Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 661
Filter
1.
BMC Pediatr ; 24(1): 426, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961351

ABSTRACT

BACKGROUND: Adipose tissue is significantly involved in inflammatory bowel disease (IBD). Vitamin D can affect both adipogenesis and inflammation. The aim of this study was to compare the production of selected adipokines, potentially involved in the pathogenesis of IBD - adiponectin, resistin, retinol binding protein 4 (RBP-4), adipocyte fatty acid binding protein and nesfatin-1 in children with IBD according to the presence of 25-hydroxyvitamin D (25(OH)D) deficiency. METHODS: The study was conducted as a case-control study in pediatric patients with IBD and healthy children of the same sex and age. In addition to adipokines and 25(OH)D, anthropometric parameters, markers of inflammation and disease activity were assessed in all participants. RESULTS: Children with IBD had significantly higher resistin levels regardless of 25(OH)D levels. IBD patients with 25(OH)D deficiency only had significantly lower RBP-4 compared to healthy controls and also compared to IBD patients without 25(OH)D deficiency. No other significant differences in adipokines were found in children with IBD with or without 25(OH)D deficiency. 25(OH)D levels in IBD patients corelated with RBP-4 only, and did not correlate with other adipokines. CONCLUSIONS: Whether the lower RBP-4 levels in the 25(OH)D-deficient group of IBD patients directly reflect vitamin D deficiency remains uncertain. The production of other adipokines does not appear to be directly related to vitamin D deficiency.


Subject(s)
Adipokines , Vitamin D Deficiency , Vitamin D , Humans , Vitamin D Deficiency/complications , Vitamin D Deficiency/blood , Male , Female , Child , Case-Control Studies , Adipokines/blood , Adolescent , Vitamin D/blood , Vitamin D/analogs & derivatives , Retinol-Binding Proteins, Plasma/metabolism , Retinol-Binding Proteins, Plasma/analysis , Resistin/blood , Nucleobindins/blood , Adiponectin/blood , Adiponectin/deficiency , Calcium-Binding Proteins/blood , Fatty Acid-Binding Proteins/blood , DNA-Binding Proteins/blood , Biomarkers/blood , Inflammatory Bowel Diseases/blood , Inflammatory Bowel Diseases/complications
2.
Biochem Biophys Res Commun ; 727: 150311, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38950494

ABSTRACT

In human Alzheimer's disease (AD), the aggregation of tau protein is considered a significant hallmark, along with amyloid-beta. The formation of neurofibrillary tangles due to aberrant phosphorylation of tau disrupts microtubule stability, leading to neuronal toxicity, dysfunction, and subsequent cell death. Nesfatin-1 is a neuropeptide primarily known for regulating appetite and energy homeostasis. However, the function of Nesfatin-1 in a neuroprotective role has not been investigated. In this study, we aimed to elucidate the effect of Nesfatin-1 on tau pathology using the Drosophila model system. Our findings demonstrate that Nesfatin-1 effectively mitigates the pathological phenotypes observed in Drosophila human Tau overexpression models. Nesfatin-1 overexpression rescued the neurodegenerative phenotypes in the adult fly's eye and bristle. Additionally, Nesfatin-1 improved locomotive behavior, neuromuscular junction formation, and lifespan in the hTau AD model. Moreover, Nesfatin-1 controls tauopathy by reducing the protein level of hTau. Overall, this research highlights the potential therapeutic applications of Nesfatin-1 in ameliorating the pathological features associated with Alzheimer's disease.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Nucleobindins , tau Proteins , Animals , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Nucleobindins/metabolism , Nucleobindins/genetics , tau Proteins/metabolism , tau Proteins/genetics , Humans , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Animals, Genetically Modified , Drosophila , Locomotion , Longevity
3.
Cell Commun Signal ; 22(1): 298, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812013

ABSTRACT

BACKGROUND: Nucleobindin-2 (Nucb2) and nesfatin-1 (N1) are widely distributed hormones that regulate numerous physiological processes, from energy homeostasis to carcinogenesis. However, the role of nesfatin-2 (N2), the second product of Nucb2 proteolytic processing, remains elusive. To elucidate the relationship between the structure and function of nesfatins, we investigated the properties of chicken and human homologs of N1, as well as a fragment of Nucb2 consisting of N1 and N2 conjoined in a head-to-tail manner (N1/2). RESULTS: Our findings indicate that Zn(II) sensing, in the case of N1, is conserved between chicken and human species. However, the data presented here reveal significant differences in the molecular features of the analyzed peptides, particularly in the presence of Zn(II). We demonstrated that Zn(II) has a Janus effect on the M30 region (a crucial anorexigenic core) of N1 and N1/2. In N1 homologs, Zn(II) binding results in the concealment of the M30 region driven by a disorder-to-order transition and adoption of the amyloid fold. In contrast, in N1/2 molecules, Zn(II) binding causes the exposure of the M30 region and its destabilization, resulting in strong exposure of the region recognized by prohormone convertases within the N1/2 molecule. CONCLUSIONS: In conclusion, we found that Zn(II) binding is conserved between chicken and human N1. However, despite the high homology of chicken and human N1, their interaction modes with Zn(II) appear to differ. Furthermore, Zn(II) binding might be essential for regulating the function of nesfatins by spatiotemporally hindering the N1 anorexigenic M30 core and concomitantly facilitating N1 release from Nucb2.


Subject(s)
Chickens , Nucleobindins , Zinc , Nucleobindins/metabolism , Zinc/metabolism , Humans , Animals , Amino Acid Sequence , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics
4.
Biochem Pharmacol ; 225: 116284, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750903

ABSTRACT

Chronic Kidney Disease (CKD) presents a significant global health challenge with limited treatment options. Nesfatin-1, an anorexigenic peptide, has demonstrated antioxidant, anti-inflammatory, and anti-apoptotic properties in various diseases. However, the role of nesfatin-1 in CKD remains unclear. This study investigates the potential renoprotective effects of nesfatin-1 in adenine-induced CKD mice and in NRK-52E renal epithelial cells. Male C57BL/6J mice and NRK-52E renal epithelial cells were administered adenine to induce CKD. Various aspects of renal function, histopathology, oxidative stress, inflammation, apoptosis, and renal interstitial fibrosis were assessed and downstream pathways were investigated. Adenine-fed mice exhibited reduced nesfatin-1 expression and increased markers of kidney damage, including elevated blood urea nitrogen (BUN), serum creatinine, and histological abnormalities, reactive oxygen species (ROS), inflammation, apoptosis, and fibrosis. Treatment with nesfatin-1 in adenine induced mice significantly reversed these changes. Nesfatin-1 also lowered calcium levels and the expression of inflammatory markers, including IL-1ß, IL-6, TNF-α, and Nf-kB. Furthermore, nesfatin-1 reduced the expression of apoptotic markers (Caspase-3, Caspase-1, Bax/Bcl2 ratio) and restored the balance of Bcl2 and MMP. Lastly, nesfatin-1 attenuated fibrotic markers (Tgf-ß, Smad2/3,4, type IV collagen, α-SMA) in both adenine-induced CKD mice and NRK-52E cells. In conclusion, our results suggest that nesfatin-1 may enhance kidney function in adenine-induced CKD mice and NRK-52E cells. The renoprotective effects of nesfatin-1 are likely associated with its antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic properties.


Subject(s)
Adenine , Renal Insufficiency, Chronic , Animals , Male , Mice , Rats , Adenine/pharmacology , Apoptosis/drug effects , Cell Line , Mice, Inbred C57BL , Nucleobindins , Oxidative Stress/drug effects , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology
5.
Commun Biol ; 7(1): 623, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802487

ABSTRACT

Nesfatin-1 (NESF-1) has been shown to modulate lipid metabolism. We have identified a nesfatin-1-like-peptide (NLP) processed from a related precursor nucleobindin 1 (NUCB1). Here we determined if NLP, like NESF-1, regulates lipid accumulation in vitro, and tested if the disruption of nucb1 gene affects hepatic lipid metabolism genes in mice. Hepatocytes (HepG2/C3A cells) express NLP and NESF-1 and both peptides significantly reduced lipogenic enzyme mRNAs and enhanced beta-oxidation enzyme mRNAs. Lipid contents in oleic acid induced HepG2/C3A cells were attenuated by NESF-1 and NLP. The inhibitory effect on cellular lipid content was blocked by compound C, an inhibitor of AMPK. The disruption of nucb1 gene affected lipid metabolism-related enzyme mRNAs, endogenous nucb2 mRNA and AMPK phosphorylation. The lipid-lowering effects identified here highlights the potential of nucleobindins and peptides processed from them to address lipid disorders, and its possible benefits in metabolic disease management.


Subject(s)
Calcium-Binding Proteins , DNA-Binding Proteins , Hepatocytes , Lipid Metabolism , Nerve Tissue Proteins , Nucleobindins , Nucleobindins/metabolism , Nucleobindins/genetics , Animals , Humans , Lipid Metabolism/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Mice , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Hep G2 Cells , Male , Mice, Inbred C57BL
6.
Sci Rep ; 14(1): 11261, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760405

ABSTRACT

Here, we focused on the role of Nucleobindin 2 (NUCB2), a multifunctional protein, in gastric carcinoma (GC) progression. NUCB2 expression was investigated in 150 GC cases (20 non-invasive (pT1) and 130 invasive (pT2/pT3/pT4) tumors) by immunohistochemistry (IHC), and in situ hybridization for detection of the mRNA in 21 cases. Using GC cell lines, we determined whether NUCB2 expression was associated with specific cellular phenotypes. In GC clinical samples, NUCB2 was transcriptionally upregulated when compared to normal tissues. High NUCB2 expression was associated with clinicopathological factors including deep tumor invasion, lymphovascular invasion, lymph node metastasis, and advanced clinical stages, and was a significant independent predictor of unfavorable progression-free survival in 150 non-invasive and invasive GC patients. Similar findings were also evident in 72 invasive GC cases in which patients received post-operative chemotherapy, but not in 58 invasive tumors from patients who did not receive the chemotherapy. In cell lines, NUCB2 knockout inhibited proliferation, susceptibility to apoptosis, and migration capability by inducting cellular senescence; this was consistent with higher proliferation and apoptotic indices in the NUCB2 IHC-high compared to NUCB2 IHC-low GC cases. NUCB2-dependent inhibition of senescence in GC engenders aggressive tumor behavior by modulating proliferation, apoptosis, and migration.


Subject(s)
Cellular Senescence , Nucleobindins , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Nucleobindins/metabolism , Female , Male , Cell Line, Tumor , Middle Aged , Aged , Cell Proliferation , Gene Expression Regulation, Neoplastic , Apoptosis , Cell Movement , Prognosis
7.
Int J Food Sci Nutr ; 75(4): 445-448, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38659170

ABSTRACT

Nesfatin concentrations are positively correlated with beta cell function. However, it is unclear whether diet composition mediates this relationship. We recruited 27 overweight individuals who practiced Orthodox fasting (OF), a subset of the Mediterranean diet (MedDiet), for 7 weeks. Fourteen overweight people who practiced 16:8 time-restricted eating served as control group. Anthropometric parameters, biochemical data and adipokine levels were evaluated at baseline and after the end of the diet period (7 weeks from baseline). Subsequently, participants were asked to return to their usual eating plans, and an additional evaluation was performed 5 weeks after the end of the research diets (12 weeks from baseline). We observed a significant and negative correlation between HOMA-B and nesfatin values at 12 weeks, only in the OF group (r = -0.455, p = 0.01). In conclusion, returning to normal eating habits after 7 weeks of strict adherence to MedDiet affects the homeostatic balance between insulin secretion and nesfatin.


Subject(s)
Diet, Mediterranean , Fasting , Insulin-Secreting Cells , Nucleobindins , Overweight , Humans , Male , Overweight/metabolism , Female , Adult , Insulin-Secreting Cells/metabolism , Middle Aged , Insulin/blood , Insulin Resistance , Feeding Behavior , Body Mass Index , Nerve Tissue Proteins , Calcium-Binding Proteins/metabolism
8.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339201

ABSTRACT

Previous studies have shown that nuclear binding protein 2 (NUCB2) is expressed in the human placenta and increases with an increase in the syncytialization of trophoblast cells. This study aimed to investigate the role of NUCB2 in the differentiation and fusion of trophectoderm cells. In this study, the expression levels of NUCB2 and E-cadherin in the placentas of rats at different gestation stages were investigated. The results showed that there was an opposite trend between the expression of placental NUCB2 and E-cadherin in rat placentas in different trimesters. When primary human trophoblast (PHT) and BeWo cells were treated with high concentrations of Nesfatin-1, the trophoblast cell syncytialization was significantly inhibited. The effects of NUCB2 knockdown in BeWo cells and Forskolin-induced syncytialization were investigated. These cells showed a significantly decreased cell fusion rate. The mechanism underlying NUCB2-regulated trophoblast cell syncytialization was explored using RNA-Seq and the results indicated that the epidermal growth factor receptor (EGFR)-phospholipase C gamma 1 (PLCG1)-calmodulin-dependent protein kinase IV (CAMK4) pathway might be involved. The results suggested that the placental expression of NUCB2 plays an important role in the fusion of trophoblasts during differentiation via the EGFR-PLCG1-CAMK4 pathway.


Subject(s)
Nucleobindins , Placenta , Placentation , Trophoblasts , Animals , Female , Pregnancy , Rats , Cadherins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 4/metabolism , Carrier Proteins/metabolism , Cell Fusion , ErbB Receptors/metabolism , Nuclear Proteins/metabolism , Phospholipase C gamma/metabolism , Placenta/metabolism , Trophoblasts/metabolism , Nucleobindins/metabolism
9.
Bioelectromagnetics ; 45(5): 209-217, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38369591

ABSTRACT

In recent years exposure of living beings to radiofrequency radiation (RFR) emitted from wireless equipment has increased. In this study, we investigated the effects of 3.5-GHz RFR on hormones that regulate energy metabolism in the body. Twenty-eight rats were divided into four groups: healthy sham (n = 7), healthy RFR (n = 7), diabetic sham (n = 7), and diabetic RFR (n = 7). Over a month, each group spent 2 h/day in a Plexiglas carousel. The rats in the experimental group were exposed to RFR, but the sham groups were not. At the end of the experiment, blood and adipose tissues were collected from euthanized rats. Total antioxidant, total oxidant, hydrogen peroxide, ghrelin, nesfatin-1, and irisin were determined. Insulin expression in pancreatic tissues was examined by immunohistochemical analysis. Whole body specific absorption rate was 37 mW/kg. For the parameters analyzed in blood and fat, the estimated effect size varied within the ranges of 0.215-0.929 and 0.503-0.839, respectively. The blood and adipose nesfatin-1 (p = 0.002), blood and pancreatic insulin are decreased, (p = 0.001), gherelin (p = 0.020), irisin (p = 0.020), and blood glucose (p = 0.040) are increased in healthy and diabetic rats exposed to RFR. While nesfatin-1 are negatively correlated with oxidative stress, hyperglycemia and insulin, ghrelin and irisin are positively correlated with oxidative stress and hyperglycemia. Thus, RFR may have deleterious effects on energy metabolism, particularly in the presence of diabetes.


Subject(s)
Adipose Tissue , Fibronectins , Ghrelin , Insulin , Nucleobindins , Radio Waves , Animals , Radio Waves/adverse effects , Ghrelin/blood , Ghrelin/metabolism , Nucleobindins/metabolism , Male , Fibronectins/metabolism , Fibronectins/blood , Rats , Adipose Tissue/metabolism , Adipose Tissue/radiation effects , Insulin/metabolism , Insulin/blood , Antioxidants/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/blood , Energy Metabolism/radiation effects , Calcium-Binding Proteins/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress/radiation effects , Rats, Wistar
10.
J Chem Neuroanat ; 136: 102400, 2024 03.
Article in English | MEDLINE | ID: mdl-38342331

ABSTRACT

Neuropeptides are involved in numerous brain activities being responsible for a wide spectrum of higher mental functions. The purpose of this concise, structural and qualitative investigation was to map the possible immunoreactivity of the novel regulatory peptides: spexin (SPX) and nesfatin-1 within the human claustrum. SPX is a newly identified peptide, a natural ligand for the galanin receptors (GALR) 2/3, with no molecular structure similarities to currently known regulatory factors. SPX seems to have multiple physiological functions, with an involvement in reproduction and food-intake regulation recently revealed in animal studies. Nesfatin-1, a second pleiotropic neuropeptide, which is a derivative of the nucleobindin-2 (NUCB-2) protein, is characterized by a wide distribution in the brain. Nesfatin-1 is a substance with a strong anorexigenic effect, playing an important role in the neuronal circuits of the hypothalamus that regulate food intake and energy homeostasis. On the other hand, nesfatin-1 may be involved in several important brain functions such as sleep, reproductive behaviour, cognitive processes, stress responses and anxiety. For the first time we detected and described a population of nesfatin-1 and SPX expressing neurons in the human claustrum using immunohistochemical and fluorescent methods. The study presents the novel identification of SPX and nesfatin-1 immunopositive neurons in the human claustrum and their assemblies show similar patterns of distribution in the whole structure.


Subject(s)
Claustrum , Neuropeptides , Animals , Humans , Male , Nucleobindins/metabolism , Claustrum/metabolism , Nerve Tissue Proteins/metabolism , Neuropeptides/metabolism , Neurons/metabolism , Calcium-Binding Proteins/metabolism
11.
Neurochem Res ; 49(1): 38-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37740893

ABSTRACT

Nesfatin-1 is a novel adipocytokine consisting of 82 amino acids with anorexic and anti-hyperglycemic properties. Further studies of nesfatin-1 have shown it to be closely associated with neurological disorders. Changes in nesfatin-1 levels are closely linked to the onset, progression and severity of neurological disorders. Nesfatin-1 may affect the development of neurological disorders and can indicate disease evolution and prognosis, thus informing the choice of treatment options. In addition, regulation of the expression or level of nesfatin-1 can improve the level of neuroinflammation, apoptosis, oxidative damage and other indicators. It is demonstrated that nesfatin-1 is involved in neuroprotection and may be a therapeutic target for neurological disorders. In this paper, we will also discuss the role of nesfatin-1 as a biomarker in neurological diseases and its potential mechanism of action in neurological diseases, providing new ideas for the diagnosis and treatment of neurological diseases.


Subject(s)
Calcium-Binding Proteins , Nervous System Diseases , Humans , Nucleobindins , Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , Biomarkers/metabolism , Nervous System Diseases/diagnosis , Nervous System Diseases/drug therapy
12.
Neuropeptides ; 103: 102401, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38157780

ABSTRACT

Nesfatin-1 is an anorexigenic peptide suppressing food intake and is synthesized and secreted by neurons located in the hypothalamus. Our study was aimed to demonstrate the effect of excitatory and inhibitory neurotransmitters on NUCB2/nesfatin-1 neurons. In this context, dual peroxidase immunohistochemistry staining was performed using NUCB2/nesfatin-1 primary antibody with each of the primary antibodies of vesicular transporter proteins applied as markers for neurons using glutamate, acetylcholine, and GABA as neurotransmitters. In double labeling applied on floating sections, the NUCB2/nesfatin-1 reaction was determined in brown color with diaminobenzidine, while vesicular carrier proteins were marked in black. Slides were analyzed to determine the ratio of nesfatin-1 neurons in the three hypothalamic nucleus in contact with a relevant vesicular carrier protein. The ratios of NUCB2/nesfatin-1 neurons with the innervation were compared among neurotransmitters. In addition, possible gender differences between males and females were examined. The difference in the number of VGLUT2-contacting NUCB2/nesfatin-1 neurons was significantly higher in males when compared to females. When both genders were compared in different nuclei, it was seen that there was no statistical significance in terms of the percentage of NUCB2/nesfatin-1 neuron apposition with VGLUT3. The statistical evaluation showed that number of NUCB2/nesfatin-1 neurons receiving GABAergic innervation is higher in males when compared to females (*p ≤ 0.05; p = 0.045). When the axonal contact of vesicular neurotransmitter transporter proteins was compared between the neurotransmitters, it was determined that the most prominent innervation is GABAergic. In the supraoptic region, no contacts of VAChT-containing axons were found on NUCB2/nesfatin-1 neurons in both female and male subjects. In conclusion, it is understood that both excitatory and inhibitory neurons can innervate the NUCB2/nesfatin-1 neurons and the glutamatergic system is effective in the excitatory innervation while the GABAergic system plays a role in the inhibitory mechanism.


Subject(s)
Calcium-Binding Proteins , DNA-Binding Proteins , Female , Male , Humans , Nucleobindins , DNA-Binding Proteins/metabolism , Calcium-Binding Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Axons/metabolism , Neurotransmitter Agents/metabolism
13.
Georgian Med News ; (343): 107-110, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38096526

ABSTRACT

Nesfatin-1 reduces body weight and the intake of food, it is also tangled in setting insulin release. This study aims at comparing the levels of serum of Nesfatin-1 with the insulin resistance in obese adolescent of iraqi population with other nations around the world predicating development of diabetes mellitus later. 90 participants were needed for this cross-sectional study, including 30 control participants (17 men and 13 women) and 60 obese adolescents (36 men and 24 women). Serum glucose, insulin, and glycated hemoglobin in starved participants were estimated, using an ELISA kit, the serum level of Nesfatin-1 was measured, and insulin resistance was calculated. Obese adolescents aged 12 to 18 and the control group, who were between 13 and 18 years old. The level of nesfatin-1 was significantly lower in the group of obese adolescents than in the controls. The ranges of Nesfatin-1 were (1.22±0.39 n/ml vs 2.54±0.64 n/m P = 0.001). In the control and obese groups respectively. In comparison to the results of the non-obese adolescent group, the obese group has significantly lower insulin sensitivity. Serum Nesfatin-1 is negatively associated with insulin sensitivity, lipid profile, and body mass index. In general, our study revealed that there is no effect of food culture and eating intake on the role of Nesfatin -1 inducing obesity.


Subject(s)
Insulin Resistance , Pediatric Obesity , Male , Humans , Adolescent , Female , Nucleobindins , Cross-Sectional Studies , Iraq , Calcium-Binding Proteins , DNA-Binding Proteins , Insulin
14.
Cell Biochem Funct ; 41(8): 1016-1030, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37909689

ABSTRACT

The aim of this rapid review is to examine the research evidence that presents the effects of physical activity and exercise on Nucleobindin-2 (NUCB2) gene expression and Nesfatin-1 concentration. Five databases (PubMed, Science Direct, Springer, Wiley, and Google Scholar) were searched for eligible studies from the earliest available date to August 2023. In human studies, Nesfatin-1 concentration either remains unchanged or increases after exercise training. It appears that higher exercise intensity and longer duration of training accentuate the increase of blood Nesfatin-1 concentration. The few human studies that have examined the acute response of exercise on Nesfatin-1 concentration from blood draws show conflicting results. There is a severe lack of biopsy studies in humans which warrants attention. All published animal studies have used the mouse model. The majority show that regular exercise training increases tissue NUCB2/Nesfatin-1. In some animal studies, where the effects of exercise on tissue Nesfatin-1 concentration has been seen as significant, there has been no significant effect of exercise on plasma Nesfatin-1 concentration. All animal studies evaluated the effect of endurance training except one which used resistance training. No animal studies have investigated the effects of acute exercise, which warrants investigation. In conclusion, human and animal studies have shown that physical training can increase NUCB2/Nesfatin-1, but research evidence examining the effect of acute exercise is in its infancy. In addition, future comparative studies are needed to compare the effects of different training protocols on NUCB2/Nesfatin-1 in humans and animals.


Subject(s)
Calcium-Binding Proteins , DNA-Binding Proteins , Exercise , Animals , Humans , Mice , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression , Nucleobindins/genetics
15.
Cells ; 12(19)2023 10 09.
Article in English | MEDLINE | ID: mdl-37830634

ABSTRACT

Glioblastoma (GBM) stands as the most prevalent primary malignant brain tumor, typically resulting in a median survival period of approximately thirteen to fifteen months after undergoing surgery, chemotherapy, and radiotherapy. Nucleobindin-2 (NUCB2) is a protein involved in appetite regulation and energy homeostasis. In this study, we assessed the impact of NUCB2 expression on tumor progression and prognosis of GBM. We further evaluated the relationship between NUCB2 expression and the sensitivity to chemotherapy and radiotherapy in GBM cells. Additionally, we compared the survival of mice intracranially implanted with GBM cells. High NUCB2 expression was associated with poor prognosis in patients with GBM. Knockdown of NUCB2 reduced cell viability, migration ability, and invasion ability of GBM cells. Overexpression of NUCB2 resulted in reduced apoptosis following temozolomide treatment and increased levels of DNA damage repair proteins after radiotherapy. Furthermore, mice intracranially implanted with NUCB2 knockdown GBM cells exhibited longer survival compared to the control group. NUCB2 may serve as a prognostic biomarker for poor outcomes in patients with GBM. Additionally, NUCB2 not only contributes to tumor progression but also influences the sensitivity of GBM cells to chemotherapy and radiotherapy. Therefore, targeting NUCB2 protein expression may represent a novel therapeutic approach for the treatment of GBM.


Subject(s)
Glioblastoma , Humans , Animals , Mice , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Nucleobindins/therapeutic use , Cell Line, Tumor , Temozolomide/pharmacology , Temozolomide/therapeutic use
16.
Brain Res Bull ; 204: 110788, 2023 11.
Article in English | MEDLINE | ID: mdl-37844783

ABSTRACT

Xenin is a 25-amino acid peptide identified in human gastric mucosa, which is widely expressed in peripheral and central tissues. It is known that the central or peripheral administration of xenin decreases food intake in rodents. Nesfatin-1/NUCB2 (nesfatin-1) has been identified as an anorexic neuropeptide, it is often found co-localized with many peptides in the central nervous system. After the intracerebroventricular administration of xenin on nesfain-1-like immunoreactivity (LI) neurons, we examined its effects on food intake and water intake in rats. As a result, Fos-LI neurons were observed in the organum vasculosum of the laminae terminalis (OVLT), the median preoptic nucleus (MnPO), the subfornical organ (SFO), the supraoptic nucleus (SON), the paraventricular nucleus (PVN), the arcuate nucleus (Arc), the lateral hypothalamic area (LHA), the central amygdaloid nucleus (CAN), the dorsal raphe nucleus (DR), the locus coeruleus (LC), the area postrema (AP) and the nucleus of the solitary tract (NTS). After the administration, the number of Fos-LI neurons was significantly increased in the LC and the OVLT, the MnPO, the SFO, the SON, the PVN, the Arc, the LHA, the CAN, the DR, the AP and the NTS, compared with the control group. After the administration of xenin, we conducted double immunohistochemistry for Fos and nesfatin-1, and found that the number of nesfatin-1-LI neurons expressing Fos were significantly increased in the SON, the PVN, the Arc, the LHA, the CAN, the DR, the AP and the NTS, compared with the control group. The pretreatment of nesfatin-1 antisense significantly attenuated this xenin-induced feeding suppression, while that of nesfatin-1 missense showed no improvement. These results indicate that central administered xenin may have anorexia effects associated with activated central nesfatin-1 neurons.


Subject(s)
Calcium-Binding Proteins , DNA-Binding Proteins , Humans , Rats , Animals , DNA-Binding Proteins/metabolism , Nucleobindins/metabolism , Nucleobindins/pharmacology , Calcium-Binding Proteins/metabolism , Neurons/metabolism
17.
PeerJ ; 11: e15774, 2023.
Article in English | MEDLINE | ID: mdl-37547718

ABSTRACT

Objective: To investigate the expression and correlation of COX-2 and NUCB1 in colorectal adenocarcinoma and adjacent tissues. Methods: The expression of COX-2 and NUCB1 and their effects on prognosis were predicted using bioinformatics. Immunohistochemistry was used to identify the expression of two molecules in 56 cases of colorectal adenocarcinoma and the surrounding tissues. The expression of two molecules and their association with clinicopathological variables were examined using the chi-square test. The association between COX-2 and NUCB1 was investigated using the Spearman correlation test. Results: The STRING database revealed that COX-2 and NUCB1 were strongly linked. According to the UALCAN and HPA database, COX-2 was upregulated while NUCB1 was downregulated in colorectal adenocarcinoma, both at the protein and gene levels. The OS times for COX-2 and NUCB1 high expression, however, exhibited the same patterns. The rate of positive COX-2 immunohistochemical staining in cancer tissues was 69.64% (39/56), which was significantly higher than the rate in healthy tissues 28.57% (16/56). NUCB1 was expressed positively in cancer tissues at a rate of 64.29% (36/56) compared to just 19.64% (11/56) in neighboring tissues. The positive expression levels of COX-2 and NUCB1 were both closely related to clinical stage, differentiation degree, and lymphatic metastases (P < 0.05). In colorectal cancer, COX-2 and NUCB1 expression were significantly correlated (rs = 0.6312, P < 0.001). Conclusion: Both COX-2 and NUCB1 are overexpressed and significantly associated in colorectal adenocarcinoma.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Cyclooxygenase 2 , Nucleobindins , Humans , Adenocarcinoma/genetics , Colorectal Neoplasms/genetics , Cyclooxygenase 2/genetics , Immunohistochemistry , Prognosis , Nucleobindins/genetics
18.
FEBS Lett ; 597(18): 2288-2300, 2023 09.
Article in English | MEDLINE | ID: mdl-37539786

ABSTRACT

Calnuc (nucleobindin-1, nucb1) is a Ca2+ -binding protein involved in the etiology of many human diseases. To understand the functions of calnuc, we have identified a nesfatin-1-like peptide (NLP) in its N terminus that is proteolyzed by a convertase enzyme in the secretory granules of cells. Mutational studies confirm the presence of a proteolytic cleavage site for proprotein convertase subtilisin/kexin type 1 (PCSK1). We demonstrate that NLP regulates Gαq-mediated intracellular Ca2+ dynamics, likely via a G-protein-coupled receptor. NLP treatment to carcinoma cell lines (SCC131 cells) promotes the expression of regulators of cell cycle, proliferation, and clonogenicity by the AKT/mTOR pathway. NLP is causative of augmented migration and epithelial-mesenchymal transition (EMT), illustrating its metastatic propensity and establishing its tumor promotion ability.


Subject(s)
DNA-Binding Proteins , Neoplasms , Humans , Nucleobindins , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Peptides/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Cell Proliferation , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Cell Movement
19.
Cell Commun Signal ; 21(1): 165, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386441

ABSTRACT

BACKGROUND: Nucleobindin-2 (Nucb2) is a multidomain protein that, due to its structure, participates in many physiological processes. It was originally identified in several regions of the hypothalamus. However, more recent studies have redefined and extended the function of Nucb2 far beyond its initially observed role as a negative modulator of food intake. RESULTS: Previously, we described Nucb2 as structurally divided into two parts: the Zn2+-sensitive N-terminal half and the Ca2+-sensitive C-terminal half. Here, we investigated the structural and biochemical properties of its C-terminal half, which, after posttranslational processing, yields the formation of a fully uncharacterized peptide product known as nesfatin-3. Nesfatin-3 likely contains all the key respective structural regions of Nucb2. Hence, we expected that its molecular properties and affinity toward divalent metal ions might resemble those of Nucb2. Surprisingly, the obtained results showed that the molecular properties of nesftain-3 were completely different from those of its precursor protein. Moreover, we designed our work as a comparative analysis of two nesfatin-3 homologs. We noticed that in their apo forms, both proteins had similar shapes and existed in solution as extended molecules. They both interacted with divalent metal ions, and this interaction manifested itself in a compaction of the protein molecules. Despite their similarities, the differences between the homologous nesfatin-3s were even more informative. Each of them favored interaction with a different metal cation and displayed unique binding affinities compared either to each other or to Nucb2. CONCLUSIONS: The observed alterations suggested different from Nucb2 physiological roles of nesfatin-3 and different impacts on the functioning of the tissues and on metabolism and its control. Our results clearly demonstrated that nesfatin-3 possessed divalent metal ion binding properties, which remained hidden in the nucleobindin-2 precursor protein.


Subject(s)
Nucleobindins
20.
J Transl Med ; 21(1): 362, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277807

ABSTRACT

BACKGROUND: Reprogramming lipid metabolism for tumor metastasis is essential in breast cancer, and NUCB2/Nesfatin-1 plays a crucial role in regulating energy metabolism. Its high expression is associated with poor prognosis in breast cancer. Here, we studied whether NUCB2/Nesfatin-1 promotes breast cancer metastasis through reprogramming cholesterol metabolism. METHODS: ELISA was employed to measure the concentration of Nesfatin-1 in the serum of breast cancer patients and the control group. Database analysis suggested that NUCB2/Nesfatin-1 might be acetylated in breast cancer, which was confirmed by treating the breast cancer cells with acetyltransferase inhibitors. Transwell migration and Matrigel invasion assays were conducted, and nude mouse lung metastasis models were established to examine the effect of NUCB2/Nesfatin-1 on breast cancer metastasis in vitro and in vivo. The Affymetrix gene expression chip results were analyzed using IPA software to identify the critical pathway induced by NUCB2/Nesfatin-1. We evaluated the effect of NUCB2/Nesfatin-1 on cholesterol biosynthesis through the mTORC1-SREBP2-HMGCR axis by utilizing mTORC1 inhibitor and rescue experiments. RESULTS: NUCB2/Nesfatin-1 was found to be overexpressed in the breast cancer patients, and its overexpression was positively correlated with poor prognosis. NUCB2 was potentially acetylated, leading to high expression in breast cancer. NUCB2/Nesfatin-1 promoted metastasis in vitro and in vivo, while Nesfatin-1 rescued impaired cell metastasis induced by NUCB2 depletion. Mechanistically, NUCB2/Nesfatin-1 upregulated cholesterol synthesis via the mTORC1 signal pathway, contributing to breast cancer migration and metastasis. CONCLUSIONS: Our findings demonstrate that the NUCB2/Nesfatin-1/mTORC1/SREBP2 signal pathway is critical in regulating cholesterol synthesis, essential for breast cancer metastasis. Thus, NUCB2/Nesfatin-1 might be utilized as a diagnostic tool and also used in cancer therapy for breast cancer in the future.


Subject(s)
Breast Neoplasms , Calcium-Binding Proteins , Animals , Mice , Calcium-Binding Proteins/metabolism , Cholesterol , DNA-Binding Proteins/metabolism , Nucleobindins/genetics , Nucleobindins/metabolism , Up-Regulation , Humans , Female , Breast Neoplasms/metabolism , Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL