Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.895
1.
Sci Rep ; 14(1): 12633, 2024 06 02.
Article En | MEDLINE | ID: mdl-38824176

Accumulating evidence from observational studies have suggested an association between gastroesophageal reflux disease (GERD) and non-alcoholic fatty liver disease (NAFLD). However, due to that such studies are prone to biases, we imported Mendelian randomization (MR) to explore whether the causal association between two diseases exsit. Hence, we aimed to analysis the potential association with MR. The single nucleotide polymorphisms (SNPs) of GERD were retrieved from the genome-wide association study dataset as the exposure. The SNPs of NAFLD were taken from the FinnGen dataset as the outcome. The relationship was analyzed with the assistance of inverse variance weighted, MR-Egger, and weighted median. We also uitilized the MR-Egger intercept, Cochran's Q test, leave-one-out analysis, MR-PRESSO, and Steiger directionality test to evaluate the robustness of the causal association. The meta-analysis were also implemented to give an overall evaluation. Finally, our analysis showed a causal relationship between GERD and NAFLD with aid of MR and meta-analysis (OR 1.71 95% CI 1.40-2.09; P < 0.0001).


Gastroesophageal Reflux , Genome-Wide Association Study , Mendelian Randomization Analysis , Non-alcoholic Fatty Liver Disease , Polymorphism, Single Nucleotide , Non-alcoholic Fatty Liver Disease/genetics , Humans , Gastroesophageal Reflux/genetics , Genetic Predisposition to Disease
2.
Nat Commun ; 15(1): 4755, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834568

Non-alcoholic steatohepatitis (NASH) is a severe type of the non-alcoholic fatty liver disease (NAFLD). NASH is a growing global health concern due to its increasing morbidity, lack of well-defined biomarkers and lack of clinically effective treatments. Using metabolomic analysis, the most significantly changed active lipid sphingosine d18:1 [So(d18:1)] is selected from NASH patients. So(d18:1) inhibits macrophage HIF-2α as a direct inhibitor and promotes the inflammatory factors secretion. Male macrophage-specific HIF-2α knockout and overexpression mice verified the protective effect of HIF-2α on NASH progression. Importantly, the HIF-2α stabilizer FG-4592 alleviates liver inflammation and fibrosis in NASH, which indicated that macrophage HIF-2α is a potential drug target for NASH treatment. Overall, this study confirms that So(d18:1) promotes NASH and clarifies that So(d18:1) inhibits the transcriptional activity of HIF-2α in liver macrophages by suppressing the interaction of HIF-2α with ARNT, suggesting that macrophage HIF-2α may be a potential target for the treatment of NASH.


Basic Helix-Loop-Helix Transcription Factors , Macrophages , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Sphingosine , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Male , Macrophages/metabolism , Macrophages/drug effects , Humans , Mice , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Liver/metabolism , Liver/pathology , Liver/drug effects , Mice, Inbred C57BL , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Disease Models, Animal
3.
Lipids Health Dis ; 23(1): 137, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720280

BACKGROUND: Evidence suggests that hepatocyte mitochondrial dysfunction leads to abnormal lipid metabolism, redox imbalance, and programmed cell death, driving the onset and progression of non-alcoholic steatohepatitis (NASH). Identifying hub mitochondrial genes linked to NASH may unveil potential therapeutic targets. METHODS: Mitochondrial hub genes implicated in NASH were identified via analysis using 134 algorithms. RESULTS: The Random Forest algorithm (RF), the most effective among the 134 algorithms, identified three genes: Aldo-keto reductase family 1 member B10 (AKR1B10), thymidylate synthase (TYMS), and triggering receptor expressed in myeloid cell 2 (TREM2). They were upregulated and positively associated with genes promoting inflammation, genes involved in lipid synthesis, fibrosis, and nonalcoholic steatohepatitis activity scores in patients with NASH. Moreover, using these three genes, patients with NASH were accurately categorized into cluster 1, exhibiting heightened disease severity, and cluster 2, distinguished by milder disease activity. CONCLUSION: These three genes are pivotal mitochondrial genes implicated in NASH progression.


Algorithms , Machine Learning , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Humans , Mitochondria/genetics , Mitochondria/metabolism , Lipid Metabolism/genetics , Aldo-Keto Reductases/genetics , Aldo-Keto Reductases/metabolism , Genes, Mitochondrial
4.
Medicine (Baltimore) ; 103(19): e38076, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728481

BACKGROUND: nonalcoholic fatty liver disease (NAFLD) is a common liver disease affecting the global population and its impact on human health will continue to increase. Genetic susceptibility is an important factor influencing its onset and progression, and there is a lack of reliable methods to predict the susceptibility of normal populations to NAFLD using appropriate genes. METHODS: RNA sequencing data relating to nonalcoholic fatty liver disease was analyzed using the "limma" package within the R software. Differentially expressed genes were obtained through preliminary intersection screening. Core genes were analyzed and obtained by establishing and comparing 4 machine learning models, then a prediction model for NAFLD was constructed. The effectiveness of the model was then evaluated, and its applicability and reliability verified. Finally, we conducted further gene correlation analysis, analysis of biological function and analysis of immune infiltration. RESULTS: By comparing 4 machine learning algorithms, we identified SVM as the optimal model, with the first 6 genes (CD247, S100A9, CSF3R, DIP2C, OXCT 2 and PRAMEF16) as predictive genes. The nomogram was found to have good reliability and effectiveness. Six genes' receiver operating characteristic curves (ROC) suggest an essential role in NAFLD pathogenesis, and they exhibit a high predictive value. Further analysis of immunology demonstrated that these 6 genes were closely connected to various immune cells and pathways. CONCLUSION: This study has successfully constructed an advanced and reliable prediction model based on 6 diagnostic gene markers to predict the susceptibility of normal populations to NAFLD, while also providing insights for potential targeted therapies.


Genetic Predisposition to Disease , Machine Learning , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/diagnosis , Prognosis , ROC Curve , Reproducibility of Results , Calgranulin B/genetics , Nomograms , Female , Male
5.
Medicine (Baltimore) ; 103(19): e38008, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728519

Epidemiological and clinical studies have indicated a higher risk of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), implying a potentially shared genetic etiology, which is still less explored. Genetic links between T2DM and NAFLD were assessed using linkage disequilibrium score regression and pleiotropic analysis under composite null hypothesis. European GWAS data have identified shared genes, whereas SNP-level pleiotropic analysis under composite null hypothesis has explored pleiotropic loci. generalized gene-set analysis of GWAS data determines pleiotropic pathways and tissue enrichment using eQTL mapping to identify associated genes. Mendelian randomization analysis was used to investigate the causal relationship between NAFLD and T2DM. Linkage disequilibrium score regression analysis revealed a strong genetic correlation between T2DM and NAFLD, and identified 24 pleiotropic loci. These single-nucleotide polymorphisms are primarily involved in biosynthetic regulation, RNA biosynthesis, and pancreatic development. generalized gene-set analysis of GWAS data analysis revealed significant enrichment in multiple brain tissues. Gene mapping using these 3 methods led to the identification of numerous pleiotropic genes, with differences observed in liver and kidney tissues. These genes were mainly enriched in pancreas, brain, and liver tissues. The Mendelian randomization method indicated a significantly positive unidirectional causal relationship between T2DM and NAFLD. Our study identified a shared genetic structure between NAFLD and T2DM, providing new insights into the genetic pathogenesis and mechanisms of NAFLD and T2DM comorbidities.


Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Mendelian Randomization Analysis , Non-alcoholic Fatty Liver Disease , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/epidemiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/epidemiology , Genetic Predisposition to Disease , Linkage Disequilibrium , Genetic Pleiotropy , Quantitative Trait Loci
6.
Biol Pharm Bull ; 47(5): 886-894, 2024.
Article En | MEDLINE | ID: mdl-38692864

The number of patients with lifestyle-related diseases such as type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), has continued to increase worldwide. Therefore, development of innovative therapeutic methods targeting lifestyle-related diseases is required. Gene therapy has attracted considerable attention as an advanced medical treatment. Safe and high-performance vectors are essential for the practical application of gene therapy. Replication-incompetent adenovirus (Ad) vectors are widely used in clinical gene therapy and basic research. Here, we developed a novel Ad vector, named Ad-E4-122aT, exhibiting higher and longer-term transgene expression and lower hepatotoxicity than conventional Ad vectors. We also elucidated the mechanisms underlying Ad vector-induced hepatotoxicity during the early phase using Ad-E4-122aT. Next, we examined the therapeutic effects of the genes of interest, namely zinc finger AN1-type domain 3 (ZFAND3), lipoprotein lipase (LPL), and lysophospholipid acyltransferase 10 (LPLAT10), on lifestyle-related diseases using Ad-E4-122aT. We showed that the overexpression of ZFAND3 in the liver improved glucose tolerance and insulin resistance. Liver-specific LPL overexpression suppressed hepatic lipid accumulation and improved glucose metabolism. LPLAT10 overexpression in the liver suppressed postprandial hyperglycemia by increasing glucose-stimulated insulin secretion. Furthermore, we also focused on foods to advance research on the pathophysiology and treatment of lifestyle-related diseases. Cranberry and calamondin, which are promising functional foods, attenuated the progression of MASLD/NAFLD. Our findings will aid the development of new therapeutic methods, including gene therapy, for lifestyle-related diseases such as T2DM and MASLD/NAFLD.


Adenoviridae , Diabetes Mellitus, Type 2 , Genetic Therapy , Genetic Vectors , Life Style , Genetic Vectors/administration & dosage , Adenoviridae/genetics , Genetic Therapy/methods , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Animals , Humans , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/genetics , Liver/metabolism , Insulin Resistance
7.
J Oleo Sci ; 73(5): 695-708, 2024.
Article En | MEDLINE | ID: mdl-38692892

This study was to investigate the effects of Smilax China L. saponins (SCS) on non-alcoholic fatty liver disease (NAFLD). Rats were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD, followed by SCS treatment for 8 weeks. The effect of SCS on liver injury was observed by H&E staining and the regulative mechanism of SCS on lipid formation was exposed by detecting Oil red O, insulin resistance (IR), and fatty acids synthesis (FAS). Furthermore, transcriptomics and metabolomics were performed to analyze the potential targets. The experimental results indicated that SCS exerted a positive curative effect in alleviating HFD-induced overweight, hepatic injury, steatosis, and lipid formation and accumulation in rats, and the preliminary mechanism studies showed that SCS could alleviate IR, inhibit FAS expression, and reduce Acetyl-CoA levels. Besides, the integrative analysis of transcriptomics and metabolomics exposed the targets of SCS to regulate lipid production likely being the sphingolipid metabolism and glycerophospholipid metabolism pathways. This study demonstrates that SCS significantly ameliorates lipid metabolic disturbance in rats with NAFLD by relieving insulin resistance, inhibiting the FAS enzymes, and regulating the sphingolipid and glycerophospholipid metabolism pathways.


Diet, High-Fat , Insulin Resistance , Lipid Metabolism , Metabolomics , Non-alcoholic Fatty Liver Disease , Saponins , Smilax , Transcriptome , Animals , Smilax/chemistry , Saponins/pharmacology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Male , Metabolomics/methods , Diet, High-Fat/adverse effects , Transcriptome/drug effects , Lipid Metabolism/drug effects , Rats , Rats, Sprague-Dawley , Sphingolipids/metabolism , Glycerophospholipids/metabolism , Liver/metabolism , Liver/drug effects , Disease Models, Animal
8.
Front Immunol ; 15: 1375654, 2024.
Article En | MEDLINE | ID: mdl-38698841

Background: Inflammatory bowel disease (IBD) is often associated with complex extraintestinal manifestations. The incidence of nonalcoholic fatty liver disease (NAFLD) in IBD populations is increasing yearly. However, the mechanism of interaction between NAFLD and IBD is not clear. Consequently, this study aimed to explore the common genetic characteristics of IBD and NAFLD and identify potential therapeutic targets. Materials and methods: Gene chip datasets for IBD and NAFLD were obtained from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was performed to identify modules in those datasets related to IBD and NAFLD. ClueGO was used for biological analysis of the shared genes between IBD and NAFLD. Based on the Human MicroRNA Disease Database (HMDD), microRNAs (miRNAs) common to NAFLD and IBD were obtained. Potential target genes for the miRNAs were predicted using the miRTarbase, miRDB, and TargetScan databases. Two-sample Mendelian randomization (MR) and two-way MR were used to explore the causal relationship between Interleukin-17 (IL-17) and the risk of IBD and NAFLD using data from GWAS retrieved from an open database. Results: Through WGCNA, gene modules of interest were identified. GO enrichment analysis using ClueGO suggested that the abnormal secretion of chemokines may be a common pathophysiological feature of IBD and NAFLD, and that the IL-17-related pathway may be a common key pathway for the pathological changes that occur in IBD and NAFLD. The core differentially expressed genes (DEGs) in IBD and NAFLD were identified and included COL1A1, LUM, CCL22, CCL2, THBS2, COL1A2, MMP9, and CXCL8. Another cohort was used for validation. Finally, analysis of the miRNAs identified potential therapeutic targets. The MR results suggested that although there was no causal relationship between IBD and NAFLD, there were causal relationships between IL-17 and IBD and NAFLD. Conclusion: We established a comorbid model to explain the potential mechanism of IBD with NAFLD and identified the chemokine-related pathway mediated by cytokine IL-17 as the core pathway in IBD with NAFLD, in which miRNA also plays a role and thus provides potential therapeutic targets.


Inflammatory Bowel Diseases , Mendelian Randomization Analysis , Non-alcoholic Fatty Liver Disease , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/complications , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/complications , Gene Regulatory Networks , MicroRNAs/genetics , Interleukin-17/genetics , Interleukin-17/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Gene Expression Profiling , Polymorphism, Single Nucleotide
9.
Cell Mol Biol Lett ; 29(1): 82, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822260

BACKGROUND: Hepatic stellate cells (HSCs) play a crucial role in the development of fibrosis in non-alcoholic fatty liver disease (NAFLD). Small extracellular vesicles (sEV) act as mediators for intercellular information transfer, delivering various fibrotic factors that impact the function of HSCs in liver fibrosis. In this study, we investigated the role of lipotoxic hepatocyte derived sEV (LTH-sEV) in HSCs activation and its intrinsic mechanisms. METHODS: High-fat diet (HFD) mice model was constructed to confirm the expression of LIMA1. The relationship between LIMA1-enriched LTH-sEV and LX2 activation was evaluated by measurement of fibrotic markers and related genes. Levels of mitophagy were detected using mt-keima lentivirus. The interaction between LIMA1 and PINK1 was discovered through database prediction and molecular docking. Finally, sEV was injected to investigate whether LIMA1 can accelerate HFD induced liver fibrosis in mice. RESULTS: LIMA1 expression was upregulated in lipotoxic hepatocytes and was found to be positively associated with the expression of the HSCs activation marker α-SMA. Lipotoxicity induced by OPA led to an increase in both the level of LIMA1 protein in LTH-sEV and the release of LTH-sEV. When HSCs were treated with LTH-sEV, LIMA1 was observed to hinder LX2 mitophagy while facilitating LX2 activation. Further investigation revealed that LIMA1 derived from LTH-sEV may inhibit PINK1-Parkin-mediated mitophagy, consequently promoting HSCs activation. Knocking down LIMA1 significantly attenuates the inhibitory effects of LTH-sEV on mitophagy and the promotion of HSCs activation. CONCLUSIONS: Lipotoxic hepatocyte-derived LIMA1-enriched sEVs play a crucial role in promoting HSCs activation in NAFLD-related liver fibrosis by negatively regulating PINK1 mediated mitophagy. These findings provide new insights into the pathological mechanisms involved in the development of fibrosis in NAFLD.


Diet, High-Fat , Extracellular Vesicles , Hepatic Stellate Cells , Hepatocytes , Liver Cirrhosis , Mice, Inbred C57BL , Mitophagy , Animals , Humans , Male , Mice , Diet, High-Fat/adverse effects , Disease Models, Animal , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Hepatic Stellate Cells/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Mitophagy/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Protein Kinases/metabolism , Protein Kinases/genetics
10.
Zool Res ; 45(3): 551-566, 2024 May 18.
Article En | MEDLINE | ID: mdl-38757223

Hepatocellular carcinoma (HCC), a prevalent solid carcinoma of significant concern, is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes. The etiology and pathological progression of non-alcoholic steatohepatitis (NASH)-related HCC is multifactorial and multistage. However, no single animal model can accurately mimic the full NASH-related HCC pathological progression, posing considerable challenges to transition and mechanistic studies. Herein, a novel conditional inducible wild-type human HRAS overexpressed mouse model (HRAS-HCC) was established, demonstrating 100% morbidity and mortality within approximately one month under normal dietary and lifestyle conditions. Advanced symptoms of HCC such as ascites, thrombus, internal hemorrhage, jaundice, and lung metastasis were successfully replicated in mice. In-depth pathological features of NASH- related HCC were demonstrated by pathological staining, biochemical analyses, and typical marker gene detections. Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival, further confirming the accuracy and reliability of the model. Based on protein-protein interaction (PPI) network and RNA sequencing analyses, we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis, with subsequent progression to HCC. Collectively, our study successfully duplicated natural sequential progression in a single murine model over a very short period, providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.


Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Proto-Oncogene Proteins p21(ras) , Animals , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Carcinoma, Hepatocellular/pathology , Mice , Liver Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Disease Models, Animal , Mice, Transgenic , Mice, Inbred C57BL , Humans
11.
Commun Biol ; 7(1): 594, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760406

Non-alcoholic fatty liver disease (NAFLD) is a chronic disease caused by hepatic steatosis. Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine RNA editing. However, the functional role of ADAR2 in NAFLD is unclear. ADAR2+/+/GluR-BR/R mice (wild type, WT) and ADAR2-/-/GluR-BR/R mice (ADAR2 KO) mice are fed with standard chow or high-fat diet (HFD) for 12 weeks. ADAR2 KO mice exhibit protection against HFD-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, ADAR2 KO mice display reduced liver lipid droplets in concert with decreased hepatic TG content, improved hepatic insulin signaling, better pyruvate tolerance, and increased glycogen synthesis. Mechanistically, ADAR2 KO effectively mitigates excessive lipid production via AMPK/Sirt1 pathway. ADAR2 KO inhibits hepatic gluconeogenesis via the AMPK/CREB pathway and promotes glycogen synthesis by activating the AMPK/GSK3ß pathway. These results provide evidence that ADAR2 KO protects against NAFLD progression through the activation of AMPK signaling pathways.


Adenosine Deaminase , Diet, High-Fat , Mice, Knockout , Non-alcoholic Fatty Liver Disease , RNA-Binding Proteins , Signal Transduction , Animals , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/deficiency , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/etiology , Diet, High-Fat/adverse effects , Male , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Insulin Resistance , Mice, Obese , Obesity/metabolism , Obesity/genetics , Mice, Inbred C57BL , Liver/metabolism
12.
Sci Adv ; 10(20): eadj5942, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758779

Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male Acss1K635Q/K635Q mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels. After a 48-hour fast, Acss1K635Q/K635Q mice presented hypothermia and liver aberrations, including enlargement, discoloration, lipid droplet accumulation, and microsteatosis, consistent with nonalcoholic fatty liver disease (NAFLD). RNA sequencing analysis suggested dysregulation of fatty acid metabolism, cellular senescence, and hepatic steatosis networks, consistent with NAFLD. Fasted Acss1K635Q/K635Q mouse livers showed increased fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), both associated with NAFLD, and increased carbohydrate response element-binding protein binding to Fasn and Scd1 enhancer regions. Last, liver lipidomics showed elevated ceramide, lysophosphatidylethanolamine, and lysophosphatidylcholine, all associated with NAFLD. Thus, we propose that ACSS1-K635-Ac dysregulation leads to aberrant lipid metabolism, cellular senescence, and NAFLD.


Cellular Senescence , Mitochondria , Non-alcoholic Fatty Liver Disease , Stearoyl-CoA Desaturase , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Mice , Cellular Senescence/genetics , Acetylation , Mitochondria/metabolism , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Male , Acetate-CoA Ligase/metabolism , Acetate-CoA Ligase/genetics , Gene Knock-In Techniques , Liver/metabolism , Liver/pathology , Lipid Metabolism , Sirtuin 3/metabolism , Sirtuin 3/genetics , Disease Models, Animal , Coenzyme A Ligases , Fatty Acid Synthase, Type I
13.
Medicine (Baltimore) ; 103(20): e38001, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758850

To identify disease signature genes associated with immune infiltration in nonalcoholic steatohepatitis (NASH), we downloaded 2 publicly available gene expression profiles, GSE164760 and GSE37031, from the gene expression omnibus database. These profiles represent human NASH and control samples and were used for differential genes (DEGs) expression screening. Two machine learning methods, the Least Absolute Shrinkage and Selection Operator regression model and Support Vector Machine Recursive Feature Elimination, were used to identify candidate disease signature genes. The CIBERSORT deconvolution algorithm was employed to analyze the infiltration of 22 immune cell types in NASH. Additionally, we constructed a NASH cell model using HepG2 cells treated with oleic acid and free fatty acids. The construction of the cell model was verified using oil red O staining, and Western blotting was used to detect the protein expression of the disease signature genes in both control and model groups. As a result, a total of 262 DEGs were identified. These DEGs were primarily associated with metal ion transmembrane transporter activity, sodium ion transmembrane transporter protein activity, calcium ion, and neuroactive ligand-receptor interactions. FOS, IGFBP2, dual-specificity phosphatase 1 (DUSP1), and IKZF3 were identified as disease signature genes of NASH by the least absolute shrinkage and selection operator and Support Vector Machine Recursive Feature Elimination algorithms for DEGs analysis. The receiver operating characteristic curves showed that FOS, IGFBP2, DUSP1, and IKZF3 had good diagnostic value (area under receiver operating characteristic curve > 0.8). These findings were validated in the GSE89632 dataset and through cellular assays. Immunocyte infiltration analysis revealed that NASH was associated with CD8 T cells, CD4 T cells, follicular helper T cells, resting NK cells, eosinophils, regulatory T cells, and γδ T cells. The FOS, IGFBP2, DUSP1, and IKZF3 genes were specifically associated with follicular helper T cells. Lipid droplet aggregation significantly increased in HepG2 cells treated with oleic acid and free fatty acids, indicating successful construction of the cell model. In this model, the expression of FOS, IGFBP2, and DUSP1 was significantly decreased, while that of IKZF3 was significantly elevated (P < .01, P < .001) compared with the control group. Therefore, FOS, IGFBP2, DUSP1, and IKZF3 can be considered as disease signature genes associated with immune infiltration in NASH.


Machine Learning , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/immunology , Hep G2 Cells , Gene Expression Profiling/methods , Algorithms , Support Vector Machine , Transcriptome
14.
Sci Rep ; 14(1): 11814, 2024 05 23.
Article En | MEDLINE | ID: mdl-38782984

Nonalcoholic fatty liver disease (NAFLD) is the predominant cause of liver pathology. Current evidence highlights plasma proteins as potential therapeutic targets. However, their mechanistic roles in NAFLD remain unclear. This study investigated the involvement of specific plasma proteins and intermediate risk factors in NAFLD progression. Two-sample Mendelian randomization (MR) analysis was conducted to examine the association between plasma proteins and NAFLD. Colocalization analysis determined the shared causal variants between the identified proteins and NAFLD. The MR analysis was applied separately to proteins, risk factors, and NAFLD. Mediator shares were computed by detecting the correlations among these elements. Phenome-wide association studies (phewas) were utilized to assess the safety implications of targeting these proteins. Among 1,834 cis-protein quantitative trait loci (cis-pQTLs), after-FDR correction revealed correlations between the plasma levels of four gene-predicted proteins (CSPG3, CILP2, Apo-E, and GCKR) and NAFLD. Colocalization analysis indicated shared causal variants for CSPG3 and GCKR in NAFLD (posterior probability > 0.8). Out of the 22 risk factors screened for MR analysis, only 8 showed associations with NAFLD (p ≤ 0.05), while 4 linked to CSPG3 and GCKR. The mediator shares for these associations were calculated separately. Additionally, reverse MR analysis was performed on the pQTLs, risk factors, and NAFLD, which exhibited a causal relationship with forward MR analysis. Finally, phewas summarized the potential side effects of associated-targeting proteins, including CSPG3 and GCKR. Our research emphasized the potential therapeutic targets for NAFLD and provided modifiable risk factors for preventing NAFLD.


Genome-Wide Association Study , Mendelian Randomization Analysis , Non-alcoholic Fatty Liver Disease , Proteome , Quantitative Trait Loci , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Humans , Proteome/metabolism , Risk Factors , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Blood Proteins/genetics , Blood Proteins/metabolism , Adaptor Proteins, Signal Transducing
15.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2557-2565, 2024 May.
Article Zh | MEDLINE | ID: mdl-38812156

This study aims to explore the potential mechanism of Biejiajian Pills in the treatment of non-alcoholic steatohepatitis(NASH) based on lipidomics. A mouse model of NASH was induced by high-fat/high cholesterol diet, and the mice of the normal group were fed with a normal diet. The therapeutic efficacy of Biejiajian Pills against NASH was evaluated through biochemical indexes in both of serum and liver, as well as the hepatic histopathology. Lipid metabolites in the liver were detected by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS)-based lipidomics. Then the partial least-squares discriminant analysis, t-test and receiver operating characteristic curve analysis were performed to screen the differential lipid metabolites and the main biomarkers. The proteins and genes involved in the lipid metabolism and inflammatory response were detected by Western blot and qPCR. The results demonstrated that Biejiajian Pills notably lowered the levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), and alkaline phosphatase(ALP) in the serum and the levels of triglyceride(TG) and total cholesterol(TC) in the liver tissue. In addition, Biejiajian Pills alleviated the lipid accumulation, hepatocyte ballooning, and liver fibrosis. Lipidomics revealed that Biejiajian Pills regulated the content of 11 biomarkers including phosphatidyl choline(PC), phosphatidyl ethanolamine(PE), sphingomyelin(SM), and ceramide(Cer). The results of Western blot and qPCR demonstrated that Biejiajian Pills regulated the expression of sterol regulatory element-binding protein 1(SREBP1), peroxisome proliferator-activated receptor gamma(PPARγ) and phospho-AMP-activated protein kinase(p-AMPK), and the mRNA level of fatty acid translocase 36 gene(Cd36), Pparγ, cardiolipin synthase 1 gene(Crls1), and phospholipase Cß2 gene(Plcß2). Furthermore, Biejiajian Pills displayed inhibitory effects on phospho-p38 MAPK(p-p38 MAPK) and phospho-ERK1/2(p-ERK1/2) and the mRNA levels of interleukin-6 gene(Il-6), interleukin-1ß gene(Il-1ß) and tumor necrosis factor-α gene(Tnf-α). In conclusion, Biejiajian Pills could alleviate the lipid metabolism disorders and regulate the expression of SREBP1, PPARγ, and p-AMPK and the mRNA levels of pro-inflammatory cytokines.


Drugs, Chinese Herbal , Lipid Metabolism , Lipidomics , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Mice , Male , Lipid Metabolism/drug effects , Liver/metabolism , Liver/drug effects , Humans , Alanine Transaminase/metabolism , Alanine Transaminase/genetics , Alanine Transaminase/blood , Aspartate Aminotransferases/metabolism , Aspartate Aminotransferases/genetics
16.
Physiol Res ; 73(2): 253-263, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710055

Up to now, there's a limited number of studies on the relationship between PINK1/Park2 pathway and mitophagy in NAFLD. To investigate the effect of Park2-mediated mitophagy on non-alcoholic fatty liver disease (NAFLD). Oleic acid was used for the establishment of NAFLD model. Oil red-dyed lipid drops and mitochondrial alternations were observed by transmission electron microscopy. Enzymatic kit was used to test lipid content. The levels of IL-8 and TNF-alpha were determined by ELISA. Lenti-Park2 and Park2-siRNA were designed to upregulate and downregulate Park2 expression, respectively. The changing expression of PINK and Park2 was detected by RT-qPCR and Western blot. Immunofluorescence staining was applied to measure the amount of LC3. Successful NAFLD modeling was featured by enhanced lipid accumulation, as well as the elevated total cholesterol (TC), triglyceride (TG), TNF-alpha and IL-8 levels. Mitochondria in NAFLD model were morphologically and functionally damaged. Park2 expression was upregulated by lenti-Park2 and downregulated through Park2-siRNA. The PINK1 expression showed the same trend as Park2 expression. Immunofluorescence staining demonstrated that the when Park2 was overexpressed, more LC3 protein on mitochondrial autophagosome membrane was detected, whereas Park2 knockdown impeded LC3' locating on the membrane. The transmission electron microscopy image exhibited that the extent of damage to the mitochondrial in NAFLD model was revered by enhanced Park2 expression but further exacerbated by reduced Park2 expression. Park2-mediated mitophagy could relive NAFLD and may be a novel therapeutic target for NAFLD treatment. Keywords: Non-alcoholic Fatty Liver Disease (NAFLD), Mitophagy, PINK1/Park2, Park2, PINK1.


Mitophagy , Non-alcoholic Fatty Liver Disease , Protein Kinases , Ubiquitin-Protein Ligases , Animals , Humans , Male , Mice , Mitophagy/physiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
17.
Int J Mol Sci ; 25(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38791490

Gut microbiota imbalances have a significant role in the pathogenesis of Inflammatory Bowel Disease (IBD) and Non-Alcoholic Fatty Liver Disease (NAFLD). Herein, we compared gut microbial composition in patients diagnosed with either IBD or NAFLD or a combination of both. Seventy-four participants were stratified into four groups: IBD-NAFLD, IBD-only, NAFLD-only patients, and healthy controls (CTRLs). The 16S rRNA was sequenced by Next-Generation Sequencing. Bioinformatics and statistical analysis were performed. Bacterial α-diversity showed a significant lower value when the IBD-only group was compared to the other groups and particularly against the IBD-NAFLD group. ß-diversity also showed a significant difference among groups. The higher Bacteroidetes/Firmicutes ratio was found only when comparing IBD groups and CTRLs. Comparing the IBD-only group with the IBD-NAFLD group, a decrease in differential abundance of Subdoligranulum, Parabacteroides, and Fusicatenibacter was found. Comparing the NAFLD-only with the IBD-NAFLD groups, there was a higher abundance of Alistipes, Odoribacter, Sutterella, and Lachnospira. An inverse relationship in the comparison between the IBD-only group and the other groups was shown. For the first time, the singularity of the gut microbial composition in IBD and NAFLD patients has been shown, implying a potential microbial signature mainly influenced by gut inflammation.


Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Metagenomics , Non-alcoholic Fatty Liver Disease , RNA, Ribosomal, 16S , Humans , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/genetics , Gastrointestinal Microbiome/genetics , Inflammatory Bowel Diseases/microbiology , Female , Male , Middle Aged , Adult , Metagenomics/methods , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Metagenome
18.
Front Immunol ; 15: 1386905, 2024.
Article En | MEDLINE | ID: mdl-38812509

Backgrounds: Non-alcoholic fatty liver disease (NAFLD) presents as a common liver disease characterized by an indistinct pathogenesis. Disulfidptosis is a recently identified mode of cell death. This study aimed to investigate the potential role of disulfidptosis-related genes (DRGs) in the pathogenesis of NAFLD. Methods: Gene expression profiles were obtained from the bulk RNA dataset GSE126848 and the single-cell RNA dataset GSE136103, both associated with NAFLD. Our study assessed the expression of DRGs in NAFLD and normal tissues. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were employed to identify the key NAFLD-specific differentially expressed DRGs (DE-DRGs). To explore the biological functions and immune regulatory roles of these key DE-DRGs, we conducted immune infiltration analysis, functional enrichment analysis, consensus clustering analysis, and single-cell differential state analysis. Finally, we validated the expression and biological functions of DRGs in NAFLD patients using histology and RNA-sequencing transcriptomic assays with human liver tissue samples. Results: Through the intersection of WGCNA, differentially expressed genes, and DRGs, two key DE-DRGs (DSTN and MYL6) were identified. Immune infiltration analysis indicated a higher proportion of macrophages, T cells, and resting dendritic cells in NAFLD compared to control liver samples. Based on the key DE-DRGs, Two disulfidptosis clusters were defined in GSE126848. Cluster 1, with higher expression of the key DE-DRGs, exhibited increased immune infiltration abundance and was closely associated with oxidative stress and immune regulation compared to cluster 2. High-resolution analysis of mononuclear phagocytes highlighted the potential role of MYL6 in intrahepatic M1 phenotype Kupffer cells in NAFLD patients. Our transcriptome data revealed that the expression levels of the majority of DRGs were significantly increased in NAFLD patients. NAFLD patients exhibit elevated MYL6 correlating with inflammation, oxidative stress, and disease severity, offering promising diagnostic specificity. Conclusion: This comprehensive study provides evidence for the association between NAFLD and disulfidptosis, identifying potential target genes and pathways in NAFLD. The identification of MYL6 as a possible treatment target for NAFLD provided a novel understanding of the disease's development.


Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/pathology , Humans , Gene Expression Profiling , Transcriptome , Gene Regulatory Networks , Liver/metabolism , Liver/pathology , Liver/immunology , Gene Expression Regulation
19.
Cell Rep ; 43(5): 114238, 2024 May 28.
Article En | MEDLINE | ID: mdl-38748875

Triacylglyceride (TAG) synthesis in the small intestine determines the absorption of dietary fat, but the underlying mechanisms remain to be further studied. Here, we report that the RNA-binding protein HuR (ELAVL1) promotes TAG synthesis in the small intestine. HuR associates with the 3' UTR of Dgat2 mRNA and intron 1 of Mgat2 pre-mRNA. Association of HuR with Dgat2 3' UTR stabilizes Dgat2 mRNA, while association of HuR with intron 1 of Mgat2 pre-mRNA promotes the processing of Mgat2 pre-mRNA. Intestinal epithelium-specific HuR knockout reduces the expression of DGAT2 and MGAT2, thereby reducing the dietary fat absorption through TAG synthesis and mitigating high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and obesity. Our findings highlight a critical role of HuR in promoting dietary fat absorption.


Diet, High-Fat , ELAV-Like Protein 1 , Intestinal Absorption , Triglycerides , Triglycerides/metabolism , Triglycerides/biosynthesis , Animals , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Mice , Diet, High-Fat/adverse effects , Humans , Mice, Inbred C57BL , Male , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Obesity/metabolism , Obesity/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Dietary Fats/metabolism , Dietary Fats/pharmacology , Mice, Knockout , 3' Untranslated Regions/genetics , Acyltransferases
20.
Hepatol Commun ; 8(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38696369

BACKGROUND: Human genetic studies have identified several mitochondrial amidoxime-reducing component 1 (MTARC1) variants as protective against metabolic dysfunction-associated steatotic liver disease. The MTARC1 variants are associated with decreased plasma lipids and liver enzymes and reduced liver-related mortality. However, the role of mARC1 in fatty liver disease is still unclear. METHODS: Given that mARC1 is mainly expressed in hepatocytes, we developed an N-acetylgalactosamine-conjugated mouse Mtarc1 siRNA, applying it in multiple in vivo models to investigate the role of mARC1 using multiomic techniques. RESULTS: In ob/ob mice, knockdown of Mtarc1 in mouse hepatocytes resulted in decreased serum liver enzymes, LDL-cholesterol, and liver triglycerides. Reduction of mARC1 also reduced liver weight, improved lipid profiles, and attenuated liver pathological changes in 2 diet-induced metabolic dysfunction-associated steatohepatitis mouse models. A comprehensive analysis of mARC1-deficient liver from a metabolic dysfunction-associated steatohepatitis mouse model by metabolomics, proteomics, and lipidomics showed that Mtarc1 knockdown partially restored metabolites and lipids altered by diet. CONCLUSIONS: Taken together, reducing mARC1 expression in hepatocytes protects against metabolic dysfunction-associated steatohepatitis in multiple murine models, suggesting a potential therapeutic approach for this chronic liver disease.


Disease Models, Animal , Gene Knockdown Techniques , Hepatocytes , Animals , Mice , Hepatocytes/metabolism , Liver/metabolism , Male , RNA, Small Interfering/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Mice, Inbred C57BL
...