Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.241
1.
J Insect Sci ; 24(3)2024 May 01.
Article En | MEDLINE | ID: mdl-38805648

Agrochemical exposure is a major contributor to ecological declines worldwide, including the loss of crucial pollinator species. In addition to direct toxicity, field-relevant doses of pesticides can increase species' vulnerabilities to other stressors, including parasites. Experimental field demonstrations of potential interactive effects of pesticides and additional stressors are rare, as are tests of mechanisms via which pollinators tolerate pesticides. Here, we controlled honey bee colony exposure to field-relevant concentrations of 2 neonicotinoid insecticides (clothianidin and thiamethoxam) in pollen and simultaneously manipulated intracolony genetic heterogeneity. We showed that exposure increased rates of Varroa destructor (Anderson and Trueman) parasitism and that while increased genetic heterogeneity overall improved survivability, it did not reduce the negative effect size of neonicotinoid exposure. This study is, to our knowledge, the first experimental field demonstration of how neonicotinoid exposure can increase V. destructor populations in honey bees and also demonstrates that colony genetic diversity cannot mitigate the effects of neonicotinoid pesticides.


Genetic Variation , Insecticides , Neonicotinoids , Varroidae , Animals , Bees/parasitology , Bees/drug effects , Varroidae/drug effects , Neonicotinoids/toxicity , Insecticides/toxicity , Thiazoles/toxicity , Thiamethoxam , Guanidines/toxicity , Host-Parasite Interactions , Nitro Compounds/toxicity
2.
Sci Total Environ ; 931: 172910, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38701926

Significant impairment of pulmonary function has been demonstrated through long-term exposure to neonicotinoid insecticides, such as imidacloprid (IMI). However, the underlying mechanisms of lung injury induced by IMI remain unclear. In this study, a mouse model of IMI-induced pulmonary injury was established, and the toxicity and lung damage were assessed through mouse body weight, organ index, hematological parameters, and histopathological analysis of lung tissues. Furthermore, metabolomics and transcriptomics techniques were employed to explore the mechanistic aspects. Results from the toxicity assessments indicated that mouse body weight was significantly reduced by IMI, organ index was disturbed, and hematological parameters were disrupted, resulting in pulmonary injury. The mechanistic experimental results indicate that the differences in metabolites and gene expression in mouse lungs could be altered by IMI. Validation of the results through combined analysis of metabolomics and transcriptomics revealed that the mechanism by which IMI induces lung injury in mice might be associated with the activation of the TLR4 receptor, thereby activating the PI3K/AKT/NF-κB signaling pathway to induce inflammation in mouse lungs. This study provided valuable insights into the mechanisms underlying IMI-induced pulmonary damage, potentially contributing to the development of safer pest control strategies. The knowledge gained served as a robust scientific foundation for the prevention and treatment of IMI-related pulmonary injuries.


Insecticides , Lung Injury , NF-kappa B , Neonicotinoids , Nitro Compounds , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Toll-Like Receptor 4 , Animals , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Mice , Lung Injury/chemically induced , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Insecticides/toxicity , Toll-Like Receptor 4/metabolism , Lung/drug effects , Lung/pathology
3.
Sci Total Environ ; 933: 173150, 2024 Jul 10.
Article En | MEDLINE | ID: mdl-38735312

The intensive and widespread application of pesticides in agroecosystems can lead to the simultaneous exposure of non-target aquatic organisms to insecticides and herbicides. However, the underlying mechanisms through which aquatic organisms undergo metabolic reprogramming to withstand the combined effects of the insecticide imidacloprid (IMI) and herbicide sulfentrazone (SUL) remain poorly elucidated. This study employs metabolomics to investigate the effects of individual and combined exposures to IMI and SUL on zebrafish (Danio rerio), aiming to simulate complex environmental conditions. Metabolomics analysis revealed extensive metabolic reprogramming in larvae induced by the selected agrochemicals. Both individual and combined exposures disrupted nucleotide metabolism, inhibited glycolysis, and led to the accumulation of acetylcholine through the shared modulation of differential metabolites. Notably, individual exposure exhibited a unique mode of action. Larvae exposed to IMI alone showed mitochondrial dysfunction, potentially stemming from interference with the electron transport chain, while SUL-induced disruptions were associated with glycerophospholipid accumulation, marking it as a critical target. Additionally, calculations of the metabolic effect level index indicated antagonistic interactions between SUL and IMI mixtures at an overall metabolic level. The results obtained through investigating the lethal and sub-lethal effects also revealed that the simultaneous application of SUL and IMI may have the potential to diminish acute and developmental toxicity in zebrafish. This study underscores the significance of metabolomics as a valuable and effective strategy for deciphering the toxicity and interactions of agrochemical mixtures.


Insecticides , Larva , Neonicotinoids , Nitro Compounds , Water Pollutants, Chemical , Zebrafish , Animals , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Insecticides/toxicity , Herbicides/toxicity , Metabolomics
4.
Environ Pollut ; 351: 124111, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38710360

Pesticides are substances used for controlling, preventing, and repelling pests in agriculture. Among them, neonicotinoids have become the fastest-growing class of insecticides because of their efficiency in targeting pests. They work by strongly binding to nicotinic acetylcholine receptors (nAChRs) in the central nervous system of insects, leading to receptor blockage, paralysis, and death. Despite their selectivity for insects, these substances may be hazardous to non-target creatures, including earthworms. Although earthworms may be invasive in some regions like north America, they contribute to the development of soil structure, water management, nutrient cycling, pollution remediation, and cultural services, positively impacting the environment, particularly in the soil ecosystem. Thus, this study aimed to develop a novel earthworm behavior assay since behavior is a sensitive marker for toxicity assay, and demonstrated its application in evaluating the toxicity of various neonicotinoids. Here, we exposed Eisenia fetida to 1 and 10 ppb of eight neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram pestanal, thiacloprid, thiametoxam, and sulfoxaflor) for 3 days to observe their behavior toxicities. Overall, all of the neonicotinoids decreased their locomotion, showed by a reduction of average speed by 24.94-68.63% and increment in freezing time movement ratio by 1.51-4.25 times, and altered their movement orientation and complexity, indicated by the decrement in the fractal dimension value by 24-70%. Moreover, some of the neonicotinoids, which were acetamiprid, dinotefuran, imidacloprid, nitenpyram, and sulfoxaflor, could even alter their exploratory behaviors, which was shown by the increment in the time spent in the center area value by 6.94-12.99 times. Furthermore, based on the PCA and heatmap clustering results, thiametoxam was found as the neonicotinoid that possessed the least pronounced behavior toxicity effects among the tested pesticides since these neonicotinoid-treated groups in both concentrations were grouped in the same major cluster with the control group. Finally, molecular docking was also conducted to examine neonicotinoids' possible binding mechanism to Acetylcholine Binding Protein (AChBP), which is responsible for neurotransmission. The molecular docking result confirmed that each of the neonicotinoids has a relatively high binding energy with AChBP, with the lowest binding energy was possessed by thiametoxam, which consistent with its relatively low behavior toxicities. Thus, these molecular docking results might hint at the possible mechanism behind the observed behavior alterations. To sum up, the present study demonstrated that all of the neonicotinoids altered the earthworm behaviors which might be due to their ability to bind with some specific neurotransmitters and the current findings give insights into the toxicities of neonicotinoids to the environment, especially animals in a soil ecosystem.


Insecticides , Locomotion , Neonicotinoids , Oligochaeta , Soil Pollutants , Animals , Oligochaeta/drug effects , Neonicotinoids/toxicity , Locomotion/drug effects , Insecticides/toxicity , Soil Pollutants/toxicity , Nitro Compounds/toxicity , Toxicity Tests , Receptors, Nicotinic/metabolism , Guanidines/toxicity , Thiazines , Thiazoles
5.
Sci Total Environ ; 937: 173421, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38788955

The health risks induced by chronic exposure to low concentrations of imidacloprid (IMI) to zebrafish were investigated in this study. The results indicated that the growth of zebrafish was inhibited after being exposed to 10, 100, and 500 µg/L of IMI for 90 days. Moreover, the blood glucose levels in the IMI-exposed groups were significantly higher compared to the control group. Investigation into the development of zebrafish larvae revealed that IMI exposure hindered the development of the liver and pancreatic islets, organs crucial for glucose metabolism. In addition, the IMI-exposed groups exhibited reduced liver glycogen and plasma insulin levels, along with changes in the activity of enzymes and the transcription levels of genes associated with liver glucose metabolism. These findings suggest that IMI induces glycometabolic disorders in zebrafish. The analysis of intestinal flora revealed that several key bacteria associated with an elevated risk of diabetes were significantly altered in IMI-exposed fish. Specifically, a remarkable decrease was found in the abundance of the genera Aeromonas and Shewanella, which have been found closely related to the development of pancreatic islets. This implies that the alteration of key bacteria in the fish gut by IMI, which in turn affects the development of organs such as the pancreatic islets, may be the initial trigger for abnormalities in glucose metabolism. Our results revealed that chronic exposure to low concentrations of IMI led to glycometabolic disorder in fish. Therefore, considering the pervasive existence of IMI residues in the environment, the health hazards posed by low-concentration IMI to fish cannot be overlooked.


Insecticides , Neonicotinoids , Nitro Compounds , Water Pollutants, Chemical , Zebrafish , Animals , Nitro Compounds/toxicity , Water Pollutants, Chemical/toxicity , Neonicotinoids/toxicity , Insecticides/toxicity , Blood Glucose
6.
Pestic Biochem Physiol ; 200: 105808, 2024 Mar.
Article En | MEDLINE | ID: mdl-38582580

Growing evidences have shown that the decline in honey bee populations is mainly caused by the combination of multiple stressors. However, the impacts of parasitic Nosema ceranae to host fitness during long-term pesticide exposure-induced stress is largely unknown. In this study, the effects of chronic exposure to a sublethal dose of dinotefuran, in the presence or absence of N. ceranae, was examined in terms of survival, food consumption, detoxification enzyme activities and gut microbial community. The interaction between dinotefuran and Nosema ceranae on the survival of honey bee was synergistic. Co-exposure to dinotefuran and N. ceranae led to less food consumption and greater changes of enzyme activities involved in defenses against oxidative stress. Particularly, N. ceranae and dinotefuran-N. ceranae co-exposure significantly impacted the gut microbiota structure and richness in adult honey bees, while dinotefuran alone did not show significant alternation of core gut microbiota compared to the control group. We herein demonstrated that chronical exposure to dinotefuran decreases honey bee's survival but is not steadily associated with the gut microbiota dysbiosis; by contrast, N. ceranae parasitism plays a dominant role in the combination in influencing the gut microbial community of the host honey bee. Our findings provide a comprehensive understanding of combinatorial effects between biotic and abiotic stressors on one of the most important pollinators, honey bees.


Gastrointestinal Microbiome , Guanidines , Nitro Compounds , Nosema , Bees , Animals , Neonicotinoids/toxicity , Nitro Compounds/toxicity
7.
Sci Rep ; 14(1): 8291, 2024 04 09.
Article En | MEDLINE | ID: mdl-38594566

Neonicotinoids (NEOs) have been designed to act selectively on insect nicotinic acetylcholine receptors (nAChRs). However, nAChRs are also expressed in vertebrate immune cells, so NEOs may interfere with the immune system in exposed non-target animals. The present study shows that NEOs: imidacloprid and thiacloprid, and their main metabolites: desnitro-imidacloprid and thiacloprid amide, at sub-micromolar concentrations ranging from 2.25 to 20 µM, affect the immune cells of fish. This was found both in primary cultures of leukocytes isolated from the carp head kidney and in the continuous adherent carp monocyte/macrophage cell line. Moreover, the results revealed that the studied pesticides and metabolites generate oxidative stress in carp immune cells and that this is one of the most important mechanisms of neonicotinoid immunotoxicity. Significant increases were observed in the formation of ROS and malondialdehyde (MDA). The antioxidant status alteration was linked with decrease in antioxidant enzyme activity: superoxide dismutase (SOD), catalase (CAT), and non-enzymatic antioxidant glutathione (GSH). Importantly, the metabolites: desnitro-imidacloprid and thiacloprid amide showed significantly higher cytotoxicity towards fish leukocytes than their parent compounds, imidacloprid and thiacloprid, which emphasizes the importance of including intermediate metabolites in toxicology studies.


Carps , Insecticides , Receptors, Nicotinic , Thiazines , Animals , Insecticides/toxicity , Carps/metabolism , Antioxidants/metabolism , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Oxidative Stress , Receptors, Nicotinic/metabolism , Leukocytes/metabolism , Amides
8.
Sci Total Environ ; 927: 172378, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38604362

The neonicotinoid pesticide imidacloprid has been used worldwide since 1992. As one of the most important chemicals used in pest control, there have been concerns that its run-off into rivers and lakes could adversely affect aquatic ecosystems, where zooplankton play a central role in the energy flow from primary to higher trophic levels. However, studies assessing the effects of pesticides at the species level have relied on a Daphnia-centric approach, and no studies have been conducted using species-level assessments on a broad range of zooplankton taxa. In the present study, we therefore investigated the acute toxicity of imidacloprid on 27 freshwater crustacean zooplankton (18 cladocerans, 3 calanoid copepods and 6 cyclopoid copepods). The experiment showed that a majority of calanoid copepods and cladocerans were not affected at all by imidacloprid, with the exception of one species each of Ceriodaphnia and Diaphasoma, while all six cyclopoid copepods showed high mortality rates, even at concentrations of imidacloprid typically found in nature. In addition, we found a remarkable intra-taxonomic variation in susceptibility to this chemical. As many cyclopoid copepods are omnivorous, they act as predators as well as competitors with other zooplankton. Accordingly, their susceptibility to imidacloprid is likely to cause different responses at the community level through changes in predation pressure as well as changes in competitive interactions. The present results demonstrate the need for species-level assessments of various zooplankton taxa to understand the complex responses of aquatic communities to pesticide disturbance.


Insecticides , Neonicotinoids , Nitro Compounds , Water Pollutants, Chemical , Zooplankton , Animals , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Zooplankton/drug effects , Water Pollutants, Chemical/toxicity , Insecticides/toxicity , Copepoda/drug effects , Fresh Water , Cladocera/drug effects
9.
Sci Total Environ ; 926: 172035, 2024 May 20.
Article En | MEDLINE | ID: mdl-38565349

Metabolic alternation is a typical characteristic of insecticide resistance in insects. However, mechanisms underlying metabolic alternation and how altered metabolism in turn affects insecticide resistance are largely unknown. Here, we report that nicotinamide levels are decreased in the imidacloprid-resistant strain of Nilaparvata lugens, may due to reduced abundance of the symbiotic bacteria Arsenophonus. Importantly, the low levels of nicotinamide promote imidacloprid resistance via metabolic detoxification alternation, including elevations in UDP-glycosyltransferase enzymatic activity and enhancements in UGT386B2-mediated metabolism capability. Mechanistically, nicotinamide suppresses transcriptional regulatory activities of cap 'n' collar isoform C (CncC) and its partner small muscle aponeurosis fibromatosis isoform K (MafK) by scavenging the reactive oxygen species (ROS) and blocking the DNA binding domain of MafK. In imidacloprid-resistant N. lugens, nicotinamide deficiency re-activates the ROS/CncC signaling pathway to provoke UGT386B2 overexpression, thereby promoting imidacloprid detoxification. Thus, nicotinamide metabolism represents a promising target to counteract imidacloprid resistance in N. lugens.


Hemiptera , Insecticides , Animals , Insecticides/toxicity , Reactive Oxygen Species , Neonicotinoids , Nitro Compounds/toxicity , Signal Transduction , Protein Isoforms , Niacinamide
10.
Ecotoxicol Environ Saf ; 276: 116291, 2024 May.
Article En | MEDLINE | ID: mdl-38581910

Myzus persicae is an important pest that has developed resistance to nearly all currently used insecticidal products. The employment of insecticide synergists is one of the effective strategies that need to be developed for the management of this resistance. Our study showed that treatment with a combination of the antibiotic, rifampicin, with imidacloprid, cyantraniliprole, or clothianidin significantly increased their toxicities against M. persicae, by 2.72, 3.59, and 2.41 folds, respectively. Rifampicin treatment led to a noteworthy reduction in the activities of multifunctional oxidases (by 32.64%) and esterases (by 23.80%), along with a decrease in the expression of the CYP6CY3 gene (by 58.57%) in M. persicae. It also negatively impacted the fitness of the aphids, including weight, life span, number of offspring, and elongation of developmental duration. In addition, bioassays showed that the combination of rifampicin and a detoxification enzyme inhibitor, piperonyl butoxide, or dsRNA of CYP6CY3 further significantly improved the toxicity of imidacloprid against M. persicae, by 6.19- and 7.55-fold, respectively. The present study suggests that development of active ingredients such as rifampicin as candidate synergists, show promise to overcome metabolic resistance to insecticides in aphids.


Aphids , Guanidines , Insecticides , Neonicotinoids , Nitro Compounds , Piperonyl Butoxide , Rifampin , Thiazoles , Animals , Rifampin/toxicity , Rifampin/pharmacology , Aphids/drug effects , Insecticides/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Thiazoles/toxicity , Guanidines/toxicity , Piperonyl Butoxide/toxicity , Pyrazoles/toxicity , Drug Synergism , Insecticide Resistance/genetics , Pesticide Synergists/toxicity , ortho-Aminobenzoates/toxicity , Esterases/metabolism
11.
J Hazard Mater ; 471: 134397, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38677114

Biochar and organic compost are widely used in agricultural soil remediation as soil immobilization agents. However, the effects of biochar and compost on microbial community assembly processes in polluted soil under freezingthawing need to be further clarified. Therefore, a freezethaw cycle experiment was conducted with glyphosate (herbicide), imidacloprid (insecticide) and pyraclostrobin (fungicide) polluted to understand the effect of biochar and compost on microbial community assembly and metabolic behavior. We found that biochar and compost could significantly promote the degradation of glyphosate, imidacloprid and pyraclostrobin in freezethaw soil decrease the half-life of the three pesticides. The addition of immobilization agents improved soil bacterial and fungal communities and promoted the transformation from homogeneous dispersal to homogeneous selection. For soil metabolism, the combined addition of biochar and compost alleviated the pollution of glyphosate, imidacloprid and imidacloprid to soil through up-regulation of metabolites (DEMs) in amino acid metabolism pathway and down-regulation of DEMs in fatty acid metabolism pathway. The structural equation modeling (SEM) results showed that soil pH and DOC were the main driving factors affecting microbial community assembly and metabolites. In summary, the combined addition of biochar and compost reduced the adverse effects of pesticides residues.


Charcoal , Composting , Glycine , Glyphosate , Herbicides , Neonicotinoids , Nitro Compounds , Soil Microbiology , Soil Pollutants , Strobilurins , Neonicotinoids/metabolism , Neonicotinoids/toxicity , Nitro Compounds/metabolism , Nitro Compounds/toxicity , Strobilurins/metabolism , Strobilurins/toxicity , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Charcoal/chemistry , Glycine/analogs & derivatives , Glycine/metabolism , Glycine/toxicity , Herbicides/metabolism , Herbicides/toxicity , Carbamates/metabolism , Carbamates/toxicity , Microbiota/drug effects , Fungicides, Industrial/toxicity , Fungicides, Industrial/metabolism , Pyrazoles/metabolism , Pyrazoles/toxicity , Insecticides/metabolism , Insecticides/toxicity , Biodegradation, Environmental , Soil/chemistry , Bacteria/metabolism , Bacteria/drug effects
12.
Chemosphere ; 356: 141899, 2024 May.
Article En | MEDLINE | ID: mdl-38579952

Although the neonicotinoid insecticides have good selectivity towards insects rather than vertebrates, they have severe effects on honeybee production and pollination activities. Therefore, the effects of imidacloprid (IMI), the most used neonicotinoid, on the two main bioreceptors, acetylcholinesterase (AChE) and nicotinic acetylcholine receptor alpha subunit (nAChRα1) of honeybees were examined to identify their roles in honeybee toxicity and possible binding sites which assist in selecting and designing neonicotinoids. In vivo, IMI showed a high inhibitory effect on AChE (IC50 5.63 mg/L); however, the effect was much lower in vitro experiment (IC50 719 mg/L). This result induced us to examine the IMI effect on AChE gene expression which revealed that the AChE-2 gene expression was severely affected by IMI explaining the observed high enzyme inhibition. In addition, although toxicity increased by increasing exposure to IMI (LC50 2.9 mg/L after 4h and 0.75 mg/L after 48h), AChE was not elevated (IC50 5.63 and 5.52 mg/L respectively). Besides, Despite resuming most enzyme activity (77% during 2 h and 84.14% after 4 h), a high mortality level was observed with LC50 2.9 mg/L. These results reinforced that the observed high toxicity is a multifactor process. Accordingly, Molecular modeling and docking of IMI into honeybee AChE and nAChRα1were also performed to examine their possible interactions and identify the important binding sites. Results models indicated that the first two binding sites in AChE were found in the esteratic subunit in the active site explaining the observed in vitro inhibition. In nAChRα1, four of the highest five free energy binding sites are located in the large TM3-TM4 loop and one in the extracellular loops. Consequently, the present work revealed that IMI toxicity is attributed to various factors including direct interaction with both AChE and nAChRα1 as well as downregulating AChE-2 gene expression.


Acetylcholinesterase , Insecticides , Neonicotinoids , Nitro Compounds , Receptors, Nicotinic , Animals , Acetylcholinesterase/metabolism , Bees/drug effects , Neonicotinoids/toxicity , Receptors, Nicotinic/metabolism , Nitro Compounds/toxicity , Insecticides/toxicity , Molecular Docking Simulation , Models, Molecular , Binding Sites , Insect Proteins/metabolism , Insect Proteins/genetics
13.
Chemosphere ; 356: 141819, 2024 May.
Article En | MEDLINE | ID: mdl-38575080

The comet assay allows the analysis of DNA damage caused by different genotoxins. This assay has recently gained interest because of its ease of studying the interactions of xenobiotics with different organisms. Chrysoperla externa (Hagen, 1861) is a species of great economic relevance because it is a predator of major agricultural pests during its larval stage. Neonicotinoids are the most important chemical class of insecticides introduced into markets. A previous imidacloprid toxicity assessment on C. externa showed that this neonicotinoid insecticide reduced the egg viability. The objective of this study was to analyze the genotoxicity of Confidor OD® (imidacloprid 20% a.i., LS, Bayer CropScience) on the biological control agent C. externa at DNA level using the comet assay as an ecotoxicological biomarker. A comet assay protocol has been developed for this species at first time. For the bioassays, the commercial product formulated Confidor OD® was used at two concentrations: 100 and 180 mg/l of the active ingredient. Selected eggs were dipped in a Confidor OD® solution for 15 s. Descriptors evaluated in the comet assay were damage index, % DNA damage, and tail length. The damage index did not show any significant differences between the different concentrations evaluated, but differences were observed for tail length, because at higher concentrations of Confidor OD®, there were greater DNA breaks. The DNA of the cells from treated eggs analyzed at 48 h and 96 h of development showed the same % DNA damage; that is, they had no recovery capacity. Application of Confidor OD® to C. externa eggs produced irreparable breaks at the DNA level. The technique adjusted for C. externa can be used in other beneficial insects to study pesticide genotoxicity using a comet assay.


Comet Assay , DNA Damage , Insecta , Insecticides , Neonicotinoids , Nitro Compounds , Animals , Neonicotinoids/toxicity , Nitro Compounds/toxicity , DNA Damage/drug effects , Insecticides/toxicity , Insecta/drug effects , Ovum/drug effects , Mutagens/toxicity , Larva/drug effects
14.
Environ Sci Pollut Res Int ; 31(19): 28827-28834, 2024 Apr.
Article En | MEDLINE | ID: mdl-38587780

Numerous chemical compounds are found in aquatic environments; among them are pesticides. Pesticides are widely used worldwide, and this use has progressively increased in recent decades, resulting in the accumulation of potentially toxic compounds in surface waters. Dimethylamine-based herbicides (DBH) and imidacloprid-based insecticides (IBI) have low soil absorption and high water solubility, facilitating the arrival of these compounds in aquatic environments. In this study, our objective was to analyze whether two pesticides, DBH and IBI at environmentally relevant concentrations of 320 µg/L for each compound, and their mixtures impact the behavioral and endocrine parameters of adult zebrafish, verifying the effect of pesticides on exploratory behavior and social and analyzing hormonal parameters related to stress. Acute exposure to the mixture of pesticides reduced fish locomotion. Pesticides alone and in combination did not affect cortisol levels in exposed animals. Pesticides, when tested together, can cause different effects on non-target organisms, and the evaluation of mixtures of these compounds is extremely important.


Locomotion , Neonicotinoids , Nitro Compounds , Pesticides , Zebrafish , Animals , Zebrafish/physiology , Neonicotinoids/toxicity , Locomotion/drug effects , Pesticides/toxicity , Nitro Compounds/toxicity , Dimethylamines , Water Pollutants, Chemical/toxicity
15.
Chemosphere ; 356: 141926, 2024 May.
Article En | MEDLINE | ID: mdl-38588895

Insecticides, including the widely used neonicotinoids, can affect both pest and non-target species. In addition to lethal effects, these insecticides at sub-lethal levels may cause disruption to sensory perception and processing leading to behavioural impairments. In this laboratory experiment, we investigated the effects of a 10-day exposure to the neonicotinoid insecticide, imidacloprid, on the behaviour of larvae of the damselfly, Lestes congener. In tests of baseline activity, imidacloprid concentrations of 1.0 and 10.0 µg/L caused significant reductions in foraging behaviour. Moreover, in response to chemical cues that indicate a potential risk to the larvae, imidacloprid caused the loss of an appropriate antipredator response (reduced foraging) depending on the concentration and duration of exposure. Imidacloprid at 0.1 µg/L caused the loss of responses toward the odour of a beetle (Dytiscus spp.) predator after 10 days of exposure, whereas 1.0 µg/L caused lost responses toward both the predator odour and injured conspecific cues (i.e., alarm cues) and after only 2 days of exposure. However, at 10.0 µg/L, larvae responded appropriately to both cues throughout the duration of the study, suggesting compensatory responses to imidacloprid at higher concentrations. Hence, the lack of appropriate responses at 1.0 µg/L likely resulted from a cognitive impairment rather than chemical alteration of these important chemosensory cues. In the natural environment, such effects will likely cause decreased survivorship in predator encounters. Hence, imidacloprid exposure, even at low concentrations, could have adverse consequences for chemosensory ecology of this damselfly species.


Cues , Insecticides , Larva , Neonicotinoids , Nitro Compounds , Odonata , Predatory Behavior , Animals , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Insecticides/toxicity , Larva/drug effects , Larva/physiology , Predatory Behavior/drug effects , Odonata/physiology , Odonata/drug effects , Coleoptera/drug effects , Coleoptera/physiology , Odorants , Imidazoles/toxicity , Behavior, Animal/drug effects
16.
J Environ Sci Health B ; 59(6): 333-340, 2024.
Article En | MEDLINE | ID: mdl-38660821

Imidacloprid is a widely used pesticide in agriculture. It is being found in aquatic ecosystems in agricultural regions. This study aimed to evaluate its effects on the survival rates, acetylcholinesterase (AChE) and catalase (CAT) responses of larval Eristalis tenax hoverflies. The larvae were exposed for 3, 7 and 14 days to increasing concentrations of imidacloprid (0, 0.1, 0.5 and 2 mg L-1) both indoors at a constant temperature of 20 °C and outdoors under varying environmental conditions. The results revealed that indoors and outdoors, the mortality of E. tenax significantly increased with increasing imidacloprid concentration and duration of exposure. Median lethal concentrations (LC50) varied from 0.03 to 0.17 mg L-1 depending on the duration and conditions of exposure. Indoors, AChE activity decreased in all the treatments for all three exposure durations, whereas outdoors the decrease was observed after the short (3-day) and long (14-day) exposure durations. AChE inhibition ranged from 6% to 62% (indoors) and 12% to 62% (outdoors). Variations in CAT activity were observed for both experimental setups, with a decrease outdoors in larvae exposed to 0.5 mg L-1 for 7 days and a gradual dose-dependent increase indoors for exposure lasting 3 and 7 days. This study sheds light on the potential ecological implications of imidacloprid contamination which may cause the decline of aquatic insect populations and pollination rates, leading to disruptions of the food chain and the overall decline of aquatic and terrestrial ecosystem health.


Biomarkers , Diptera , Insecticides , Larva , Neonicotinoids , Nitro Compounds , Animals , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Larva/drug effects , Larva/growth & development , Insecticides/toxicity , Insecticides/pharmacology , Diptera/drug effects , Diptera/growth & development , Biomarkers/metabolism , Imidazoles/toxicity , Acetylcholinesterase/metabolism , Catalase/metabolism , Water Pollutants, Chemical/toxicity
17.
Chem Biol Interact ; 395: 111026, 2024 May 25.
Article En | MEDLINE | ID: mdl-38679115

In the pursuit of novel antioxidant therapies for the prevention and treatment of neurodegenerative diseases, three new arylpiperazine derivatives (LQFM181, LQFM276, and LQFM277) were synthesized through a molecular hybridization approach involving piribedil and butylated hydroxytoluene lead compounds. To evaluate the antioxidant and neuroprotective activities of the arylpiperazine derivatives, we employed an integrated approach using both in vitro (SH-SY5Y cells) and in vivo (neurotoxicity induced by 3-nitropropionic acid in Swiss mice) models. In the in vitro tests, LQFM181 showed the most promising antioxidant activity at the neuronal membrane and cytoplasmic levels, and significant neuroprotective activity against the neurotoxicity induced by 3-nitropropionic acid. Hence, this compound was further subjected to in vivo evaluation, which demonstrated remarkable antioxidant capacity such as reduction of MDA and carbonyl protein levels, increased activities of succinate dehydrogenase, catalase, and superoxide dismutase. Interestingly, using the same in vivo model, LQFM181 also reduced locomotor behavior and memory dysfunction through its ability to decrease cholinesterase activity. Consequently, LQFM181 emerges as a promising candidate for further investigation into its neuroprotective potential, positioning it as a new therapeutic agent for neuroprotection.


Antioxidants , Neuroprotective Agents , Nitro Compounds , Piperazines , Propionates , Animals , Propionates/toxicity , Nitro Compounds/toxicity , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Mice , Piperazines/pharmacology , Piperazines/chemistry , Humans , Cell Line, Tumor , Antioxidants/pharmacology , Male , Succinate Dehydrogenase/metabolism , Superoxide Dismutase/metabolism , Catalase/metabolism , Neurons/drug effects , Neurons/metabolism , Malondialdehyde/metabolism , Oxidative Stress/drug effects
18.
J Hazard Mater ; 470: 134293, 2024 May 15.
Article En | MEDLINE | ID: mdl-38615646

Imidacloprid enters the water environment through rainfall and causes harm to aquatic crustaceans. However, the potential chronic toxicity mechanism of imidacloprid in crayfish has not been comprehensively studied. In this study, red claw crayfish (Cherax quadricarinatus) were exposed to 11.76, 35.27, or 88.17 µg/L imidacloprid for 30 days, and changes in the physiology and biochemistry, gut microbiota, and transcriptome of C. quadricarinatus and the interaction between imidacloprid, gut microbiota, and genes were studied. Imidacloprid induced oxidative stress and decreased growth performance in crayfish. Imidacloprid exposure caused hepatopancreas damage and decreased serum immune enzyme activity. Hepatopancreatic and plasma acetylcholine decreased significantly in the 88.17 µg/L group. Imidacloprid reduced the diversity of the intestinal flora, increased the abundance of harmful flora, and disrupted the microbiota function. Transcriptomic analysis showed that the number of up-and-down-regulated differentially expressed genes (DEGs) increased significantly with increasing concentrations of imidacloprid. DEG enrichment analyses indicated that imidacloprid inhibits neurotransmitter transduction and immune responses and disrupts energy metabolic processes. Crayfish could alleviate imidacloprid stress by regulating antioxidant and detoxification-related genes. A high correlation was revealed between GST, HSPA1s, and HSP90 and the composition of gut microorganisms in crayfish under imidacloprid stress. This study highlights the negative effects and provides detailed sequencing data from transcriptome and gut microbiota to enhance our understanding of the molecular toxicity of imidacloprid in crustaceans.


Astacoidea , Gastrointestinal Microbiome , Neonicotinoids , Nitro Compounds , Transcriptome , Water Pollutants, Chemical , Animals , Neonicotinoids/toxicity , Astacoidea/drug effects , Astacoidea/genetics , Gastrointestinal Microbiome/drug effects , Nitro Compounds/toxicity , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Insecticides/toxicity , Oxidative Stress/drug effects , Hepatopancreas/drug effects , Hepatopancreas/metabolism
19.
Pestic Biochem Physiol ; 201: 105793, 2024 May.
Article En | MEDLINE | ID: mdl-38685207

Imidacloprid, chlorpyrifos, and glyphosate rank among the most extensively employed pesticides worldwide. The effects of these pesticides and their combined on the flight capability of Apis cerana, and the potential underlying mechanisms remain uncertain. To investigate these effects, we carried out flight mill, transcriptome, and metabolome experiments. Our findings reveal that individual acute oral treatments with pesticides, specifically 20 µL of 10 ng/g imidacloprid (0.2 ng per bee), 30 ng/g chlorpyrifos (0.6 ng per bee), and 60 ng/g glyphosate (1.2 ng per bee), did not impact the flight capability of the bees. However, when bees were exposed to a combination of two or three pesticides, a notable reduction in flight duration and distance was observed. In the transcriptomic and metabolomic analyses, we identified 307 transcripts and 17 metabolites that exhibited differential expression following exposure to combined pesticides, primarily associated with metabolic pathways involved in energy regulation. Our results illuminate the intricate effects and potential hazards posed by combined pesticide exposures on bee behavior. These findings offer valuable insights into the synergistic potential of pesticide combinations and their capacity to impair bee behavior. Understanding these complex interactions is essential for comprehending the broader consequences of pesticide formulations on honey bee populations.


Chlorpyrifos , Flight, Animal , Glycine , Glyphosate , Metabolomics , Neonicotinoids , Nitro Compounds , Pesticides , Transcriptome , Animals , Bees/drug effects , Bees/genetics , Bees/metabolism , Nitro Compounds/toxicity , Chlorpyrifos/toxicity , Neonicotinoids/toxicity , Flight, Animal/drug effects , Transcriptome/drug effects , Glycine/analogs & derivatives , Glycine/toxicity , Pesticides/toxicity , Insecticides/toxicity , Metabolome/drug effects
20.
Sci Total Environ ; 928: 172525, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38631635

Bumblebees play a vital role in both natural and agricultural environments, but there has been a noticeable decline in their populations. Pesticides, particularly neonicotinoids, are widely regarded as a substantial contributing factor to the decline in bumblebee populations, as evidenced by the detrimental impacts documented across many stages of their life cycle. Mating is vital for the population maintenance of bumblebees. Nevertheless, there is a scarcity of research conducted on the effects of pesticides on the mating process. In this study, we individually examined the impact of imidacloprid on the mating behavior of bumblebee males and queens. A competitive mating experiment was conducted to evaluate the effect on the competitive prowess of male individuals and the mate selection behavior of female individuals. The study revealed that the mating rate of bumblebees exposed to a concentration of 10 ppb of imidacloprid was 3 %. This finding demonstrated a statistically significant impact when compared to the control group, which exhibited a mating rate of 58 % in the normal mating experiment. Furthermore, in the competitive mating experiment, we found that the competitive mating success rate of treated males (1 %) was significantly lower than that of untreated males (35 %). Hence, it provides evidence that neonicotinoid imidacloprid negatively affects bumblebee mating success and cautions us to protect bumblebees from pesticide exposure to prevent a severe impact on their populations.


Insecticides , Neonicotinoids , Nitro Compounds , Sexual Behavior, Animal , Animals , Neonicotinoids/toxicity , Bees/drug effects , Bees/physiology , Nitro Compounds/toxicity , Male , Sexual Behavior, Animal/drug effects , Insecticides/toxicity , Female , Imidazoles/toxicity , Reproduction/drug effects
...