Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.439
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 192-198, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836662

Intervertebral disc degeneration (IDD) is characterized by the decreased function and number of nucleus pulposus cells (NPCs) caused by excessive intervertebral disc (IVD) pressure. This research aims to provide novel insights into IDD prevention and treatment by clarifying the effect of andrographolide (ANDR) on IDD cell autophagy and oxidative stress under mechanical stress. Human primary NPCs were extracted from the nucleus pulposus tissue of non-IDD trauma patients. An IDD cell model was established by posing mechanical traction on NPCs. Through the construction of an IDD rat model, the influence of ANDR on IDD pathological changes was explored in vivo. The proliferation and autophagy of NPCs were decreased while the apoptosis rate and oxidative stress reaction were increased by mechanical traction. ANDR intervention obviously alleviated this situation. MiR-9 showed upregulated expression in IDD cell model, while FoxO3 and PINK1/Parkin were downregulated. Decreased proliferation and autophagy as well as enhanced apoptosis and oxidative stress response of NPCs were observed following miR-9 mimics and H89 intervention, while the opposite trend was observed after FoxO3 overexpression. FoxO3 is a direct target downstream miR-9. The in vivo experiments revealed that after ANDR intervention, the number of apoptotic cells in rat IVD tissue decreased and the autophagy increased. In conclusion, ANDR improves NPC proliferation, and autophagy, inhibits apoptosis and oxidative stress, and alleviates the pathological changes of IDD via the miR-9/FoxO3/PINK1/Parkin axis, which may be a new and effective treatment for IDD in the future.


Autophagy , Diterpenes , Forkhead Box Protein O3 , Intervertebral Disc Degeneration , MicroRNAs , Nucleus Pulposus , Oxidative Stress , Protein Kinases , Rats, Sprague-Dawley , Stress, Mechanical , Ubiquitin-Protein Ligases , MicroRNAs/metabolism , MicroRNAs/genetics , Autophagy/drug effects , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Oxidative Stress/drug effects , Animals , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Humans , Diterpenes/pharmacology , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Rats , Male , Apoptosis/drug effects , Cell Proliferation/drug effects , Signal Transduction/drug effects , Female , Adult , Disease Models, Animal
2.
Int J Biol Sci ; 20(7): 2370-2387, 2024.
Article En | MEDLINE | ID: mdl-38725841

The pathogenesis of Intervertebral Disc Degeneration (IDD) is complex and multifactorial, with cellular senescence of nucleus pulposus (NP) cells and inflammation playing major roles in the progression of IDD. The stimulator of interferon genes (STING) axis is a key mediator of inflammation during infection, cellular stress, and tissue damage. Here, we present a progressive increase in STING in senescent NP cells with the degradation disorder. The STING degradation function in normal NP cells can prevent IDD. However, the dysfunction of STING degradation through autophagy causes the accumulation and high expression of STING in senescent NP cells as well as inflammation continuous activation together significantly promotes IDD. In senescent NP cells and intervertebral discs (IVDs), we found that STING autophagy degradation was significantly lower than that of normal NP cells and IVDs when STING was activated by 2'3'-cGAMP. Also, the above phenomenon was found in STINGgt/gt, cGAS-/- mice with models of age-induced, lumbar instability-induced IDD as well as found in the rat caudal IVD puncture models. Taken together, we suggested that the promotion of STING autophagy degradation in senescent NP Cells demonstrated a potential therapeutic modality for the treatment of IDD.


Autophagy , Cellular Senescence , Intervertebral Disc Degeneration , Membrane Proteins , Nucleus Pulposus , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Nucleus Pulposus/metabolism , Animals , Autophagy/physiology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Cellular Senescence/physiology , Rats , Male , Rats, Sprague-Dawley , Humans , Mice, Inbred C57BL
3.
Commun Biol ; 7(1): 539, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714886

Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder affecting millions of adults worldwide, but a poor understanding of its pathogenesis has limited the effectiveness of therapy. In the current study, we integrated untargeted LC/MS metabolomics and magnetic resonance spectroscopy data to investigate metabolic profile alterations during IDD. Combined with validation via a large-cohort analysis, we found excessive lipid droplet accumulation in the nucleus pulposus cells of advanced-stage IDD samples. We also found abnormal palmitic acid (PA) accumulation in IDD nucleus pulposus cells, and PA exposure resulted in lipid droplet accumulation and cell senescence in an endoplasmic reticulum stress-dependent manner. Complementary transcriptome and proteome profiles enabled us to identify solute carrier transporter (SLC) 43A3 involvement in the regulation of the intracellular PA level. SLC43A3 was expressed at low levels and negatively correlated with intracellular lipid content in IDD nucleus pulposus cells. Overexpression of SLC43A3 significantly alleviated PA-induced endoplasmic reticulum stress, lipid droplet accumulation and cell senescence by inhibiting PA uptake. This work provides novel integration analysis-based insight into the metabolic profile alterations in IDD and further reveals new therapeutic targets for IDD treatment.


Cellular Senescence , Endoplasmic Reticulum Stress , Intervertebral Disc Degeneration , Lipid Droplets , Nucleus Pulposus , Palmitic Acid , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/cytology , Endoplasmic Reticulum Stress/drug effects , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Cellular Senescence/drug effects , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Humans , Lipid Droplets/metabolism , Male , Female , Adult , Middle Aged
4.
J Orthop Surg Res ; 19(1): 308, 2024 May 22.
Article En | MEDLINE | ID: mdl-38773639

BACKGROUND: Intervertebral disc degeneration (IDD) is an increasingly important cause of low back pain (LBP) that results in substantial health and economic burdens. Inflammatory pathway activation and the production of reactive oxygen species (ROS) play vital roles in the progression of IDD. Several studies have suggested that phillyrin has a protective role and inhibits inflammation and the production of ROS. However, the role of phillyrin in IDD has not been confirmed. PURPOSE: The purpose of this study was to investigate the role of phillyrin in IDD and its mechanisms. STUDY DESIGN: To establish IDD models in vivo, ex-vivo, and in vitro to verify the function of phillyrin in IDD. METHOD: The effects of phillyrin on extracellular matrix (ECM) degeneration, inflammation, and oxidation in nucleus pulposus (NP) cells were assessed using immunoblotting and immunofluorescence analysis. Additionally, the impact of phillyrin administration on acupuncture-mediated intervertebral disc degeneration (IDD) in rats was evaluated using various techniques such as MRI, HE staining, S-O staining, and immunohistochemistry (IHC). RESULT: Pretreatment with phillyrin significantly inhibited the IL-1ß-mediated reduction in the degeneration of ECM and apoptosis by alleviating activation of the NF-κB inflammatory pathway and the generation of ROS. In addition, in vivo and ex-vivo experiments verified the protective effect of phillyrin against IDD. CONCLUSION: Phillyrin can attenuate the progression of IDD by reducing ROS production and activating inflammatory pathways.


Disease Progression , Intervertebral Disc Degeneration , NF-kappa B , Rats, Sprague-Dawley , Reactive Oxygen Species , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Animals , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Rats , Male , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Signal Transduction/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Disease Models, Animal , Cells, Cultured , Humans , Apoptosis/drug effects
5.
Am J Physiol Cell Physiol ; 326(5): C1384-C1397, 2024 May 01.
Article En | MEDLINE | ID: mdl-38690917

Metabolic dysfunction of the extracellular matrix (ECM) is one of the primary causes of intervertebral disc degeneration (IVDD). Previous studies have demonstrated that the transcription factor Brachyury (Bry) has the potential to promote the synthesis of collagen II and aggrecan, while the specific mechanism is still unknown. In this study, we used a lipopolysaccharide (LPS)-induced model of nucleus pulposus cell (NPC) degeneration and a rat acupuncture IVDD model to elucidate the precise mechanism through which Bry affects collagen II and aggrecan synthesis in vitro and in vivo. First, we confirmed Bry expression decreased in degenerated human nucleus pulposus (NP) cells (NPCs). Knockdown of Bry exacerbated the decrease in collagen II and aggrecan expression in the lipopolysaccharide (LPS)-induced NPCs degeneration in vitro model. Bioinformatic analysis indicated that Smad3 may participate in the regulatory pathway of ECM synthesis regulated by Bry. Chromatin immunoprecipitation followed by quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays demonstrated that Bry enhances the transcription of Smad3 by interacting with a specific motif on the promoter region. In addition, Western blot and reverse transcription-qPCR assays demonstrated that Smad3 positively regulates the expression of aggrecan and collagen II in NPCs. The following rescue experiments revealed that Bry-mediated regulation of ECM synthesis is partially dependent on Smad3 phosphorylation. Finally, the findings from the in vivo rat acupuncture-induced IVDD model were consistent with those obtained from in vitro assays. In conclusion, this study reveals that Bry positively regulates the synthesis of collagen II and aggrecan in NP through transcriptional activation of Smad3.NEW & NOTEWORTHY Mechanically, in the nucleus, Bry enhances the transcription of Smad3, leading to increased expression of Smad3 protein levels; in the cytoplasm, elevated substrate levels further lead to an increase in the phosphorylation of Smad3, thereby regulating collagen II and aggrecan expression. Further in vivo experiments provide additional evidence that Bry can alleviate IVDD through this mechanism.


Aggrecans , Extracellular Matrix , Fetal Proteins , Intervertebral Disc Degeneration , Nucleus Pulposus , Rats, Sprague-Dawley , Smad3 Protein , T-Box Domain Proteins , Smad3 Protein/metabolism , Smad3 Protein/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Animals , Extracellular Matrix/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Humans , Rats , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Aggrecans/metabolism , Aggrecans/genetics , Male , Fetal Proteins/genetics , Fetal Proteins/metabolism , Collagen Type II/metabolism , Collagen Type II/genetics , Gene Expression Regulation , Female , Adult , Middle Aged , Cells, Cultured , Transcription, Genetic
6.
J Nanobiotechnology ; 22(1): 292, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802882

BACKGROUND: The use of gene therapy to deliver microRNAs (miRNAs) has gradually translated to preclinical application for the treatment of intervertebral disc degeneration (IDD). However, the effects of miRNAs are hindered by the short half-life time and the poor cellular uptake, owing to the lack of efficient delivery systems. Here, we investigated nucleus pulposus cell (NPC) specific aptamer-decorated polymeric nanoparticles that can load miR-150-5p for IDD treatment. METHODS: The role of miR-150-5p during disc development and degeneration was examined by miR-150-5p knockout (KO) mice. Histological analysis was undertaken in disc specimens. The functional mechanism of miR-150-5p in IDD development was investigated by qRT-PCR assay, Western blot, coimmunoprecipitation and immunofluorescence. NPC specific aptamer-decorated nanoparticles was designed, and its penetration, stability and safety were evaluated. IDD progression was assessed by radiological analysis including X-ray and MRI, after the annulus fibrosus needle puncture surgery with miR-150-5p manipulation by intradiscal injection of nanoparticles. The investigations into the interaction between aptamer and receptor were conducted using mass spectrometry, molecular docking and molecular dynamics simulations. RESULTS: We investigated NPC-specific aptamer-decorated polymeric nanoparticles that can bind to miR-150-5p for IDD treatment. Furthermore, we detected that nanoparticle-loaded miR-150-5p inhibitors alleviated NPC senescence in vitro, and the effects of the nanoparticles were sustained for more than 3 months in vivo. The microenvironment of NPCs improves the endo/lysosomal escape of miRNAs, greatly inhibiting the secretion of senescence-associated factors and the subsequent degeneration of NPCs. Importantly, nanoparticles delivering miR-150-5p inhibitors attenuated needle puncture-induced IDD in mouse models by targeting FBXW11 and inhibiting TAK1 ubiquitination, resulting in the downregulation of NF-kB signaling pathway activity. CONCLUSIONS: NPC-targeting nanoparticles delivering miR-150-5p show favorable therapeutic efficacy and safety and may constitute a promising treatment for IDD.


Intervertebral Disc Degeneration , Mice, Knockout , MicroRNAs , Nanoparticles , Nucleus Pulposus , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/drug therapy , Nucleus Pulposus/metabolism , Nanoparticles/chemistry , Mice , Male , Humans , Mice, Inbred C57BL
7.
J Nanobiotechnology ; 22(1): 301, 2024 May 31.
Article En | MEDLINE | ID: mdl-38816771

Intervertebral disc degeneration (IVDD) is the primary factor contributing to low back pain (LBP). Unlike elderly patients, many young IVDD patients usually have a history of trauma or long-term abnormal stress, which may lead to local inflammatory reaction causing by immune cells, and ultimately accelerates degeneration. Research has shown the significance of M1-type macrophages in IVDD; nevertheless, the precise mechanism and the route by which it influences the function of nucleus pulposus cell (NPC) remain unknown. Utilizing a rat acupuncture IVDD model and an NPC degeneration model induced by lipopolysaccharide (LPS), we investigated the function of M1 macrophage-derived exosomes (M1-Exos) in IVDD both in vivo and in vitro in this study. We found that M1-Exos enhanced LPS-induced NPC senescence, increased the number of SA-ß-gal-positive cells, blocked the cell cycle, and promoted the activation of P21 and P53. M1-Exos derived from supernatant pretreated with the exosome inhibitor GW4869 reversed this result in vivo and in vitro. RNA-seq showed that Lipocalin2 (LCN2) was enriched in M1-Exos and targeted the NF-κB pathway. The quantity of SA-ß-gal-positive cells was significantly reduced with the inhibition of LCN2, and the expression of P21 and P53 in NPCs was decreased. The same results were obtained in the acupuncture-induced IVDD model. In addition, inhibition of LCN2 promotes the expression of type II collagen (Col-2) and inhibits the expression of matrix metalloproteinase 13 (MMP13), thereby restoring the equilibrium of metabolism inside the extracellular matrix (ECM) in vitro and in vivo. In addition, the NF-κB pathway is crucial for regulating M1-Exo-mediated NPC senescence. After the addition of M1-Exos to LPS-treated NPCs, p-p65 activity was significantly activated, while si-LCN2 treatment significantly inhibited p-p65 activity. Therefore, this paper demonstrates that M1 macrophage-derived exosomes have the ability to deliver LCN2, which activates the NF-κB signaling pathway, and exacerbates IVDD by accelerating NPC senescence. This may shed new light on the mechanism of IVDD and bring a fresh approach to IVDD therapy.


Cellular Senescence , Exosomes , Intervertebral Disc Degeneration , Lipocalin-2 , Macrophages , NF-kappa B , Nucleus Pulposus , Rats, Sprague-Dawley , Signal Transduction , Animals , Exosomes/metabolism , Nucleus Pulposus/metabolism , Intervertebral Disc Degeneration/metabolism , Lipocalin-2/metabolism , Lipocalin-2/genetics , Rats , NF-kappa B/metabolism , Signal Transduction/drug effects , Macrophages/metabolism , Macrophages/drug effects , Male , Lipopolysaccharides/pharmacology , Disease Models, Animal
8.
Int Immunopharmacol ; 134: 112202, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38723371

Intervertebral disc (IVD) degeneration, induced by aging and irregular mechanical strain, is highly prevalent in the elderly population, serving as a leading cause of chronic low back pain and disability. Evolving evidence has revealed the involvement of nucleus pulposus (NP) pyroptosis in the pathogenesis of IVD degeneration, while the precise regulatory mechanisms of NP pyroptosis remain obscure. Misshapen/Nck-interacting kinase (NIK)-related kinase 1 (MINK1), a serine-threonine protein kinase, has the potential to modulate the activation of NLRP3 inflammasome, indicating its pivotal role in governing pyroptosis. In this study, to assess the significance of MINK1 in NP pyroptosis and IVD degeneration, NP tissues from patients with varying degrees of IVD degeneration, and IVD tissues from both aging-induced and lumbar spine instability (LSI) surgery-induced IVD degeneration mouse models, with or without MINK1 ablation, were meticulously evaluated. Our findings indicated a notable decline in MINK1 expression in NP tissues of patients with IVD degeneration and both mouse models as degeneration progresses, accompanied by heightened matrix degradation and increased NP pyroptosis. Moreover, MINK1 ablation led to substantial activation of NP pyroptosis in both mouse models, and accelerating ECM degradation and intensifying the degeneration phenotype in mechanically stress-induced mice. Mechanistically, MINK1 deficiency triggered NF-κB signaling in NP tissues. Overall, our data illustrate an inverse correlation between MINK1 expression and severity of IVD degeneration, and the absence of MINK1 stimulates NP pyroptosis, exacerbating IVD degeneration by activating NF-κB signaling, highlighting a potential innovative therapeutic target in treating IVD degeneration.


Intervertebral Disc Degeneration , Nucleus Pulposus , Pyroptosis , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Animals , Nucleus Pulposus/pathology , Nucleus Pulposus/metabolism , Humans , Mice , Male , Female , Middle Aged , Mice, Knockout , Mice, Inbred C57BL , Disease Models, Animal , Adult , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Aged , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
9.
Int Immunopharmacol ; 134: 112161, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38728878

Intervertebral disc degeneration (IVDD) is a leading cause of degenerative spinal disorders, involving complex biological processes. This study investigates the role of the kallikrein-kinin system (KKS) in IVDD, focusing on the protective effects of bradykinin (BK) on nucleus pulposus cells (NPCs) under oxidative stress. Clinical specimens were collected, and experiments were conducted using human and rat primary NPCs to elucidate BK's impact on tert-butyl hydroperoxide (TBHP)-induced oxidative stress and damage. The results demonstrate that BK significantly inhibits TBHP-induced NPC apoptosis and restores mitochondrial function. Further analysis reveals that this protective effect is mediated through the BK receptor 2 (B2R) and its downstream PI3K/AKT pathway. Additionally, BK/PLGA sustained-release microspheres were developed and validated in a rat model, highlighting their potential therapeutic efficacy for IVDD. Overall, this study sheds light on the crucial role of the KKS in IVDD pathogenesis and suggests targeting the B2R as a promising therapeutic strategy to delay IVDD progression and promote disc regeneration.


Apoptosis , Bradykinin , Intervertebral Disc Degeneration , Nucleus Pulposus , Oxidative Stress , Rats, Sprague-Dawley , tert-Butylhydroperoxide , Animals , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/metabolism , tert-Butylhydroperoxide/toxicity , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Humans , Male , Bradykinin/pharmacology , Apoptosis/drug effects , Oxidative Stress/drug effects , Rats , Cells, Cultured , Receptor, Bradykinin B2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Female , Microspheres , Signal Transduction/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal
10.
Free Radic Biol Med ; 220: 139-153, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38705495

Epigenetic changes are important considerations for degenerative diseases. DNA methylation regulates crucial genes by epigenetic mechanism, impacting cell function and fate. DNA presents hypermethylation in degenerated nucleus pulposus (NP) tissue, but its role in intervertebral disc degeneration (IVDD) remains elusive. This study aimed to demonstrate that methyltransferase mediated hypermethylation was responsible for IVDD by integrative bioinformatics and experimental verification. Methyltransferase DNMT3B was highly expressed in severely degenerated NP tissue (involving human and rats) and in-vitro degenerated human NP cells (NPCs). Bioinformatics elucidated that hypermethylated genes were enriched in oxidative stress and ferroptosis, and the ferroptosis suppressor gene SLC40A1 was identified with lower expression and higher methylation in severely degenerated human NP tissue. Cell culture using human NPCs showed that DNMT3B induced ferroptosis and oxidative stress in NPCs by downregulating SLC40A1, promoting a degenerative cell phenotype. An in-vivo rat IVDD model showed that DNA methyltransferase inhibitor 5-AZA alleviated puncture-induced IVDD. Taken together, DNA methyltransferase DNMT3B aggravates ferroptosis and oxidative stress in NPCs via regulating SLC40A1. Epigenetic mechanism within DNA methylation is a promising therapeutic biomarker for IVDD.


DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , DNA Methyltransferase 3B , Ferroptosis , Intervertebral Disc Degeneration , Nucleus Pulposus , Oxidative Stress , Adult , Animals , Female , Humans , Male , Middle Aged , Rats , Azacitidine/pharmacology , Disease Models, Animal , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Epigenesis, Genetic , Ferroptosis/genetics , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Rats, Sprague-Dawley , Up-Regulation
11.
Acupunct Med ; 42(3): 146-154, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702866

BACKGROUND: Cervical spondylosis (CS) is a prevalent disorder that can have a major negative impact on quality of life. Traditional conservative treatment has limited efficacy, and electroacupuncture (EA) is a novel treatment option. We investigated the application and molecular mechanism of EA treatment in a rat model of cervical intervertebral disk degeneration (CIDD). METHODS: The CIDD rat model was established, following which rats in the electroacupuncture (EA) group received EA. For overexpression of IL-22 or inhibition of JAK2-STAT3 signaling, the rats were injected intraperitoneally with recombinant IL-22 protein (p-IL-22) or the JAK2-STAT3 (Janus kinase 2-signal transducer and activator of transcription protein 3) inhibitor AG490 after model establishment. Rat nucleus pulposus (NP) cells were isolated and cultured. Cell counting kit-8 and flow cytometry were used to analyze the viability and apoptosis of the NP cells. Expression of IL-22, JAK2 and STAT3 was determined using RT-qPCR. Expression of IL-22/JAK2-STAT3 pathway and apoptosis related proteins was detected by Western blotting (WB). RESULTS: EA protected the NP tissues of CIDD rats by regulating the IL-22/JAK2-STAT3 pathway. Overexpression of IL-22 significantly promoted the expression of tumor necrosis factor (TNF)-α, IL-6, IL-1ß, matrix metalloproteinase (MMP)3 and MMP13 compared with the EA group. WB demonstrated that the expression of IL-22, p-JAK2, p-STAT3, caspase-3 and Bax in NP cells of the EA group was significantly reduced and Bcl-2 elevated compared with the model group. EA regulated cytokines and MMP through activation of IL-22/JAK2-STAT3 signaling in CIDD rat NP cells. CONCLUSION: We demonstrated that EA affected apoptosis by regulating the IL-22/JAK2-STAT3 pathway in NP cells and reducing inflammatory factors in the CIDD rat model. The results extend our knowledge of the mechanisms of action underlying the effects of EA as a potential treatment approach for CS in clinical practice.


Apoptosis , Disease Models, Animal , Electroacupuncture , Interleukin-22 , Interleukins , Intervertebral Disc Degeneration , Janus Kinase 2 , Nucleus Pulposus , Rats, Sprague-Dawley , STAT3 Transcription Factor , Signal Transduction , Animals , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/cytology , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Rats , Interleukins/metabolism , Interleukins/genetics , Male , Humans , Cervical Vertebrae
12.
Exp Cell Res ; 439(1): 114089, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38740166

Nucleus pulposus cells (NPCs) apoptosis and inflammation are the extremely critical factors of intervertebral disc degeneration (IVDD). Nevertheless, the underlying procedure remains mysterious. Macrophage migration inhibitory factor (MIF) is a cytokine that promotes inflammation and has been demonstrated to have a significant impact on apoptosis and inflammation. For this research, we employed a model of NPCs degeneration stimulated by lipopolysaccharides (LPS) and a rat acupuncture IVDD model to examine the role of MIF in vitro and in vivo, respectively. Initially, we verified that there was a significant rise of MIF expression in the NP tissues of individuals with IVDD, as well as in rat models of IVDD. Furthermore, this augmented expression of MIF was similarly evident in degenerated NPCs. Afterwards, it was discovered that ISO-1, a MIF inhibitor, effectively decreased the quantity of cells undergoing apoptosis and inhibited the release of inflammatory molecules (TNF-α, IL-1ß, IL-6). Furthermore, it has been shown that the PI3K/Akt pathway plays a vital part in the regulation of NPCs degeneration by MIF. Ultimately, we showcased that the IVDD process was impacted by the MIF inhibitor in the rat model. In summary, our experimental results substantiate the significant involvement of MIF in the degeneration of NPCs, and inhibiting MIF activity can effectively mitigate IVDD.


Apoptosis , Inflammation , Intervertebral Disc Degeneration , Macrophage Migration-Inhibitory Factors , Nucleus Pulposus , Rats, Sprague-Dawley , Animals , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Macrophage Migration-Inhibitory Factors/metabolism , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Apoptosis/drug effects , Inflammation/metabolism , Inflammation/pathology , Rats , Male , Humans , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/antagonists & inhibitors , Signal Transduction/drug effects , Female , Isoxazoles/pharmacology , Adult , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Cells, Cultured , Disease Models, Animal , Phosphatidylinositol 3-Kinases/metabolism
13.
ACS Appl Mater Interfaces ; 16(22): 28263-28275, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38788694

Intervertebral disc degeneration (IDD) is a progressive condition and stands as one of the primary causes of low back pain. Cell therapy that uses nucleus pulposus (NP)-like cells derived from human induced pluripotent stem cells (hiPSCs) holds great promise as a treatment for IDD. However, the conventional two-dimensional (2D) monolayer cultures oversimplify cell-cell interactions, leading to suboptimal differentiation efficiency and potential loss of phenotype. While three-dimensional (3D) culture systems like Matrigel improve hiPSC differentiation efficiency, they are limited by animal-derived materials for translation, poorly defined composition, short-term degradation, and high cost. In this study, we introduce a new 3D scaffold fabricated using medical-grade chitosan with a high degree of deacetylation. The scaffold features a highly interconnected porous structure, near-neutral surface charge, and exceptional degradation stability, benefiting iPSC adhesion and proliferation. This scaffold remarkably enhances the differentiation efficiency and allows uninterrupted differentiation for up to 25 days without subculturing. Notably, cells differentiated on the chitosan scaffold exhibited increased cell survival rates and upregulated gene expression associated with extracellular matrix secretion under a chemically defined condition mimicking the challenging microenvironment of intervertebral discs. These characteristics qualify the chitosan scaffold-cell construct for direct implantation, serving as both a structural support and a cellular source for enhanced stem cell therapy for IDD.


Cell Differentiation , Chitosan , Induced Pluripotent Stem Cells , Nucleus Pulposus , Tissue Scaffolds , Chitosan/chemistry , Cell Differentiation/drug effects , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Nucleus Pulposus/cytology , Humans , Tissue Scaffolds/chemistry , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/pathology , Cells, Cultured , Cell Survival/drug effects
14.
Mil Med Res ; 11(1): 28, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711073

BACKGROUND: Intervertebral disc degeneration (IVDD) is a multifaceted condition characterized by heterogeneity, wherein the balance between catabolism and anabolism in the extracellular matrix of nucleus pulposus (NP) cells plays a central role. Presently, the available treatments primarily focus on relieving symptoms associated with IVDD without offering an effective cure targeting its underlying pathophysiological processes. D-mannose (referred to as mannose) has demonstrated anti-catabolic properties in various diseases. Nevertheless, its therapeutic potential in IVDD has yet to be explored. METHODS: The study began with optimizing the mannose concentration for restoring NP cells. Transcriptomic analyses were employed to identify the mediators influenced by mannose, with the thioredoxin-interacting protein (Txnip) gene showing the most significant differences. Subsequently, small interfering RNA (siRNA) technology was used to demonstrate that Txnip is the key gene through which mannose exerts its effects. Techniques such as colocalization analysis, molecular docking, and overexpression assays further confirmed the direct regulatory relationship between mannose and TXNIP. To elucidate the mechanism of action of mannose, metabolomics techniques were employed to pinpoint glutamine as a core metabolite affected by mannose. Next, various methods, including integrated omics data and the Gene Expression Omnibus (GEO) database, were used to validate the one-way pathway through which TXNIP regulates glutamine. Finally, the therapeutic effect of mannose on IVDD was validated, elucidating the mechanistic role of TXNIP in glutamine metabolism in both intradiscal and orally treated rats. RESULTS: In both in vivo and in vitro experiments, it was discovered that mannose has potent efficacy in alleviating IVDD by inhibiting catabolism. From a mechanistic standpoint, it was shown that mannose exerts its anti-catabolic effects by directly targeting the transcription factor max-like protein X-interacting protein (MondoA), resulting in the upregulation of TXNIP. This upregulation, in turn, inhibits glutamine metabolism, ultimately accomplishing its anti-catabolic effects by suppressing the mitogen-activated protein kinase (MAPK) pathway. More importantly, in vivo experiments have further demonstrated that compared with intradiscal injections, oral administration of mannose at safe concentrations can achieve effective therapeutic outcomes. CONCLUSIONS: In summary, through integrated multiomics analysis, including both in vivo and in vitro experiments, this study demonstrated that mannose primarily exerts its anti-catabolic effects on IVDD through the TXNIP-glutamine axis. These findings provide strong evidence supporting the potential of the use of mannose in clinical applications for alleviating IVDD. Compared to existing clinically invasive or pain-relieving therapies for IVDD, the oral administration of mannose has characteristics that are more advantageous for clinical IVDD treatment.


Cell Cycle Proteins , Glutamine , Intervertebral Disc Degeneration , Mannose , Intervertebral Disc Degeneration/drug therapy , Mannose/pharmacology , Mannose/therapeutic use , Animals , Rats , Glutamine/pharmacology , Glutamine/metabolism , Male , Rats, Sprague-Dawley , Humans , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism
15.
PeerJ ; 12: e17212, 2024.
Article En | MEDLINE | ID: mdl-38666076

Intervertebral disc degeneration (IVDD) is a common and frequent disease in orthopedics, which seriously affects the quality of life of patients. Endoplasmic reticulum stress (ERS)-regulated autophagy and apoptosis play an important role in nucleus pulposus (NP) cells in IVDD. Hypoxia and serum deprivation were used to induce NP cells. Cell counting kit-8 (CCK-8) assay was used to detect cell activity and immunofluorescence (IF) was applied for the appraisement of glucose regulated protein 78 (GRP78) and green fluorescent protein (GFP)-light chain 3 (LC3). Cell apoptosis was detected by flow cytometry and the expression of LC3II/I was detected by western blot. NP cells under hypoxia and serum deprivation were induced by lipopolysaccharide (LPS), and intervened by ERS inhibitor (4-phenylbutyric acid, 4-PBA) and activator (Thapsigargin, TP). Then, above functional experiments were conducted again and western blot was employed for the evaluation of autophagy-, apoptosis and ERS-related proteins. Finally, NP cells under hypoxia and serum deprivation were stimulated by LPS and intervened using apoptosis inhibitor z-Val-Ala-DL-Asp-fluoromethyl ketone (Z-VAD-FMK) and autophagy inhibitor 3-methyladenine (3-MA). CCK-8 assay, IF, flow cytometry and western blot were performed again. Besides, the levels of inflammatory cytokines were measured with enzyme-linked immunosorbent assay (ELISA) and the protein expressions of programmed death markers were estimated with western blot. It showed that serum deprivation induces autophagy and apoptosis. ERS was significantly activated by LPS in hypoxic and serum deprivation environment, and autophagy and apoptosis were significantly promoted. Overall, ERS affects the occurrence and development of IVDD by regulating autophagy, apoptosis and other programmed death.


Apoptosis , Autophagy , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Intervertebral Disc Degeneration , Nucleus Pulposus , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Autophagy/drug effects , Apoptosis/drug effects , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Endoplasmic Reticulum Stress/drug effects , Humans , Cells, Cultured
16.
Acta Biomater ; 180: 244-261, 2024 May.
Article En | MEDLINE | ID: mdl-38615812

Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.


Adipose Tissue , Hydrogels , Mesenchymal Stem Cells , Nucleus Pulposus , Regeneration , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Nucleus Pulposus/cytology , Nucleus Pulposus/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Regeneration/drug effects , Adipose Tissue/cytology , Viscosity , Elasticity , Cell Differentiation/drug effects , Cell Survival/drug effects , Alginates/chemistry , Alginates/pharmacology
17.
Int Immunopharmacol ; 133: 112101, 2024 May 30.
Article En | MEDLINE | ID: mdl-38640717

Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1ß-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1ß. Furthermore, genkwanin alleviated Interleukin-1ß-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.


Apoptosis , Cellular Senescence , Interleukin-1beta , Intervertebral Disc Degeneration , Nucleus Pulposus , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Animals , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis/drug effects , Signal Transduction/drug effects , Cellular Senescence/drug effects , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/metabolism , Rats , Phosphatidylinositol 3-Kinases/metabolism , Male , Interleukin-1beta/metabolism , Integrin alpha2/metabolism , Integrin alpha2/genetics , Flavonoids/pharmacology , Flavonoids/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Disease Models, Animal , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics
18.
Int J Biol Macromol ; 266(Pt 2): 131337, 2024 May.
Article En | MEDLINE | ID: mdl-38574911

Utilization of injectable hydrogels stands as a paradigm of minimally invasive intervention in the context of intervertebral disc degeneration treatment. Restoration of nucleus pulposus (NP) function exerts a profound influence in alleviating back pain. This study introduces an innovative class of injectable shear-thinning hydrogels, founded on quaternized chitosan (QCS), gelatin (GEL), and laponite (LAP) with the capacity for sustained release of the anti-inflammatory drug, celecoxib (CLX). First, synthesis of Magnesium-Aluminum-Layered double hydroxide (LDH) was achieved through a co-precipitation methodology, as a carrier for celecoxib and a source of Mg ions. Intercalation of celecoxib within LDH layers (LDH-CLX) was verified through a battery of analytical techniques, including FTIR, XRD, SEM, EDAX, TGA and UV-visible spectroscopy confirmed a drug loading efficiency of 39.22 ± 0.09 % within LDH. Then, LDH-CLX was loaded in the optimal GEL-QCS-LAP hydrogel under physiological conditions. Release behavior (15 days profile), mechanical properties, swelling ratio, and degradation rate of the resulting composite were evaluated. A G* of 15-47 kPa was recorded for the hydrogel at 22-40 °C, indicating gel stability in this temperature range. Self-healing properties and injectability of the composite were proved by rheological measurements. Also, ex vivo injection into intervertebral disc of sheep, evidenced in situ forming and NP cavity filling behavior of the hydrogel. Support of GEL-QCS-LAP/LDH-CLX (containing mg2+ ions) for viability and proliferation (from ~94 % on day 1 to ~134 % on day 7) of NP cells proved using MTT assay, DAPI and Live/Dead assays. The hydrogel could significantly upregulate secretion of glycosaminoglycan (GAG, from 4.68 ± 0.1 to 27.54 ± 1.0 µg/ml), when LHD-CLX3% was loaded. We conclude that presence of mg2+ ion and celecoxib in the hydrogel can lead to creation of a suitable environment that encourages GAG secretion. In conclusion, the formulated hydrogel holds promise as a minimally invasive candidate for degenerative disc repair.


Celecoxib , Chitosan , Gelatin , Hydrogels , Silicates , Hydrogels/chemistry , Hydrogels/pharmacology , Celecoxib/pharmacology , Celecoxib/chemistry , Celecoxib/administration & dosage , Chitosan/chemistry , Gelatin/chemistry , Silicates/chemistry , Silicates/pharmacology , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Animals , Drug Liberation , Drug Carriers/chemistry , Drug Delivery Systems , Injections , Rheology
19.
Int Immunopharmacol ; 132: 112028, 2024 May 10.
Article En | MEDLINE | ID: mdl-38593507

Extracellular vesicles (EVs) derived from Mesenchymal Stromal Cells (MSCs) have shown promising therapeutic potential for multiple diseases, including intervertebral disc degeneration (IDD). Nevertheless, the limited production and unstable quality of EVs hindered the clinical application of EVs in IDD. Selenomethionine (Se-Met), the major form of organic selenium present in the cereal diet, showed various beneficial effects, including antioxidant, immunomodulatory and anti-apoptotic effects. In the current study, Se-Met was employed to treat MSCs to investigate whether Se-Met can facilitate the secretion of EVs by MSCs and optimize their therapeutic effects on IDD. On the one hand, Se-Met promoted the production of EVs by enhancing the autophagy activity of MSCs. On the other hand, Se-Met pretreated MSC-derived EVs (Se-EVs) exhibited an enhanced protective effects on alleviating nucleus pulposus cells (NPCs) senescence and attenuating IDD compared with EVs isolated from control MSCs (C-EVs) in vitro and in vivo. Moreover, we performed a miRNA microarray sequencing analysis on EVs to explore the potential mechanism of the protective effects of EVs. The result indicated that miR-125a-5p is markedly enriched in Se-EVs compared to C-EVs. Further in vitro and in vivo experiments revealed that knockdown of miR-125a-5p in Se-EVs (miRKD-Se-EVs) impeded the protective effects of Se-EVs, while overexpression of miR-125a-5p (miROE-Se-EVs) boosted the protective effects. In conclusion, Se-Met facilitated the MSC-derived EVs production and increased miR-125a-5p delivery in Se-EVs, thereby improving the protective effects of MSC-derived EVs on alleviating NPCs senescence and attenuating IDD.


Extracellular Vesicles , Intervertebral Disc Degeneration , Mesenchymal Stem Cells , MicroRNAs , Selenomethionine , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Selenomethionine/pharmacology , Humans , Nucleus Pulposus/metabolism , Cells, Cultured , Male , Cellular Senescence , Mesenchymal Stem Cell Transplantation , Autophagy , Rats, Sprague-Dawley , Rats
20.
Sci Rep ; 14(1): 9156, 2024 04 21.
Article En | MEDLINE | ID: mdl-38644369

Intervertebral Disc (IVD) degeneration has been associated with a chronic inflammatory response, but knowledge on the contribution of distinct IVD cells, namely CD44, to the progression of IVD degeneration remains elusive. Here, bovine nucleus pulposus (NP) CD44 cells were sorted and compared by gene expression and proteomics with the negative counterpart. NP cells were then stimulated with IL-1b (10 ng/ml) and dynamics of CD44 gene and protein expression was analyzed upon pro-inflammatory treatment. The results emphasize that CD44 has a multidimensional functional role in IVD metabolism, ECM synthesis and production of neuropermissive factors. CD44 widespread expression in NP was partially associated with CD14 and CD45, resulting in the identification of distinct cell subsets. In conclusion, this study points out CD44 and CD44-based cell subsets as relevant targets in the modulation of the IVD pro-inflammatory/degenerative cascade.


Hyaluronan Receptors , Inflammation , Intervertebral Disc Degeneration , Nucleus Pulposus , Animals , Cattle , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Inflammation/metabolism , Inflammation/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Cells, Cultured , Interleukin-1beta/metabolism , Proteomics/methods
...