7 cm diameter zone alone, while 1/40 AMP-bond mixture formed a 1.2 cm diameter zone. SBS values of the teeth bonded with Nisin added adhesive (17.49 ± 5.31) were significantly higher than the control group (14.54 ± 4.96) (P = 0.004). According to the four point scale, Nisin added adhesive provided a higher ARI score in favour of the adhesive and tooth compared to the control group (ARI = 3, n = 20). CONCLUSIONS: Nisin produced from L. lactis (ATCC 7962) had greater antimicrobial effects after mixing with adhesive bond against cariogenic microorganisms S. mutans (ATCC 35,688) and Lactobacillus strains. Nisin added adhesive increased shear bond strength (SBS) of orthodontic brackets and ARI scores in favor of adhesive & teeth. CLINICAL RELEVANCE: Clinicians should take into account that using Nisin-added adhesive resin in orthodontic treatments can provide prophylaxis against tooth decay, especially in patients with poor oral hygiene.


Subject(s)
Dental Bonding , Nisin , Orthodontic Brackets , Resin Cements , Shear Strength , Nisin/pharmacology , Humans , Resin Cements/pharmacology , Resin Cements/chemistry , Dental Bonding/methods , Lactococcus lactis , Dental Stress Analysis , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Streptococcus mutans/drug effects , Bicuspid
10.
J Nat Prod ; 87(6): 1548-1555, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38888620

ABSTRACT

Antimicrobial peptides (AMPs) have raised significant interest, forming a potential new class of antibiotics in the fight against multi-drug-resistant bacteria. Various AMPs are ribosomally synthesized and post-translationally modified peptides (RiPPs). One post-translational modification found in AMPs is the halogenation of Trp residues. This modification has, for example, been shown to be critical for the activity of the potent AMP NAI-107 from Actinoallomurus. Due to the importance of organohalogens, establishing methods for facile and selective halogen atom installation into AMPs is highly desirable. In this study, we introduce an expression system utilizing the food-grade strain Lactococcus lactis, facilitating the efficient incorporation of bromo-Trp (BrTrp) into (modified) peptides, exemplified by the lantibiotic nisin with a single Trp residue or analogue incorporated at position 1. This provides an alternative to the challenges posed by halogenase enzymes, such as poor substrate selectivity. Our method yields expression levels comparable to that of wild-type nisin, while BrTrp incorporation does not interfere with the post-translational modifications of nisin (dehydration and cyclization). One brominated nisin variant exhibits a 2-fold improvement in antimicrobial activity against two tested pathogens, including a WHO priority pathogen, while maintaining the same lipid II binding and bactericidal activity as wild-type nisin. The work presented here demonstrates the potential of this methodology for peptide halogenation, offering a new avenue for the development of diverse antimicrobial products labeled with BrTrp.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Halogenation , Microbial Sensitivity Tests , Nisin , Nisin/pharmacology , Nisin/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tryptophan/chemistry , Lactococcus lactis , Molecular Structure
11.
Int J Pharm ; 660: 124371, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38908809

ABSTRACT

This work aimed to develop amphiphilic nanocarriers such as polymersome based diblock copolymer of Kollicoat ® IR -block-poly(ε-caprolactone) (Kollicoat ® IR-b-PCL) for potential co-delivery of Nisin (Ni) and Curcumin (CUR) for treatment of breast cancer. To generate multi-layered nanocarriers of uniform size and morphology, microfluidics was used as a new technology. In order to characterise and optimize polymersome, design of experiments (Design-Expert) software with three levels full factorial design (3-FFD) method was used. Finally, the optimized polymersome was produced with a spherical morphology, small particle size (dH < 200 nm), uniform size distribution (PDI < 0.2), and high drug loading efficiency (Ni 78 % and CUR 93 %). Furthermore, the maximum release of Ni and CUR was found to be roughly 60 % and 80 % in PBS, respectively. Cytotoxicity assays showed a slight cytotoxicity of Ni and CUR -loaded polymersome (N- Ni /CUR) towards normal cells while demonstrating inhibitory activity against cancer cells compared to the free drugs. Also, the apoptosis assays and cellular uptake confirmed the obtained results from cytotoxic analysis. In general, this study demonstrated a microfluidic approach for preparation and optimization of polymersome for co-delivery of two drugs into cancer cells.


Subject(s)
Breast Neoplasms , Curcumin , Drug Carriers , Drug Liberation , Nisin , Polyesters , Curcumin/administration & dosage , Curcumin/chemistry , Curcumin/pharmacokinetics , Curcumin/pharmacology , Nisin/administration & dosage , Nisin/chemistry , Nisin/pharmacology , Humans , Breast Neoplasms/drug therapy , Female , Polyesters/chemistry , Drug Carriers/chemistry , Apoptosis/drug effects , Particle Size , Cell Survival/drug effects , MCF-7 Cells , Cell Line, Tumor , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Drug Delivery Systems , Microfluidics/methods , Polyvinyls/chemistry
12.
BMC Vet Res ; 20(1): 257, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867200

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is nowadays a major emerging challenge for public health worldwide. The over- and misuse of antibiotics, including those for cell culture, are promoting AMR while also encouraging the research and employment of alternative drugs. The addition of antibiotics to the cell media is strongly recommended in sperm preservation, being gentamicin the most used for boar semen. Because of its continued use, several bacterial strains present in boar semen have developed resistance to this antibiotic. Antimicrobial peptides and proteins (AMPPs) are promising candidates as alternative antibiotics because their mechanism of action is less likely to promote AMR. In the present study, we tested two AMPPs (lysozyme and nisin; 50 and 500 µg/mL) as possible substitutes of gentamicin for boar semen preservation up to 48 h of storage. RESULTS: We found that both AMPPs improved sperm plasma membrane and acrosome integrity during semen storage. The highest concentration tested for lysozyme also kept the remaining sperm parameters unaltered, at 48 h of semen storage, and reduced the bacterial load at comparable levels of the samples supplemented with gentamicin (p > 0.05). On the other hand, while nisin (500 µg/mL) reduced the total Enterobacteriaceae counts, it also decreased the rapid and progressive sperm population and the seminal oxidation-reduction potential (p < 0.05). CONCLUSIONS: The protective effect of lysozyme on sperm function together with its antimicrobial activity and inborn presence in body fluids, including semen and cervical mucus, makes this enzyme a promising antimicrobial agent for boar semen preservation.


Subject(s)
Anti-Bacterial Agents , Muramidase , Nisin , Semen Preservation , Animals , Semen Preservation/veterinary , Semen Preservation/methods , Male , Anti-Bacterial Agents/pharmacology , Swine , Muramidase/pharmacology , Nisin/pharmacology , Semen/drug effects , Spermatozoa/drug effects , Antimicrobial Peptides/pharmacology , Cell Membrane/drug effects , Gentamicins/pharmacology , Acrosome/drug effects
13.
Anal Chem ; 96(28): 11247-11254, 2024 07 16.
Article in English | MEDLINE | ID: mdl-38941069

ABSTRACT

Evaluating the dynamic interaction of microorganisms and mammalian cells is challenging due to the lack of suitable platforms for examining interspecies interactions in biologically relevant coculture conditions. In this work, we demonstrate the interaction between probiotic bacteria (Lactococcus lactis and Escherichia coli) and A498 human cancer cells in vitro, utilizing a hydrogel-based platform in a label-free manner by infrared spectroscopy. The L. lactis strain recapitulated in the compartment system secretes polypeptide molecules such as nisin, which has been reported to trigger cell apoptosis. We propose a mid-infrared (IR) spectroscopic imaging approach to monitor the variation of biological components utilizing kidney cells (A498) as a model system cocultured with bacteria. We characterized the biochemical composition (i.e., nucleic acids, protein secondary structures, and lipid conformations) label-free using an unbiased measurement. Several IR spectral features, including unsaturated fatty acids, ß-turns in protein, and nucleic acids, were utilized to predict cellular response. These features were then applied to establish a quantitative relationship through a multivariate regression model to predict cellular dynamics in the coculture system to assess the effect of nisin on A498 kidney cancer cells cocultured with bacteria. Overall, our study sheds light on the potential of using IR spectroscopic imaging as a label-free tool to monitor complex microbe-host cell interactions in biological systems. This integration will enable mechanistic studies of interspecies interactions with insights into their underlying physiological processes.


Subject(s)
Coculture Techniques , Escherichia coli , Probiotics , Humans , Escherichia coli/metabolism , Probiotics/metabolism , Nisin/pharmacology , Nisin/chemistry , Nisin/metabolism , Lactococcus lactis/metabolism , Spectrophotometry, Infrared , Cell Line, Tumor
14.
Arch Microbiol ; 206(6): 272, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38772980

ABSTRACT

Phage-encoded endolysins have emerged as a potential substitute to conventional antibiotics due to their exceptional benefits including host specificity, rapid host killing, least risk of resistance. In addition to their antibacterial potency and biofilm eradication properties, endolysins are reported to exhibit synergism with other antimicrobial agents. In this study, the synergistic potency of endolysins was dissected with antimicrobial peptides to enhance their therapeutic effectiveness. Recombinantly expressed and purified bacteriophage endolysin [T7 endolysin (T7L); and T4 endolysin (T4L)] proteins have been used to evaluate the broad-spectrum antibacterial efficacy using different bacterial strains. Antibacterial/biofilm eradication studies were performed in combination with different antimicrobial peptides (AMPs) such as colistin, nisin, and polymyxin B (PMB) to assess the endolysin's antimicrobial efficacy and their synergy with AMPs. In combination with T7L, polymyxin B and colistin effectively eradicated the biofilm of Pseudomonas aeruginosa and exhibited a synergistic effect. Further, a combination of T4L and nisin displayed a synergistic effect against Staphylococcus aureus biofilms. In summary, the obtained results endorse the theme of combinational therapy consisting of endolysins and AMPs as an effective remedy against the drug-resistant bacterial biofilms that are a serious concern in healthcare settings.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Biofilms , Drug Synergism , Endopeptidases , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Staphylococcus aureus , Biofilms/drug effects , Endopeptidases/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Pseudomonas aeruginosa/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Nisin/pharmacology , Nisin/chemistry , Polymyxin B/pharmacology , Bacteriophages , Colistin/pharmacology , Bacteriophage T4/drug effects , Bacteriophage T4/physiology , Bacteriophage T7/drug effects , Bacteriophage T7/genetics
15.
J Phys Chem B ; 128(19): 4741-4750, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38696215

ABSTRACT

Resistance to available antibiotics poses a growing challenge to modern medicine, as this often disallows infections to be controlled. This problem can only be alleviated by the development of new drugs. Nisin, a natural lantibiotic with broad antimicrobial activity, has shown promise as a potential candidate for combating antibiotic-resistant bacteria. However, nisin is poorly soluble and barely stable at physiological pH, which despite attempts to address these issues through mutant design has restricted its use as an antibacterial drug. Therefore, gaining a deeper understanding of the antimicrobial effectiveness, which relies in part on its ability to form pores, is crucial for finding innovative ways to manage infections caused by resistant bacteria. Using large-scale molecular dynamics simulations, we find that the bacterial membrane-specific lipid II increases the stability of pores formed by nisin and that the interplay of nisin and lipid II reduces the overall integrity of bacterial membranes by changing the local thickness and viscosity.


Subject(s)
Molecular Dynamics Simulation , Nisin , Uridine Diphosphate N-Acetylmuramic Acid , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Membrane/drug effects , Cell Membrane/chemistry , Cell Membrane/metabolism , Nisin/chemistry , Nisin/pharmacology , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/chemistry , Uridine Diphosphate N-Acetylmuramic Acid/metabolism
16.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38714347

ABSTRACT

The influence of environmental factors on Salmonella sensitivity to nisin in vitro and in refrigerated orange juice were investigated. Nisin activity was observed in the different conditions, but the highest efficiency was achieved at lower pH (4.0) and with higher bacteriocin concentration (174 µM). Moreover, the bactericidal action was directly proportional to the incubation period. When tested in orange juice, nisin caused a reduction of up to 4.05 logarithm cycles in the Salmonella population. So, environmental factors such as low pH and low temperature favored the sensitization of Salmonella cells to the bactericidal action of nisin. Therefore, this may represent an alternative to control Salmonella in refrigerated foods.


Subject(s)
Anti-Bacterial Agents , Citrus sinensis , Fruit and Vegetable Juices , Nisin , Refrigeration , Salmonella typhimurium , Nisin/pharmacology , Fruit and Vegetable Juices/microbiology , Citrus sinensis/chemistry , Citrus sinensis/microbiology , Salmonella typhimurium/drug effects , Hydrogen-Ion Concentration , Anti-Bacterial Agents/pharmacology , Food Microbiology , Microbial Sensitivity Tests , Food Preservation/methods
17.
BMC Vet Res ; 20(1): 192, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734600

ABSTRACT

BACKGROUND: Natural antimicrobial agents such as nisin were used to control the growth of foodborne pathogens in dairy products. The current study aimed to examine the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against methicillin resistant Staphylococcus aureus (MRSA) and E.coli O157:H7 during the manufacturing and storage of yoghurt. Nisin NPs were prepared using new, natural, and safe nano-precipitation method by acetic acid. The prepared NPs were characterized using zeta-sizer and transmission electron microscopy (TEM). In addition, the cytotoxicity of nisin NPs on vero cells was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined using agar well-diffusion method. Further, fresh buffalo's milk was inoculated with MRSA or E.coli O157:H7 (1 × 106 CFU/ml) with the addition of either nisin or nisin NPs, and then the inoculated milk was used for yoghurt making. The organoleptic properties, pH and bacterial load of the obtained yoghurt were evaluated during storage in comparison to control group. RESULTS: The obtained results showed a strong antibacterial activity of nisin NPs (0.125 mg/mL) against MRSA and E.coli O157:H7 in comparison with control and pure nisin groups. Notably, complete eradication of MRSA and E.coli O157:H7 was observed in yoghurt formulated with nisin NPs after 24 h and 5th day of storage, respectively. The shelf life of yoghurt inoculated with nisin nanoparticles was extended than those manufactured without addition of such nanoparticles. CONCLUSIONS: Overall, the present study indicated that the addition of nisin NPs during processing of yoghurt could be a useful tool for food preservation against MRSA and E.coli O157:H7 in dairy industry.


Subject(s)
Anti-Bacterial Agents , Escherichia coli O157 , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Nanoparticles , Nisin , Yogurt , Nisin/pharmacology , Nisin/chemistry , Yogurt/microbiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Escherichia coli O157/drug effects , Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Preservatives/pharmacology , Vero Cells , Food Microbiology , Chlorocebus aethiops , Food Preservation/methods
18.
Int J Food Microbiol ; 419: 110751, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38781648

ABSTRACT

Nisin is the first FDA-approved antimicrobial peptide and shows significant antimicrobial activity against Gram-positive bacteria, but only a weakly inhibitory effect on Gram-negative bacteria. The aim of this study was to prepare whey protein-based edible films with the incorporation of milk-derived antimicrobial peptides (αs2-casein151-181 and αs2-casein182-207) and compare their mechanical properties and potential application in cheese packaging with films containing nisin. These two antimicrobial peptides showed similar activity against B. subtilis and much higher activity against E. coli than bacteriocin nisin, representing that these milk-derived peptides had great potential to be applied as food preservatives. Antimicrobial peptides in whey protein films caused an increase in film opaqueness and water vapor barrier properties but decreased the tensile strength and elongation at break. Compared to other films, the whey protein film containing αs2-casein151-181 had good stability in salt or acidic solution, as evidenced by the results from scanning electron microscope and Fourier transform infrared spectroscopy. Whey protein film incorporated with αs2-casein151-181 could inhibit the growth of yeasts and molds, and control the growth of psychrotrophic bacteria present originally in the soft cheese at refrigerated temperature. It also exhibited significant inhibitory activity against the development of mixed culture (E. coli and B. subtilis) in the cheese due to superficial contamination during storage. Antimicrobial peptides immobilized in whey protein films showed a higher effectiveness than their direct application in solution. In addition, films containing αs2-casein151-181 could act as a hurdle inhibiting the development of postprocessing contamination on the cheese surface during the 28 days of storage. The films in this study exhibited the characteristics desired for active packaging materials.


Subject(s)
Cheese , Whey Proteins , Cheese/microbiology , Whey Proteins/pharmacology , Whey Proteins/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Food Preservation/methods , Food Packaging/methods , Nisin/pharmacology , Nisin/chemistry , Food Microbiology , Escherichia coli/drug effects , Escherichia coli/growth & development , Edible Films , Food Preservatives/pharmacology , Food Preservatives/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Milk Proteins/pharmacology , Milk Proteins/chemistry
19.
Gut Microbes ; 16(1): 2342583, 2024.
Article in English | MEDLINE | ID: mdl-38722061

ABSTRACT

Vancomycin and metronidazole are commonly used treatments for Clostridioides difficile infection (CDI). However, these antibiotics have been associated with high levels of relapse in patients. Fidaxomicin is a new treatment for CDI that is described as a narrow spectrum antibiotic that is minimally active on the commensal bacteria of the gut microbiome. The aim of this study was to compare the effect of fidaxomicin on the human gut microbiome with a number of narrow (thuricin CD) and broad spectrum (vancomycin and nisin) antimicrobials. The spectrum of activity of each antimicrobial was tested against 47 bacterial strains by well-diffusion assay. Minimum inhibitory concentrations (MICs) were calculated against a select number of these strains. Further, a pooled fecal slurry of 6 donors was prepared and incubated for 24 h with 100 µM of each antimicrobial in a mini-fermentation system together with a no-treatment control. Fidaxomicin, vancomycin, and nisin were active against most gram positive bacteria tested in vitro, although fidaxomicin and vancomycin produced larger zones of inhibition compared to nisin. In contrast, the antimicrobial activity of thuricin CD was specific to C. difficile and some Bacillus spp. The MICs showed similar results. Thuricin CD exhibited low MICs (<3.1 µg/mL) for C. difficile and Bacillus firmus, whereas fidaxomicin, vancomycin, and nisin demonstrated lower MICs for all other strains tested when compared to thuricin CD. The narrow spectrum of thuricin CD was also observed in the gut model system. We conclude that the spectrum of activity of fidaxomicin is comparable to that of the broad-spectrum antibiotic vancomycin in vitro and the broad spectrum bacteriocin nisin in a complex community.


Subject(s)
Anti-Bacterial Agents , Feces , Fidaxomicin , Gastrointestinal Microbiome , Microbial Sensitivity Tests , Nisin , Vancomycin , Nisin/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Fidaxomicin/pharmacology , Vancomycin/pharmacology , Gastrointestinal Microbiome/drug effects , Feces/microbiology , Bacteria/drug effects , Bacteria/classification , Clostridioides difficile/drug effects , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Bacteriocins/pharmacology
20.
J Endod ; 50(7): 962-965, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38615826

ABSTRACT

INTRODUCTION: Various strategies have been researched to enhance the susceptibility of biofilms, given their tolerance to antibiotics. This study evaluated the effect of the anti-microbial peptide nisin in association with antibiotics used in regenerative endodontics, exploring different treatment times and biofilm growth conditions. METHODS: A mixture of 10 bacterial species was cultivated on dentin specimens anaerobically for 21 days. Biofilms were treated with 1 mL of high-purity nisin Z (nisin ZP, 200 µg/mL) and a triple antibiotic mixture (TAP: ciprofloxacin + metronidazole + minocycline, 5 mg/mL), alone or in combination. The effectiveness of antimicrobial agents was assessed after 1 and 7 days. During the 7-day period, biofilms were treated under 2 conditions: a single dose in a nutrient-depleted setting (ie, no replenishment of growth medium) and multiple doses in a nutrient-rich environment (ie, renewal of medium and antimicrobial agents every 48 h). After treatments, biofilm cells were dispersed, and total colony-forming units were counted. RESULTS: After 1 d-treatment, nisin ZP + TAP resulted in 2-log cell reduction compared to TAP alone (P < .05). After 7 d-treatment with a single dose, nisin ZP + TAP and TAP reduced bacteria to nonculturable levels (P < .05), whereas repeated antimicrobial doses did not eliminate bacteria in a nutrient-rich environment. No bacterial reduction was observed with nisin ZP alone in any treatment time. CONCLUSIONS: The additional use of nisin improved the TAP activity only after a short exposure time. Longer exposure to TAP or nisin + TAP in a nutrient-deprived environment effectively eliminated biofilms.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ciprofloxacin , Metronidazole , Nisin , Regenerative Endodontics , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Regenerative Endodontics/methods , Nisin/pharmacology , Metronidazole/pharmacology , Humans , Ciprofloxacin/pharmacology , Minocycline/pharmacology , Microbial Sensitivity Tests , Drug Combinations
SELECTION OF CITATIONS
SEARCH DETAIL