Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.598
Filter
1.
PLoS One ; 19(7): e0303472, 2024.
Article in English | MEDLINE | ID: mdl-38990864

ABSTRACT

Plasmid transfection in cells is widely employed to express exogenous proteins, offering valuable mechanistic insight into their function(s). However, plasmid transfection efficiency in primary vascular endothelial cells (ECs) and smooth muscle cells (SMCs) is restricted with lipid-based transfection reagents such as Lipofectamine. The STING pathway, activated by foreign DNA in the cytosol, prevents foreign gene expression and induces DNA degradation. To address this, we explored the potential of STING inhibitors on the impact of plasmid expression in primary ECs and SMCs. Primary human aortic endothelial cells (HAECs) were transfected with a bicistronic plasmid expressing cytochrome b5 reductase 4 (CYB5R4) and enhanced green fluorescent protein (EGFP) using Lipofectamine 3000. Two STING inhibitors, MRT67307 and BX795, were added during transfection and overnight post-transfection. As a result, MRT67307 significantly enhanced CYB5R4 and EGFP expression, even 24 hours after its removal. In comparison, MRT67307 pretreatment did not affect transfection, suggesting the inhibitor's effect was readily reversible. The phosphorylation of endothelial nitric oxide synthase (eNOS) at Serine 1177 (S1177) by vascular endothelial growth factor is essential for endothelial proliferation, migration, and survival. Using the same protocol, we transfected wild-type and phosphorylation-incapable mutant (S1177A) eNOS in HAECs. Both forms of eNOS localized on the plasma membrane, but only the wild-type eNOS was phosphorylated by vascular endothelial growth factor treatment, indicating normal functionality of overexpressed proteins. MRT67307 and BX795 also improved plasmid expression in human and rat aortic SMCs. In conclusion, this study presents a modification enabling efficient plasmid transfection in primary vascular ECs and SMCs, offering a favorable approach to studying protein function(s) in these cell types, with potential implications for other primary cell types that are challenging to transfect.


Subject(s)
Endothelial Cells , Membrane Proteins , Plasmids , Transfection , Humans , Plasmids/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Animals , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Cells, Cultured , Phosphorylation , Rats , Gene Expression , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism
2.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000349

ABSTRACT

Lipid emulsions are used as adjuvant drugs to alleviate intractable cardiovascular collapse induced by drug toxicity. We aimed to examine the effect of lipid emulsions on labetalol-induced vasodilation and the underlying mechanism in the isolated rat aorta. We studied the effects of endothelial denudation, NW-nitro-l-arginine methyl ester (l-NAME), calmidazolium, methylene blue, 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (ODQ), and lipid emulsions on labetalol-induced vasodilation. We also evaluated the effects of lipid emulsions on cyclic guanosine monophosphate (cGMP) formation, endothelial nitric oxide synthase (eNOS) phosphorylation, and endothelial calcium levels induced by labetalol. Labetalol-induced vasodilation was higher in endothelium-intact aortas than that in endothelium-denuded aortas. l-NAME, calmidazolium, methylene blue, and ODQ inhibited labetalol-induced vasodilation in endothelium-intact aortas. Lipid emulsions inhibited labetalol-induced vasodilation in endothelium-intact and endothelium-denuded aortas. l-NAME, ODQ, and lipid emulsions inhibited labetalol-induced cGMP formation in endothelium-intact aortas. Lipid emulsions reversed the stimulatory and inhibitory eNOS (Ser1177 and Thr495) phosphorylation induced by labetalol in human umbilical vein endothelial cells and inhibited the labetalol-induced endothelial calcium increase. Moreover, it decreased labetalol concentration. These results suggest that lipid emulsions inhibit vasodilation induced by toxic doses of labetalol, which is mediated by the inhibition of endothelial nitric oxide release and reduction of labetalol concentration.


Subject(s)
Aorta , Cyclic GMP , Emulsions , Labetalol , Nitric Oxide Synthase Type III , Vasodilation , Animals , Vasodilation/drug effects , Rats , Aorta/drug effects , Aorta/metabolism , Labetalol/pharmacology , Male , Nitric Oxide Synthase Type III/metabolism , Cyclic GMP/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Rats, Sprague-Dawley , Humans , Lipids , Phosphorylation/drug effects , Calcium/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism
3.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000380

ABSTRACT

Endothelial dysfunction often precedes the development of cardiovascular diseases, including heart failure. The cardioprotective benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2is) could be explained by their favorable impact on the endothelium. In this review, we summarize the current knowledge on the direct in vitro effects of SGLT2is on endothelial cells, as well as the systematic observations in preclinical models. Four putative mechanisms are explored: oxidative stress, nitric oxide (NO)-mediated pathways, inflammation, and endothelial cell survival and proliferation. Both in vitro and in vivo studies suggest that SGLT2is share a class effect on attenuating reactive oxygen species (ROS) and on enhancing the NO bioavailability by increasing endothelial nitric oxide synthase activity and by reducing NO scavenging by ROS. Moreover, SGLT2is significantly suppress inflammation by preventing endothelial expression of adhesion receptors and pro-inflammatory chemokines in vivo, indicating another class effect for endothelial protection. However, in vitro studies have not consistently shown regulation of adhesion molecule expression by SGLT2is. While SGLT2is improve endothelial cell survival under cell death-inducing stimuli, their impact on angiogenesis remains uncertain. Further experimental studies are required to accurately determine the interplay among these mechanisms in various cardiovascular complications, including heart failure and acute myocardial infarction.


Subject(s)
Sodium-Glucose Transporter 2 Inhibitors , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Humans , Animals , Oxidative Stress/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Nitric Oxide/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Reactive Oxygen Species/metabolism , Nitric Oxide Synthase Type III/metabolism , Inflammation/metabolism , Inflammation/drug therapy
4.
Epigenetics ; 19(1): 2375030, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38967279

ABSTRACT

The mechanisms by which the ageing process is associated to an unhealthy lifestyle and how they play an essential role in the aetiology of systemic arterial hypertension have not yet been completely elucidated. Our objective is to investigate the influence of NOS3 polymorphisms [-786T > C and (Glu298Asp)] on systolic blood pressure (SBP) and diastolic blood pressure (DBP) response, differentially methylated regions (DMRs), and physical fitness of adult and older women after a 14-week combined training intervention. The combined training was carried out for 14 weeks, performed 3 times a week, totalling 180 minutes weekly. The genotyping experiment used Illumina Infinium Global Screening Array version 2.0 (GSA V2.0) and Illumina's EPIC Infinium Methylation BeadChip. The participants were separated into SNP rs2070744 in TT (59.7 ± 6.2 years) and TC + CC (60.0 ± 5.2 years), and SNP rs17999 in GluGlu (58.8 ± 5.7 years) and GluAsp + AspAsp (61.6 ± 4.9 years). We observed an effect of time for variables BP, physical capacities, and cholesterol. DMRs related to SBP and DBP were identified for the rs2070744 and rs17999 groups pre- and decreased numbers of DMRs post-training. When we analysed the effect of exercise training in pre- and post-comparisons, the GluGlu SNP (rs17999) showed 10 DMRs, and after enrichment, we identified several biological biases. The combined training improved the SBP and DBP values of the participants regardless of the SNPs. In addition, exercise training affected DNA methylation differently between the groups of NOS3 polymorphisms.


Subject(s)
Blood Pressure , DNA Methylation , Exercise , Nitric Oxide Synthase Type III , Polymorphism, Single Nucleotide , Humans , Female , Middle Aged , Nitric Oxide Synthase Type III/genetics , Blood Pressure/genetics , Aged , Hypertension/genetics , Epigenesis, Genetic
5.
Int J Mol Med ; 54(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38874017

ABSTRACT

In paraquat (PQ)­induced acute lung injury (ALI)/ acute respiratory distress syndrome, PQ disrupts endothelial cell function and vascular integrity, which leads to increased pulmonary leakage. Anthrahydroquinone­2,6­disulfonate (AH2QDS) is a reducing agent that attenuates the extent of renal injury and improves survival in PQ­intoxicated Sprague­Dawley (SD) rats. The present study aimed to explore the beneficial role of AH2QDS in PQ­induced ALI and its related mechanisms. A PQ­intoxicated ALI model was established using PQ gavage in SD rats. Human pulmonary microvascular endothelial cells (HPMECs) were challenged with PQ. Superoxide dismutase, malondialdehyde, reactive oxygen species and nitric oxide (NO) fluorescence were examined to detect the level of oxidative stress in HPMECs. The levels of TNF­α, IL­1ß and IL­6 were assessed using an ELISA. Transwell and Cell Counting Kit­8 assays were performed to detect the migration and proliferation of the cells. The pathological changes in lung tissues and blood vessels were examined by haematoxylin and eosin staining. Evans blue staining was used to detect pulmonary microvascular permeability. Western blotting was performed to detect target protein levels. Immunofluorescence and immunohistochemical staining were used to detect the expression levels of target proteins in HPMECs and lung tissues. AH2QDS inhibited inflammatory responses in lung tissues and HPMECs, and promoted the proliferation and migration of HPMECs. In addition, AH2QDS reduced pulmonary microvascular permeability by upregulating the levels of vascular endothelial­cadherin, zonula occludens­1 and CD31, thereby attenuating pathological changes in the lungs in rats. Finally, these effects may be related to the suppression of the phosphatidylinositol­3­kinase (PI3K)/protein kinase B (AKT)/endothelial­type NO synthase (eNOS) signalling pathway in endothelial cells. In conclusion, AH2QDS ameliorated PQ­induced ALI by improving alveolar endothelial barrier disruption via modulation of the PI3K/AKT/eNOS signalling pathway, which may be an effective candidate for the treatment of PQ­induced ALI.


Subject(s)
Acute Lung Injury , Capillary Permeability , Lung , Nitric Oxide Synthase Type III , Paraquat , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Animals , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Proto-Oncogene Proteins c-akt/metabolism , Nitric Oxide Synthase Type III/metabolism , Capillary Permeability/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Humans , Male , Signal Transduction/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects , Paraquat/adverse effects , Paraquat/toxicity , Rats , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Oxidative Stress/drug effects
6.
Eur J Pharmacol ; 977: 176758, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38901528

ABSTRACT

Vinclozolin (VCZ) is a common dicarboximide fungicide used to protect crops from diseases. It is also an endocrine disruptor, and its effects on various organs have been described but its influence on vasculature has not yet been addressed. This study focuses on the potential mechanism of VCZ-induced vascular injury. The effect of VCZ on vascular function in terms of relaxing and contracting response was evaluated in mice aorta. A short exposure to VCZ affected the endothelial but not the smooth muscle component. Specifically, it caused a disruption of the eNOS/NO signaling. In line, a short exposure to VCZ in bovine aortic endothelial cells promoted eNOS uncoupling resulting in a reduction of NO bioavailability and eNOS dimer/monomer ratio, and in turn an increase of nitro-tyrosine levels and ROS formation. Prolonging the exposure to VCZ (3 and 6h) an up-regulation of Nox4, enzyme-generating ROS constitutively expressed in endothelial cells, and an increase in ROS and malondialdehyde content coupled with a reduction in NO levels were found. These events were strictly linked to endoplasmic reticulum stress as demonstrated by the phosphorylation of inositol-requiring transmembrane kinase endoribonuclease 1α (IRE1α), a stress sensor and its reversion by using a selective inhibitor. Collectively, these results demonstrated that VCZ provokes endothelial dysfunction by oxidative stress involving eNOS/Nox4/IRE1α axis. The rapid exposure affected the endothelial function promoting eNOS uncoupling while a post-transcriptional modification, involving Nox4/IRE1α signaling, occurred following prolonged exposure. Thus, exposure to VCZ could contribute to the onset and/or progression of cardiovascular diseases associated with endothelial dysfunction.


Subject(s)
Endocrine Disruptors , Endoribonucleases , Endothelial Cells , NADPH Oxidase 4 , Nitric Oxide Synthase Type III , Nitric Oxide , Oxazoles , Protein Serine-Threonine Kinases , Signal Transduction , Animals , Nitric Oxide Synthase Type III/metabolism , Signal Transduction/drug effects , Cattle , Mice , Endocrine Disruptors/toxicity , NADPH Oxidase 4/metabolism , Oxazoles/pharmacology , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Nitric Oxide/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Male , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Reactive Oxygen Species/metabolism , Endoplasmic Reticulum Stress/drug effects , Aorta/drug effects , Aorta/metabolism , Aorta/pathology
7.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928382

ABSTRACT

Graphene, when electrified, generates far-infrared radiation within the wavelength range of 4 µm to 14 µm. This range closely aligns with the far-infrared band (3 µm to 15 µm), which produces unique physiological effects. Contraction and relaxation of vascular smooth muscle play a significant role in primary hypertension, involving the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate pathway and the renin-angiotensin-aldosterone system. This study utilized spontaneously hypertensive rats (SHRs) as an untr-HT to investigate the impact of far-infrared radiation at specific wavelengths generated by electrified graphene on vascular smooth muscle and blood pressure. After 7 weeks, the blood pressure of the untr-HT group rats decreased significantly with a notable reduction in the number of vascular wall cells and the thickness of the vascular wall, as well as a decreased ratio of vessel wall thickness to lumen diameter. Additionally, blood flow perfusion significantly increased, and the expression of F-actin in vascular smooth muscle myosin decreased significantly. Serum levels of angiotensin II (Ang-II) and endothelin 1 (ET-1) were significantly reduced, while nitric oxide synthase (eNOS) expression increased significantly. At the protein level, eNOS expression decreased significantly, while α-SMA expression increased significantly in aortic tissue. At the gene level, expressions of eNOS and α-SMA in aortic tissue significantly increased. Furthermore, the content of nitric oxide (NO) in the SHR's aortic tissue increased significantly. These findings confirm that graphene far-infrared radiation enhances microcirculation, regulates cytokines affecting vascular smooth muscle contraction, and modifies vascular morphology and smooth muscle phenotype, offering relief for primary hypertension.


Subject(s)
Blood Pressure , Graphite , Hypertension , Infrared Rays , Muscle, Smooth, Vascular , Rats, Inbred SHR , Animals , Rats , Blood Pressure/radiation effects , Male , Muscle, Smooth, Vascular/metabolism , Graphite/chemistry , Hypertension/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide Synthase Type III/genetics , Angiotensin II/metabolism , Angiotensin II/blood , Endothelin-1/metabolism , Endothelin-1/genetics , Endothelin-1/blood , Nitric Oxide/metabolism
8.
J Am Heart Assoc ; 13(12): e032971, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38842271

ABSTRACT

BACKGROUND: The mineralocorticoid receptor plays a significant role in the development of chronic kidney disease (CKD) and associated cardiovascular complications. Classic steroidal mineralocorticoid receptor antagonists are a therapeutic option, but their use in the clinic is limited due to the associated risk of hyperkalemia in patients with CKD. Finerenone is a nonsteroidal mineralocorticoid receptor antagonist that has been recently investigated in 2 large phase III clinical trials (FIDELIO-DKD [Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease] and FIGARO-DKD [Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease]), showing reductions in kidney and cardiovascular outcomes. METHODS AND RESULTS: We tested whether finerenone improves renal and cardiac function in a preclinical nondiabetic CKD model. Twelve weeks after 5/6 nephrectomy, the rats showed classic signs of CKD characterized by a reduced glomerular filtration rate and increased kidney weight, associated with left ventricular (LV) diastolic dysfunction and decreased LV perfusion. These changes were associated with increased cardiac fibrosis and reduced endothelial nitric oxide synthase activating phosphorylation (ser 1177). Treatment with finerenone prevented LV diastolic dysfunction and increased LV tissue perfusion associated with a reduction in cardiac fibrosis and increased endothelial nitric oxide synthase phosphorylation. Curative treatment with finerenone improves nondiabetic CKD-related LV diastolic function associated with a reduction in cardiac fibrosis and increased cardiac phosphorylated endothelial nitric oxide synthase independently from changes in kidney function. Short-term finerenone treatment decreased LV end-diastolic pressure volume relationship and increased phosphorylated endothelial nitric oxide synthase and nitric oxide synthase activity. CONCLUSIONS: We showed that the nonsteroidal mineralocorticoid receptor antagonist finerenone reduces renal hypertrophy and albuminuria, attenuates cardiac diastolic dysfunction and cardiac fibrosis, and improves cardiac perfusion in a preclinical nondiabetic CKD model.


Subject(s)
Disease Models, Animal , Fibrosis , Mineralocorticoid Receptor Antagonists , Naphthyridines , Nitric Oxide Synthase Type III , Renal Insufficiency, Chronic , Ventricular Dysfunction, Left , Animals , Mineralocorticoid Receptor Antagonists/pharmacology , Mineralocorticoid Receptor Antagonists/therapeutic use , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/metabolism , Naphthyridines/pharmacology , Naphthyridines/therapeutic use , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism , Male , Nitric Oxide Synthase Type III/metabolism , Glomerular Filtration Rate/drug effects , Ventricular Function, Left/drug effects , Diastole/drug effects , Kidney/drug effects , Kidney/physiopathology , Kidney/metabolism , Phosphorylation , Myocardium/metabolism , Myocardium/pathology , Rats, Sprague-Dawley , Rats , Nephrectomy
9.
Int Immunopharmacol ; 136: 112410, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38843641

ABSTRACT

Impaired wound healing in diabetes results from a complex interplay of factors that disrupt epithelialization and wound closure. MG53, a tripartite motif (TRIM) family protein, plays a key role in repairing cell membrane damage and facilitating tissue regeneration. In this study, bone marrow-derived mesenchymal stem cells (BMSCs) were transduced with lentiviral vectors overexpressing MG53 to investigate their efficacy in diabetic wound healing. Using a db/db mouse wound model, we observed that BMSCs-MG53 significantly enhanced diabetic wound healing. This improvement was associated with marked increase in re-epithelialization and vascularization. BMSCs-MG53 promoted recruitment and survival of BMSCs, as evidenced by an increase in MG53/Ki67-positive BMSCs and their improved response to scratch wounding. The combination therapy also promoted angiogenesis in diabetic wound tissues by upregulating the expression of angiogenic growth factors. MG53 overexpression accelerated the differentiation of BMSCs into endothelial cells, manifested as the formation of mature vascular network structure and a remarkable increase in DiI-Ac-LDL uptake. Our mechanistic investigation revealed that MG53 binds to caveolin-3 (CAV3) and subsequently increases phosphorylation of eNOS, thereby activating eNOS/NO signaling. Notably, CAV3 knockdown reversed the promoting effects of MG53 on BMSCs endothelial differentiation. Overall, our findings support the notion that MG53 binds to CAV3, activates eNOS/NO signaling pathway, and accelerates the therapeutic effect of BMSCs in the context of diabetic wound healing. These insights hold promise for the development of innovative strategies for treating diabetic-related impairments in wound healing.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Nitric Oxide Synthase Type III , Nitric Oxide , Signal Transduction , Wound Healing , Animals , Mesenchymal Stem Cells/metabolism , Nitric Oxide Synthase Type III/metabolism , Mice , Nitric Oxide/metabolism , Male , Mice, Inbred C57BL , Neovascularization, Physiologic , Cells, Cultured , Humans , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Cell Differentiation , Membrane Proteins
10.
Pharmazie ; 79(6): 101-108, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38877681

ABSTRACT

In this study, we hypothesized that lixisenatide (LIX) and ticagrelor (TIC) could have a protective effect against type 2 diabetes mellitus (T2DM)-induced vascular damage. Furthermore, we explored the possible additional protective effect of co-administering LIX and TIC in the treatment regimen. Methods: 50 male rats were divided into five groups, each comprising 10 rats: C (control), D (T2DM rats), D + LIX (T2DM rats treated with LIX for 4 weeks), D + TIC (T2DM rats treated with TIC for 4 weeks), and D + LIX + TIC (T2DM rats treated with LIX + TIC for 4 weeks). Results: The D group showed an increase in body weight, blood glucose, hemostatic model assessment for insulin resistance (HOMA-IR), aorta reactive oxygen species (ROS), and nuclear factor kappa B (NF-κ B), along with a reduction in serum insulin, aorta superoxide dismutase (SOD), glutathione reduced (GSH), nuclear factor erythroid-2 (NrF2), hemeoxygenase-1 (HO-1), and endothelial nitric oxide synthase (eNOS). Deterioration in the aorta histopathological condition, coupled with a noticeable impairment in vascular reactivity compared to the C group, was observed. A single administration of LIX showed a reduction in body weight, blood glucose, HOMA-IR, aorta ROS, and NF-κ B, accompanied by an increase in serum insulin, aorta SOD, GSH, NrF2, HO-1, and eNOS. Amelioration in the aorta histopathological condition and improved vascular reactivity compared to the D group were reported. Similarly, a single administration of TIC showed a reduction in aorta ROS and NF-κ B, along with an increase in aorta SOD, GSH, NrF2, HO-1, and eNOS. A slight amelioration was detected in the aorta histopathological condition, with improved vascular reactivity compared to the D group. The combined administration of LIX and TIC showed a reduction in aorta ROS and NF-κ B, along with an increase in aorta GSH, SOD, HO-1, and eNOS. This was combined with evident amelioration in the aorta histopathological condition and noticeable improvement in vascular reactivity compared to the single treatment with either LIX or TIC group. Conclusion: The present study introduces clear evidence that the administration of LIX and TIC can improve metabolic and vascular complications of T2DM through modulating eNOS and NrF2 /HO-1 signaling. The combined administration of LIX and TIC produced more significant effects than a single treatment.


Subject(s)
Diabetes Mellitus, Experimental , NF-E2-Related Factor 2 , Nitric Oxide Synthase Type III , Peptides , Reactive Oxygen Species , Signal Transduction , Ticagrelor , Animals , Male , Nitric Oxide Synthase Type III/metabolism , Rats , Signal Transduction/drug effects , Ticagrelor/pharmacology , Ticagrelor/administration & dosage , Peptides/pharmacology , Peptides/administration & dosage , NF-E2-Related Factor 2/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Reactive Oxygen Species/metabolism , Blood Glucose/drug effects , Insulin Resistance , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Rats, Sprague-Dawley , Heme Oxygenase (Decyclizing)/metabolism , NF-kappa B/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage , Heme Oxygenase-1/metabolism , Insulin , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Drug Synergism , Glucagon-Like Peptide-2 Receptor
11.
Endocr Regul ; 58(1): 138-143, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38861536

ABSTRACT

Objective. Polymorphism investigation of T786C gene promoter of endothelial nitric oxide synthase (eNOS/NOS3) in the arterial hypertension is a promising field for determining the relationship between heredity, hypertension, and dyslipidemia, which still remains controversial. The purpose of the study was to investigate the lipid profile, which depends on the NOS3 T786C gene promotor region polymorphism in patients with arterial hypertension. Methods. The study involved 86 patients with arterial hypertension. The control group consisted of 30 basically healthy individuals. The lipid profile in the blood serum of the studied patients was measured by commercially available kits using Biochem FC-200 analyzer (HTI, USA). The allelic polymorphism of NOS3 T786C gene promoter was studied using a polymerase chain reaction technique with electrophoretic detection of the results. Results. An increase at the level of all atherogenic fractions in the blood was found in the group of patients carrying the CC genotype compared with carriers of the TT genotype of the NOS3 gene. The total cholesterol serum level in the group of carriers of the CC genotype of NOS3 T786C gene promoter increased by 33.3% compared with carriers of the TT genotype and it was almost twice as high as the control values. In the group of carriers in the CC genotype of the NOS3 gene, the serum level of triglycerides was statistically significantly higher (2.9 times) than in the group of carriers of the TT genotype. The low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) serum levels significantly increased in patients with arterial hypertension with the CC genotype by 1.6 and 4.6 times, respectively, compared with the TT genotype carriers. The high-density lipoprotein (HDL) serum level, as an antiatherogenic factor, was statistically significantly lower (by 45.8%) in the group of the CC genotype carriers of the NOS3 gene than in the group with carriers of the TT genotype (0.58±0.06 vs. 1.07±0.03 mmol/l.) Conclusions. The increase in all atherogenic and decrease in antiatherogenic lipid parameters of the lipidogram of patients with arterial hypertension and the deepening of dyslipidemia in carriers of the CC genotype compared with carriers of the TT genotype of the NOS3 T786C gene promoter is crucial in the development of dyslipidemia.


Subject(s)
Hypertension , Lipids , Nitric Oxide Synthase Type III , Promoter Regions, Genetic , Humans , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/blood , Hypertension/genetics , Hypertension/blood , Promoter Regions, Genetic/genetics , Male , Female , Middle Aged , Adult , Lipids/blood , Polymorphism, Genetic , Case-Control Studies , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Dyslipidemias/genetics , Dyslipidemias/blood
12.
Life Sci ; 351: 122862, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38917872

ABSTRACT

The primary and initial manifestations of hypertension encompass arterial hypoelasticity and histiocyte senescence. Oxidative stress plays a pivotal role in the progression of senescence. Elevated intracellular oxidative stress levels will directly induce cell damage, disrupt normal physiological signal transduction, which can cause mitochondrial dysfunction to accelerate the process of senescence. Alizarin, an anthraquinone active ingredient isolated from Rubia cordifolia L., has a variety of pharmacological effects, including antioxidant, anti-inflammatory and anti-platelet. Nevertheless, its potential in lowering blood pressure (BP) and mitigating hypertension-induced vascular senescence remains uncertain. In this study, we used spontaneously hypertensive rats (SHR) and human umbilical vein endothelial cells (HUVECs) to establish a model of vascular senescence in hypertension. Our aim was to elucidate the mechanisms underpinning the vascular protective effects of Alizarin. By assessing systolic blood pressure (SBP) and diastolic blood pressure (DBP), H&E staining, SA-ß-Gal staining, vascular function, oxidative stress levels, calcium ion concentration and mitochondrial membrane potential, we found that Alizarin not only restored SBP and increased endothelium-dependent relaxation (EDR) in SHR, but also inhibited oxidative stress-induced mitochondrial damage and significantly delayed the vascular senescence effect in hypertension, and the mechanism may be related to the activation of VEGFR2/eNOS signaling pathway.


Subject(s)
Anthraquinones , Antihypertensive Agents , Cellular Senescence , Human Umbilical Vein Endothelial Cells , Hypertension , Mitochondria , Nitric Oxide Synthase Type III , Oxidative Stress , Rats, Inbred SHR , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2 , Oxidative Stress/drug effects , Animals , Humans , Rats , Mitochondria/metabolism , Mitochondria/drug effects , Anthraquinones/pharmacology , Cellular Senescence/drug effects , Antihypertensive Agents/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Nitric Oxide Synthase Type III/metabolism , Hypertension/metabolism , Hypertension/drug therapy , Vascular Endothelial Growth Factor Receptor-2/metabolism , Signal Transduction/drug effects , Male , Blood Pressure/drug effects , Rats, Inbred WKY
13.
Food Chem Toxicol ; 190: 114777, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824989

ABSTRACT

Air pollution (gases and particulate matter -PM) and child undernutrition are globally recognized stressors with significant consequences. PM and its components breach the respiratory alveolar-capillary barrier, entering the vasculature transporting not only harmful particles and its mediators but, altering vascular paracrine and autocrine functions. The aim of this study was to investigate the effects of Residual Oil Fly Ash (ROFA), on the vasculature of young animals with nutritional growth retardation (NGR). Weanling rats were fed a diet restricted 20% (NGR) compared to ad libitum intake (control-C) for 4 weeks. Rats were intranasally instilled with 1 mg/kg BW of ROFA. After 24h exposure, histological and immunohistochemical, biochemical and contractile response to NA/ACh were evaluated in aortas. ROFA induced changes in the tunica media of the aorta in all groups regarding thickness, muscular cells and expression of Connexin-43. ROFA increased TGF-ß1 and decreased eNOs levels and calcium channels in C and NGR animals. An increment in cytokines IL-6 and IL-10 was observed in C, with no changes in NGR. ROFA exposure altered the vascular contractile capacity. In conclusion, ROFA exposure could increase the risk for CVD through the alteration of vascular biochemical parameters, a possible step of the endothelial dysfunction.


Subject(s)
Air Pollution , Malnutrition , Animals , Rats , Male , Malnutrition/physiopathology , Malnutrition/complications , Air Pollution/adverse effects , Nitric Oxide Synthase Type III/metabolism , Coal Ash/toxicity , Rats, Wistar , Connexin 43/metabolism , Particulate Matter/toxicity , Aorta/drug effects , Transforming Growth Factor beta1/metabolism , Air Pollutants/toxicity
14.
J Cardiothorac Surg ; 19(1): 312, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824570

ABSTRACT

OBJECTIVE: About 10% of patients after cardiopulmonary bypass (CPB) would undergo acute liver injury, which aggravated the mortality of patients. Ac2-26 has been demonstrated to ameliorate organic injury by inhibiting inflammation. The present study aims to evaluate the effect and mechanism of Ac2-26 on acute liver injury after CPB. METHODS: A total of 32 SD rats were randomized into sham, CPB, Ac, and Ac/AKT1 groups. The rats only received anesthesia, and rats in other groups received CPB. The rats in Ac/AKT1 were pre-injected with the shRNA to interfere with the expression of AKT1. The rats in CPB were injected with saline, and rats in Ac and Ac/AKT1 groups were injected with Ac2-26. After 12 h of CPB, all the rats were sacrificed and the peripheral blood and liver samples were collected to analyze. The inflammatory factors in serum and liver were detected. The liver function was tested, and the pathological injury of liver tissue was evaluated. RESULTS: Compared with the sham group, the inflammatory factors, liver function, and pathological injury were worsened after CPB. Compared with the CPB group, the Ac2-26 significantly decreased the pro-inflammatory factors and increased the anti-inflammatory factor, improved liver function, and ameliorated the pathological injury. All the therapeutic effects of Ac2-26 were notably attenuated by the shRNA of AKT1. The Ac2-26 increased the GSK3ß and eNOS, and this promotion was inhibited by the shRNA. CONCLUSION: The Ac2-26 significantly treated the liver injury, inhibited inflammation, and improved liver function. The effect of Ac2-26 on liver injury induced by CPB was partly associated with the promotion of AKT1/GSK3ß/eNOS.


Subject(s)
Cardiopulmonary Bypass , Glycogen Synthase Kinase 3 beta , Nitric Oxide Synthase Type III , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Animals , Cardiopulmonary Bypass/adverse effects , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Rats , Nitric Oxide Synthase Type III/metabolism , Male , Disease Models, Animal , Liver/pathology , Signal Transduction
15.
Eur J Appl Physiol ; 124(7): 1943-1958, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753016

ABSTRACT

PURPOSE: Genetic factors are important in terms of athletic performance. Recent studies to determine the relationship between the genes that lead to physiological responses have attracted attention. In this respect, this meta-analysis study was designed to examine the relationship between genetic polymorphism (BDKRB2 rs5810761, GNB3 rs5443, HIF1A rs11549565, MCT1 rs1049434, NOS3 rs2070744) and endurance athlete's status. METHODS: The search included studies published from 2009 to 2022. To determine the relevant studies, Pubmed, Web of Science databases were systematically scanned. Only case-control studies were included in the meta-analysis. To determine the relevant studies, Pubmed, Web of Science databases were systematically scanned, and a total of 31 studies met the criteria for inclusion in the meta-analysis. Relevant data from the included studies were collected and analyzed using a random effects or fixed effects model. The effect size was calculated as the odds ratio or a risk ratio the corresponding 95% confidence intervals. RESULTS: According to the results of the analysis, BDKRB2 rs5810761 + 9 allele, and NOS3 rs2070744 T allele were significantly more prevalent in endurance athletes (p < 0.05). Genotype distributions of BDKRB2 rs5810761, MCT1 rs1049434, and NOS3 rs2070744 showed significant differences in the dominant model (p < 0.05). However, no significant association was found between endurance athlete status and GNB3 rs5443 and HIF1A rs11549465 polymorphisms. CONCLUSION: These results show that some gene polymorphisms play an important role in endurance athlete status and suggest that having a specific genetic basis may also confer a physiological advantage for performance.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Monocarboxylic Acid Transporters , Physical Endurance , Polymorphism, Single Nucleotide , Symporters , Humans , Physical Endurance/genetics , Symporters/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Monocarboxylic Acid Transporters/genetics , Nitric Oxide Synthase Type III/genetics , Athletes , Athletic Performance/physiology , Heterotrimeric GTP-Binding Proteins/genetics , Receptors, G-Protein-Coupled/genetics
16.
Sci Rep ; 14(1): 11444, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769383

ABSTRACT

Neonatal sepsis is a major cause of childhood mortality. Limited diagnostic tools and mechanistic insights have hampered our abilities to develop prophylactic or therapeutic interventions. Biomarkers in human neonatal sepsis have been repeatedly identified as associated with dysregulation of angiopoietin signaling and altered arachidonic acid metabolism. We here provide the mechanistic evidence in support of the relevance for these observations. Angiopoetin-1 (Ang-1), which promotes vascular integrity, was decreased in blood plasma of human and murine septic newborns. In preclinical models, administration of Ang-1 provided prophylactic protection from septic death. Arachidonic acid metabolism appears to be functionally connected to Ang-1 via reactive oxygen species (ROS) with a direct role of nitric oxide (NO). Strengthening this intersection via oral administration of arachidonic acid and/or the NO donor L-arginine provided prophylactic as well as therapeutic protection from septic death while also increasing plasma Ang-1 levels among septic newborns. Our data highlight that targeting angiogenesis-associated pathways with interventions that increase Ang-1 activity directly or indirectly through ROS/eNOS provide promising avenues to prevent and/or treat severe neonatal sepsis.


Subject(s)
Angiopoietin-1 , Neonatal Sepsis , Nitric Oxide , Reactive Oxygen Species , Humans , Animals , Infant, Newborn , Angiopoietin-1/blood , Angiopoietin-1/metabolism , Mice , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Nitric Oxide/blood , Arachidonic Acid/metabolism , Arachidonic Acid/blood , Female , Male , Arginine/blood , Arginine/metabolism , Signal Transduction , Nitric Oxide Synthase Type III/metabolism , Neovascularization, Pathologic/metabolism , Biomarkers/blood , Disease Models, Animal , Animals, Newborn , Angiogenesis
17.
Placenta ; 153: 31-52, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820941

ABSTRACT

INTRODUCTION: Preeclampsia (PE) is a pregnancy complication associated with multi-organ damage and vascular dysfunction. Meanwhile, microRNAs or miRNAs are crucial regulators of gene expression in various diseases including PE. Our previous studies reported high expression of miR-510 in the PE patients' blood compared to normal. Hence, we hypothesize that miR-510-3p targets Vascular endothelial growth factor A (VEGFA) in the regulation of PI3K/AKT/eNOS/mTOR axis in PE and miR-510-3p could be a potential therapeutic target for PE. METHODS: The proliferation, migration, and apoptosis of HTR8/SVNeo and BeWo cells were analyzed by manipulating the miR-510-3p and VEGFA expression. Similarly, the inhibition of miR-510-3p through anti-miR-510-3p was analyzed in PE rat models, and the biochemical, hemodynamic parameters, and histopathology were examined between the groups. Moreover, the expression of miR-510-3p and VEGFA/PI3K/AKT/eNOS/mTOR axis was analyzed using qRT-PCR and Western blot. RESULTS: Significant changes were observed in the BP, proteinuria, and other biochemical parameters between PE and control rats. Our results suggest that miR-510-3p targets VEGFA leading to vascular dysfunction in PE, while treatment with anti-miR-510-3p in the PE-induced rat model exhibits a significant change in the expression of miR-510-3p/VEGFA/PI3K/AKT/eNOS/mTOR signaling where miR-510-3p showed lesser expression and vice versa with VEGFA. The gene and protein expression analysis revealed a significant correlation between miR-510-3p and the VEGFA signaling axis in PE. DISCUSSION: Thus, our findings from in vitro and in vivo suggest miR-510-3p as a potential therapeutic target and anti-miR-510-3p as a novel therapeutic molecule for PE.


Subject(s)
MicroRNAs , Pre-Eclampsia , Rats, Sprague-Dawley , Signal Transduction , Vascular Endothelial Growth Factor A , Animals , Female , Humans , Pregnancy , Rats , Cell Line , MicroRNAs/metabolism , MicroRNAs/genetics , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide Synthase Type III/genetics , Phosphatidylinositol 3-Kinases/metabolism , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics
18.
Free Radic Biol Med ; 221: 89-97, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38735541

ABSTRACT

The complex interplay between hydrogen peroxide (H2O2) and nitric oxide (NO) in endothelial cells presents challenges due to technical limitations in simultaneous measurement, hindering the elucidation of their direct relationship. Previous studies have yielded conflicting findings regarding the impact of H2O2 on NO production. To address this problem, we employed genetically encoded biosensors, HyPer7 for H2O2 and geNOps for NO, allowing simultaneous imaging in single endothelial cells. Optimization strategies were implemented to enhance biosensor performance, including camera binning, temperature regulation, and environmental adjustments to mimic physiological normoxia. Our results demonstrate that under ambient oxygen conditions, H2O2 exhibited no significant influence on NO production. Subsequent exploration under physiological normoxia (5 kPa O2) revealed distinct oxidative stress levels characterized by reduced basal HyPer7 signals, enhanced H2O2 scavenging kinetics, and altered responses to pharmacological treatment. Investigation of the relationship between H2O2 and NO under varying oxygen conditions revealed a lack of NO response to H2O2 under hyperoxia (18 kPa O2) but a modest NO response under physiological normoxia (5 kPa O2). Importantly, the NO response was attenuated by l-NAME, suggesting activation of eNOS by endogenous H2O2 generation upon auranofin treatment. Our study highlights the intricate interplay between H2O2 and NO within the endothelial EA.hy926 cell line, emphasizing the necessity for additional research within physiological contexts due to differential response observed under physiological normoxia (5 kPa O2). This further investigation is essential for a comprehensive understanding of the H2O2 and NO signaling considering the physiological effects of ambient O2 levels involved.


Subject(s)
Biosensing Techniques , Endothelial Cells , Hydrogen Peroxide , Nitric Oxide Synthase Type III , Nitric Oxide , Oxidative Stress , Oxygen , Hydrogen Peroxide/metabolism , Nitric Oxide/metabolism , Humans , Oxygen/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide Synthase Type III/genetics , Biosensing Techniques/methods , NG-Nitroarginine Methyl Ester/pharmacology
19.
Food Chem Toxicol ; 189: 114763, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797315

ABSTRACT

Monosodium glutamate (MSG) administration has been shown to pronounce hypertension and oxidative status with increased renal blood flow (RBF), however, the precise mechanisms of action have never been demonstrated. This study aimed to investigate the MSG action by studying the alteration in renal architecture and specific protein expression in 2-kidney-1-clip hypertensive comparing to sham operative normotensive rats. The administered doses of MSG were 80, 160, or 320 mg/kg BW daily for 8 weeks. Using routine chemical staining, the congestion of glomerular capillaries, a lesser renal corpuscles and glomeruli size, a widen Bowman capsule's space, an increase in mesangial cell proliferation and mesangial matrix, renal interstitial fibrosis, focal cloudy swelling of renal tubular epithelial cells were observed. Immunological study revealed an increase in the expression of N-methyl-D-aspartate receptor (NMDA-R) and endothelial nitric oxide synthase (eNOS) but a decrease in neuronal NOS (nNOS). It is suggested that MSG may upregulate the NMDA-R levels which responsible for the oxidative stress, glomerular injury, and renal interstitial fibrosis. The NMDA-R may also stimulate eNOS overexpression which resulted in renal microvascular dilatation, a raise in RBF and GFR, and natriuresis and diuresis promotion. Long-term exposure of MSG may trigger adaptation of tubuloglomerular feedback through nNOS downregulation.


Subject(s)
Hypertension , Kidney , Nitric Oxide Synthase Type III , Nitric Oxide Synthase Type I , Receptors, N-Methyl-D-Aspartate , Sodium Glutamate , Animals , Nitric Oxide Synthase Type III/metabolism , Sodium Glutamate/toxicity , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Nitric Oxide Synthase Type I/metabolism , Male , Rats , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Hypertension/chemically induced , Hypertension/physiopathology , Hypertension/metabolism , Rats, Wistar
20.
Clin Transl Sci ; 17(5): e13816, 2024 May.
Article in English | MEDLINE | ID: mdl-38747311

ABSTRACT

Hypertensive patients with a higher proportion of genetic West African ancestry (%GWAA) have better blood pressure (BP) response to thiazide diuretics (TDs) and worse response to ß-blockers (BBs) than those with lower %GWAA, associated with their lower plasma renin activity (PRA). TDs and BBs are suggested to reduce BP in the long term through vasodilation via incompletely understood mechanisms. This study aimed at identifying pathways underlying ancestral differences in PRA, which might reflect pathways underlying BP-lowering mechanisms of TDs and BBs. Among hypertensive participants enrolled in the Pharmacogenomics Evaluation of Antihypertensive Responses (PEAR) and PEAR-2 trials, we previously identified 8 metabolites associated with baseline PRA and 4 metabolic clusters (including 39 metabolites) that are different between those with GWAA <45% versus ≥45%. In the current study, using Ingenuity Pathway Analysis (IPA), we integrated these signals. Three overlapping metabolic signals within three significantly enriched pathways were identified as associated with both PRA and %GWAA: ceramide signaling, sphingosine 1- phosphate signaling, and endothelial nitric oxide synthase signaling. Literature indicates that the identified pathways are involved in the regulation of the Rho kinase cascade, production of the vasoactive agents nitric oxide, prostacyclin, thromboxane A2, and endothelin 1; the pathways proposed to underlie TD- and BB-induced vasodilatation. These findings may improve our understanding of the BP-lowering mechanisms of TDs and BBs. This might provide a possible step forward in personalizing antihypertensive therapy by identifying patients expected to have robust BP-lowering effects from these drugs.


Subject(s)
Adrenergic beta-Antagonists , Blood Pressure , Hypertension , Metabolomics , Sodium Chloride Symporter Inhibitors , Humans , Male , Female , Sodium Chloride Symporter Inhibitors/therapeutic use , Hypertension/drug therapy , Hypertension/physiopathology , Blood Pressure/drug effects , Middle Aged , Adrenergic beta-Antagonists/therapeutic use , Adrenergic beta-Antagonists/pharmacology , Renin/blood , Aged , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide Synthase Type III/genetics , Signal Transduction/drug effects , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...