Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.031
Filter
1.
Cell ; 187(19): 5225-5227, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303690

ABSTRACT

Nuclear pore complexes are massive protein gateways that control molecular exchange between the nucleus and cytoplasm. In this issue of Cell, Singh et al. provide the first high-resolution views of the elusive nuclear basket, which extends deep into the nucleus to coordinate functions from genome organization to mRNP export.


Subject(s)
Cell Nucleus , Nuclear Pore , Cell Nucleus/metabolism , Nuclear Pore/metabolism , Humans , Active Transport, Cell Nucleus , Animals , Ribonucleoproteins/metabolism
2.
PLoS Pathog ; 20(9): e1012537, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39259747

ABSTRACT

HIV-1 infection requires passage of the viral core through the nuclear pore of the cell, a process that depends on functions of the viral capsid. Recent studies have shown that HIV-1 cores enter the nucleus prior to capsid disassembly. Interactions of the viral capsid with the nuclear pore complex are necessary but not sufficient for nuclear entry, and the mechanism by which the viral core traverses the comparably sized nuclear pore is unknown. Here we show that the HIV-1 core is highly elastic and that this property is linked to nuclear entry and infectivity. Using atomic force microscopy-based approaches, we found that purified wild type cores rapidly returned to their normal conical morphology following a severe compression. Results from independently performed molecular dynamic simulations of the mature HIV-1 capsid also revealed its elastic property. Analysis of four HIV-1 capsid mutants that exhibit impaired nuclear entry revealed that the mutant viral cores are brittle. Adaptation of two of the mutant viruses in cell culture resulted in additional substitutions that restored elasticity and rescued infectivity and nuclear entry. We also show that capsid-targeting compound PF74 and the antiviral drug Lenacapavir reduce core elasticity and block HIV-1 nuclear entry at concentrations that preserve interactions between the viral core and the nuclear envelope. Our results indicate that elasticity is a fundamental property of the HIV-1 core that enables nuclear entry, thereby facilitating infection. These results provide new insights into the role of the capsid in HIV-1 nuclear entry and the antiviral mechanisms of HIV-1 capsid inhibitors.


Subject(s)
Elasticity , HIV Infections , HIV-1 , HIV-1/physiology , Humans , HIV Infections/virology , HIV Infections/metabolism , Virus Internalization , Capsid/metabolism , Cell Nucleus/metabolism , Cell Nucleus/virology , Molecular Dynamics Simulation , Microscopy, Atomic Force , Nuclear Pore/metabolism , Indoles , Phenylalanine/analogs & derivatives
3.
Nucleus ; 15(1): 2399247, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39282864

ABSTRACT

The nuclear pore complex (NPC) is a critical gateway regulating molecular transport between the nucleus and cytoplasm. It allows small molecules to pass freely, while larger molecules require nuclear transport receptors to traverse the barrier. This selective permeability is maintained by phenylalanine-glycine-rich nucleoporins (FG-Nups), intrinsically disordered proteins that fill the NPC's central channel. The disordered and flexible nature of FG-Nups complicates their spatial characterization with conventional structural biology techniques. To address this challenge, polymer physics offers a valuable framework for describing FG-Nup behavior, reducing their complex structures to a few key parameters. In this review, we explore how polymer physics models FG-Nups using these parameters and discuss experimental efforts to quantify them in various contexts, providing insights into the conformational properties of FG-Nups.


Subject(s)
Intrinsically Disordered Proteins , Nuclear Pore Complex Proteins , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/chemistry , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Humans , Polymers/chemistry , Polymers/metabolism , Animals , Nuclear Pore/metabolism , Nuclear Pore/chemistry , Phenylalanine/chemistry , Phenylalanine/metabolism , Glycine/metabolism , Glycine/chemistry
4.
Int J Mol Sci ; 25(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39273335

ABSTRACT

This review starts off with the first germline homozygous variants of the Nucleoporin 98 gene (NUP98) in siblings whose clinical presentation recalls Rothmund-Thomson (RTS) and Werner (WS) syndromes. The progeroid phenotype caused by a gene associated with haematological malignancies and neurodegenerative disorders primed the search for interplay between caretakers involved in genome instability syndromes and Nuclear Pore Complex (NPC) components. In the context of basic information on NPC architecture and functions, we discuss the studies on the interdependence of caretakers and gatekeepers in WS and Hereditary Fibrosing Poikiloderma (POIKTMP), both entering in differential diagnosis with RTS. In WS, the WRN/WRNIP complex interacts with nucleoporins of the Y-complex and NDC1 altering NPC architecture. In POIKTMP, the mutated FAM111B, recruited by the Y-complex's SEC13 and NUP96, interacts with several Nups safeguarding NPC structure. The linkage of both defective caretakers to the NPC highlights the attempt to activate a repair hub at the nuclear periphery to restore the DNA damage. The two separate WS and POIKTMP syndromes are drawn close by the interaction of their damage sensors with the NPC and by the shared hallmark of short fragile telomeres disclosing a major role of both caretakers in telomere maintenance.


Subject(s)
Genomic Instability , Nuclear Pore Complex Proteins , Nuclear Pore , Humans , Nuclear Pore/metabolism , Nuclear Pore/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Animals
5.
Aging (Albany NY) ; 16(17): 12105-12107, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39172116

ABSTRACT

Nuclear envelope proteins have recently gained traction as novel regulators of endothelial and vascular function. Nuclear pore complexes (NPCs) stand as one of the largest protein complexes found at the nuclear envelope yet the role of component NPC proteins (i.e., nucleoporins) in vascular health remains unclear. In the issue of Aging Cell, Nguyen et al. (2024) identify Nucleoporin93, a major structural protein of the NPC, as an indispensable player in endothelial protection. This discovery raises the possibility that endothelial NPCs are susceptible to risk factors for consequent vascular disease.


Subject(s)
Nuclear Pore Complex Proteins , Humans , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/genetics , Animals , Vascular Diseases/metabolism , Nuclear Pore/metabolism
6.
Nat Cell Biol ; 26(9): 1482-1495, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39117796

ABSTRACT

As lifelong interphase cells, neurons face an array of unique challenges. A key challenge is regulating nuclear pore complex (NPC) biogenesis and localization, the mechanisms of which are largely unknown. Here we identify neuronal maturation as a period of strongly upregulated NPC biogenesis. We demonstrate that the AAA+ protein torsinA, whose dysfunction causes the neurodevelopmental movement disorder DYT-TOR1A dystonia and co-ordinates NPC spatial organization without impacting total NPC density. We generated an endogenous Nup107-HaloTag mouse line to directly visualize NPC organization in developing neurons and find that torsinA is essential for proper NPC localization. In the absence of torsinA, the inner nuclear membrane buds excessively at sites of mislocalized nascent NPCs, and the formation of complete NPCs is delayed. Our work demonstrates that NPC spatial organization and number are independently determined and identifies NPC biogenesis as a process vulnerable to neurodevelopmental disease insults.


Subject(s)
Molecular Chaperones , Neurons , Nuclear Pore Complex Proteins , Nuclear Pore , Animals , Nuclear Pore/metabolism , Nuclear Pore/genetics , Neurons/metabolism , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/genetics , Mice , Neurogenesis , Humans , Mice, Knockout , Mice, Inbred C57BL
7.
Cell ; 187(19): 5267-5281.e13, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39127037

ABSTRACT

The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC's structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of nucleoporins (Nups) in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.


Subject(s)
Active Transport, Cell Nucleus , Nuclear Pore Complex Proteins , Nuclear Pore , Saccharomyces cerevisiae , Animals , Nuclear Pore/metabolism , Nuclear Pore/ultrastructure , Nuclear Pore/chemistry , Saccharomyces cerevisiae/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/chemistry , Mice , Cell Nucleus/metabolism , Toxoplasma/metabolism , Toxoplasma/ultrastructure , Cryoelectron Microscopy , RNA, Messenger/metabolism , Models, Molecular , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/ultrastructure
8.
Development ; 151(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39087588

ABSTRACT

The Spalt transcriptional regulators participate in a variety of cell fate specification processes during development, regulating transcription through interactions with DNA AT-rich regions. Spalt proteins also bind to heterochromatic regions, and some of their effects require interactions with the NuRD chromatin remodeling and deacetylase complex. Most of the biological roles of Spalt proteins have been characterized in diploid cells engaged in cell proliferation. Here, we address the function of Drosophila Spalt genes in the development of a larval tissue formed by polyploid cells, the prothoracic gland, the cells of which undergo several rounds of DNA replication without mitosis during larval development. We show that prothoracic glands depleted of Spalt expression display severe changes in the size of the nucleolus, the morphology of the nuclear envelope and the disposition of the chromatin within the nucleus, leading to a failure in the synthesis of ecdysone. We propose that loss of ecdysone production in the prothoracic gland of Spalt mutants is primarily caused by defects in nuclear pore complex function that occur as a consequence of faulty interactions between heterochromatic regions and the nuclear envelope.


Subject(s)
Drosophila Proteins , Ecdysone , Transcription Factors , Animals , Cell Nucleolus/metabolism , Chromatin/metabolism , Drosophila/metabolism , Drosophila/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Ecdysone/metabolism , Gene Expression Regulation, Developmental , Larva/metabolism , Larva/growth & development , Larva/genetics , Mutation/genetics , Nuclear Envelope/metabolism , Nuclear Envelope/genetics , Nuclear Pore/metabolism , Nuclear Pore/genetics , Repressor Proteins , Transcription Factors/metabolism , Transcription Factors/genetics
9.
Nat Cell Biol ; 26(9): 1504-1519, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39138317

ABSTRACT

The nuclear basket attaches to the nucleoplasmic side of the nuclear pore complex (NPC), coupling transcription to mRNA quality control and export. The basket expands the functional repertoire of a subset of NPCs in Saccharomyces cerevisiae by drawing a unique RNA/protein interactome. Yet, how the basket docks onto the NPC core remains unknown. By integrating AlphaFold-based interaction screens, electron microscopy and membrane-templated reconstitution, we uncovered a membrane-anchored tripartite junction between basket and NPC core. The basket subunit Nup60 harbours three adjacent short linear motifs, which connect Mlp1, a parallel homodimer consisting of coiled-coil segments interrupted by flexible hinges, and the Nup85 subunit of the Y-complex. We reconstituted the Y-complex•Nup60•Mlp1 assembly on a synthetic membrane and validated the protein interfaces in vivo. Here we explain how a short linear motif-based protein junction can substantially reshape NPC structure and function, advancing our understanding of compositional and conformational NPC heterogeneity.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Pore , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Nuclear Pore/metabolism , Nuclear Pore/ultrastructure , Nuclear Pore/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Protein Binding
10.
Curr Opin Cell Biol ; 90: 102407, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142062

ABSTRACT

The spatial separation of protein synthesis from the compartmental destiny of proteins led to the evolution of transport systems that are efficient and yet highly specific. Co-translational transport has emerged as a strategy to avoid cytosolic aggregation of folding intermediates and the need for energy-consuming unfolding strategies to enable transport through narrow conduits connecting compartments. While translation and compartmental translocation are at times tightly coordinated, we know very little about the temporal coordination of translation, protein folding, and nuclear import. Here, we consider the implications of co-translational engagement of nuclear import machinery. We propose that the dynamic interplay of karyopherins and intrinsically disordered nucleoporins create a favorable protein folding environment for cargo en route to the nuclear compartment while maintaining a barrier function of the nuclear pore complex. Our model is discussed in the context of neurological disorders that are tied to defects in nuclear transport and protein quality control.


Subject(s)
Active Transport, Cell Nucleus , Protein Folding , Humans , Animals , Cell Nucleus/metabolism , Nuclear Pore/metabolism , Nuclear Pore/chemistry , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/chemistry , Karyopherins/metabolism , Karyopherins/chemistry
11.
Sci Rep ; 14(1): 19044, 2024 08 16.
Article in English | MEDLINE | ID: mdl-39152185

ABSTRACT

The nuclear pore complexes on the nuclear membrane serve as the exclusive gateway for communication between the nucleus and the cytoplasm, regulating the transport of various molecules, including nucleic acids and proteins. The present work investigates the kinetics of the transport of negatively charged graphene quantum dots through nuclear membranes, focusing on quantifying their transport characteristics. Experiments are carried out in permeabilized HeLa cells using time-lapse confocal fluorescence microscopy. Our findings indicate that negatively charged graphene quantum dots exhibit rapid transport to the nuclei, involving two distinct transport pathways in the translocation process. Complementary experiments on the nuclear import and export of graphene quantum dots validate the bi-directionality of transport, as evidenced by comparable transport rates. The study also shows that the negatively charged graphene quantum dots possess favorable retention properties, underscoring their potential as drug carriers.


Subject(s)
Active Transport, Cell Nucleus , Cell Nucleus , Graphite , Quantum Dots , Quantum Dots/chemistry , Quantum Dots/metabolism , Humans , Graphite/chemistry , HeLa Cells , Cell Nucleus/metabolism , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Microscopy, Confocal
12.
Nucleus ; 15(1): 2387534, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39135336

ABSTRACT

Nucleoporins, essential proteins building the nuclear pore, are pivotal for ensuring nucleocytoplasmic transport. While traditionally confined to the nuclear envelope, emerging evidence indicates their presence in various cytoplasmic structures, suggesting potential non-transport-related roles. This review consolidates findings on cytoplasmic nucleoporin assemblies across different states, including normal physiological conditions, stress, and pathology, exploring their structural organization, formation dynamics, and functional implications. We summarize the current knowledge and the latest concepts on the regulation of nucleoporin homeostasis, aiming to enhance our understanding of their unexpected roles in physiological and pathological processes.


Subject(s)
Cytoplasm , Nuclear Pore Complex Proteins , Nuclear Pore Complex Proteins/metabolism , Humans , Cytoplasm/metabolism , Animals , Nuclear Pore/metabolism , Active Transport, Cell Nucleus
13.
Commun Biol ; 7(1): 783, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951619

ABSTRACT

Transport of macromolecules through the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs) consisting of nucleoporins (Nups). Elys/Mel-28 is the Nup that binds and connects the decondensing chromatin with the reassembled NPCs at the end of mitosis. Whether Elys links chromatin with the NE during interphase is unknown. Here, using DamID-seq, we identified Elys binding sites in Drosophila late embryos and divided them into those associated with nucleoplasmic or with NPC-linked Elys. These Elys binding sites are located within active or inactive chromatin, respectively. Strikingly, Elys knockdown in S2 cells results in peripheral chromatin displacement from the NE, in decondensation of NE-attached chromatin, and in derepression of genes within. It also leads to slightly more compact active chromatin regions. Our findings indicate that NPC-linked Elys, together with the nuclear lamina, anchors peripheral chromatin to the NE, whereas nucleoplasmic Elys decompacts active chromatin.


Subject(s)
Chromatin , Drosophila Proteins , Interphase , Nuclear Pore Complex Proteins , Nuclear Pore , Animals , Binding Sites , Cell Nucleus/metabolism , Chromatin/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/genetics
14.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000572

ABSTRACT

The p53 family remains a captivating focus of an extensive number of current studies. Accumulating evidence indicates that p53 abnormalities rank among the most prevalent in cancer. Given the numerous existing studies, which mostly focus on the mutations, expression profiles, and functional perturbations exhibited by members of the p53 family across diverse malignancies, this review will concentrate more on less explored facets regarding p53 activation and stabilization by the nuclear pore complex (NPC) in cancer, drawing on several studies. p53 integrates a broad spectrum of signals and is subject to diverse regulatory mechanisms to enact the necessary cellular response. It is widely acknowledged that each stage of p53 regulation, from synthesis to degradation, significantly influences its functionality in executing specific tasks. Over recent decades, a large body of data has established that mechanisms of regulation, closely linked with protein activation and stabilization, involve intricate interactions with various cellular components. These often transcend canonical regulatory pathways. This new knowledge has expanded from the regulation of genes themselves to epigenomics and proteomics, whereby interaction partners increase in number and complexity compared with earlier paradigms. Specifically, studies have recently shown the involvement of the NPC protein in such complex interactions, underscoring the further complexity of p53 regulation. Furthermore, we also discuss therapeutic strategies based on recent developments in this field in combination with established targeted therapies.


Subject(s)
Neoplasms , Nuclear Pore , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Nuclear Pore/metabolism , Nuclear Pore/genetics , Animals , Gene Expression Regulation, Neoplastic
15.
J Cancer Res Clin Oncol ; 150(7): 374, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080077

ABSTRACT

BACKGROUND: Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE: In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS: The literatures from PubMed have been reviewed for this article. CONCLUSION: This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Pore , Humans , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Kidney Diseases/metabolism , Kidney Diseases/pathology
16.
Nucleus ; 15(1): 2373052, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38940456

ABSTRACT

The analysis of nucleocytoplasmic transport of proteins and messenger RNA has been the focus of advanced microscopic approaches. Recently, it has been possible to identify and visualize individual pre-ribosomal particles on their way through the nuclear pore complex using both electron and light microscopy. In this review, we focused on the transport of pre-ribosomal particles in the nucleus on their way to and through the pores.


Subject(s)
Active Transport, Cell Nucleus , Cell Nucleolus , Cytoplasm , Nuclear Pore , Cell Nucleolus/metabolism , Nuclear Pore/metabolism , Cytoplasm/metabolism , Humans , Animals , Ribosomes/metabolism , Cell Nucleus/metabolism
17.
Cell Struct Funct ; 49(2): 31-46, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38839376

ABSTRACT

In metazoans, the nuclear envelope (NE) disassembles during the prophase and reassembles around segregated chromatids during the telophase. The process of NE formation has been extensively studied using live-cell imaging. At the early step of NE reassembly in human cells, specific pattern-like localization of inner nuclear membrane (INM) proteins, connected to the nuclear pore complex (NPC), was observed in the so-called "core" region and "noncore" region on telophase chromosomes, which corresponded to the "pore-free" region and the "pore-rich" region, respectively, in the early G1 interphase nucleus. We refer to these phenomena as NE subdomain formation. To biochemically investigate this process, we aimed to develop an in vitro NE reconstitution system using digitonin-permeabilized semi-intact mitotic human cells coexpressing two INM proteins, emerin and lamin B receptor, which were labeled with fluorescent proteins. The targeting and accumulation of INM proteins to chromosomes before and after anaphase onset in semi-intact cells were observed using time-lapse imaging. Our in vitro NE reconstitution system recapitulated the formation of the NE subdomain, as in living cells, although chromosome segregation and cytokinesis were not observed. This in vitro NE reconstitution required the addition of a mitotic cytosolic fraction supplemented with a cyclin-dependent kinase inhibitor and energy sources. The cytoplasmic soluble factor(s) dependency of INM protein targeting differed among the segregation states of chromosomes. Furthermore, the NE reconstituted on segregated chromosomes exhibited active nucleocytoplasmic transport competency. These results indicate that the chromosome status changes after anaphase onset for recruiting NPC components.


Subject(s)
Mitosis , Nuclear Envelope , Nuclear Proteins , Humans , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , HeLa Cells , Lamin B Receptor , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Chromosomes, Human/metabolism , Nuclear Pore/metabolism , Chromosomes/metabolism
18.
Genes Dev ; 38(9-10): 436-454, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38866556

ABSTRACT

Genome organization can regulate gene expression and promote cell fate transitions. The differentiation of germline stem cells (GSCs) to oocytes in Drosophila involves changes in genome organization mediated by heterochromatin and the nuclear pore complex (NPC). Heterochromatin represses germ cell genes during differentiation, and NPCs anchor these silenced genes to the nuclear periphery, maintaining silencing to allow for oocyte development. Surprisingly, we found that genome organization also contributes to NPC formation, mediated by the transcription factor Stonewall (Stwl). As GSCs differentiate, Stwl accumulates at boundaries between silenced and active gene compartments. Stwl at these boundaries plays a pivotal role in transitioning germ cell genes into a silenced state and activating a group of oocyte genes and nucleoporins (Nups). The upregulation of these Nups during differentiation is crucial for NPC formation and further genome organization. Thus, cross-talk between genome architecture and NPCs is essential for successful cell fate transitions.


Subject(s)
Cell Differentiation , Drosophila Proteins , Genome, Insect , Nuclear Pore , Oogenesis , Animals , Oogenesis/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Cell Differentiation/genetics , Nuclear Pore/metabolism , Nuclear Pore/genetics , Genome, Insect/genetics , Gene Expression Regulation, Developmental/genetics , Female , Drosophila melanogaster/genetics , Oocytes/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Drosophila/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/genetics
19.
Anal Chem ; 96(26): 10765-10771, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38904303

ABSTRACT

The nuclear pore complex (NPC) is a proteinaceous nanopore that solely and selectively regulates the molecular transport between the cytoplasm and nucleus of a eukaryotic cell. The ∼50 nm-diameter pore of the NPC perforates the double-membrane nuclear envelope to mediate both passive and facilitated molecular transport, thereby playing paramount biological and biomedical roles. Herein, we visualize single NPCs by scanning electrochemical microscopy (SECM). The high spatial resolution is accomplished by employing ∼25 nm-diameter ion-selective nanopipets to monitor the passive transport of tetrabutylammonium at individual NPCs. SECM images are quantitatively analyzed by employing the finite element method to confirm that this work represents the highest-resolution nanoscale SECM imaging of biological samples. Significantly, we apply the powerful imaging technique to address the long-debated origin of the central plug of the NPC. Nanoscale SECM imaging demonstrates that unplugged NPCs are more permeable to the small probe ion than are plugged NPCs. This result supports the hypothesis that the central plug is not an intrinsic transporter, but is an impermeable macromolecule, e.g., a ribonucleoprotein, trapped in the nanopore. Moreover, this result also supports the transport mechanism where the NPC is divided into the central pathway for RNA export and the peripheral pathway for protein import to efficiently mediate the bidirectional traffic.


Subject(s)
Microscopy, Electrochemical, Scanning , Nuclear Pore , Nuclear Pore/metabolism , Nuclear Pore/chemistry , Quaternary Ammonium Compounds/chemistry , Nanopores
20.
Nucleic Acids Res ; 52(14): 8286-8302, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38917328

ABSTRACT

Nuclear pore complexes (NPCs) have emerged as genome organizers, defining a particular nuclear compartment enriched for SUMO protease and proteasome activities, and act as docking sites for the repair of DNA damage. In fission yeast, the anchorage of perturbed replication forks to NPCs is an integral part of the recombination-dependent replication restart mechanism (RDR) that resumes DNA synthesis at terminally dysfunctional forks. By mapping DNA polymerase usage, we report that SUMO protease Ulp1-associated NPCs ensure efficient initiation of restarted DNA synthesis, whereas proteasome-associated NPCs sustain the progression of restarted DNA polymerase. In contrast to Ulp1-dependent events, this last function is not alleviated by preventing SUMO chain formation. By analyzing the role of the nuclear basket, the nucleoplasmic extension of the NPC, we reveal that the activities of Ulp1 and the proteasome cannot compensate for each other and affect the dynamics of RDR in distinct ways. Our work probes two distinct mechanisms by which the NPC environment ensures optimal RDR, both controlled by different NPC components.


Subject(s)
DNA Replication , Nuclear Pore , Proteasome Endopeptidase Complex , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Proteasome Endopeptidase Complex/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Nuclear Pore/metabolism , Nuclear Pore/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Cell Nucleus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL