Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Viruses ; 16(4)2024 03 26.
Article in English | MEDLINE | ID: mdl-38675847

ABSTRACT

Ticks are the main arthropod vector of pathogens to humans and livestock in the British Isles. Despite their role as a vector of disease, many aspects of tick biology, ecology, and microbial association are poorly understood. To address this, we investigated the composition of the microbiome of adult and nymphal Ixodes ricinus ticks. The ticks were collected on a dairy farm in Southwest England and RNA extracted for whole genome sequencing. Sequences were detected from a range of microorganisms, particularly tick-associated viruses, bacteria, and nematodes. A majority of the viruses were attributed to phlebo-like and nairo-like virus groups, demonstrating a high degree of homology with the sequences present in I. ricinus from mainland Europe. A virus sharing a high sequence identity with Chimay rhabdovirus, previously identified in ticks from Belgium, was detected. Further investigations of I. ricinus ticks collected from additional sites in England and Wales also identified Chimay rhabdovirus viral RNA with varying prevalence in all tick populations. This suggests that Chimay rhabdovirus has a wide distribution and highlights the need for an extended exploration of the tick microbiome in the United Kingdom (UK).


Subject(s)
Ixodes , Phylogeny , Rhabdoviridae , Animals , Ixodes/virology , Ixodes/microbiology , England , Wales , Rhabdoviridae/genetics , Rhabdoviridae/classification , Rhabdoviridae/isolation & purification , Genome, Viral , RNA, Viral/genetics , Microbiota , Whole Genome Sequencing , Nymph/virology , Nymph/microbiology
2.
Virology ; 567: 47-56, 2022 02.
Article in English | MEDLINE | ID: mdl-34998225

ABSTRACT

Huanglongbing is caused by Candidatus Liberibacter asiaticus (CLas) and transmitted by Diaphorina citri. D. citri harbors various insect-specific viruses, including the Diaphorina citri flavi-like virus (DcFLV). The distribution and biological role of DcFLV in its host and the relationship with CLas are unknown. DcFLV was found in various organs of D. citri, including the midgut and salivary glands, where it co-localized with CLas. CLas-infected nymphs had the highest DcFLV titers compared to the infected adults and CLas-free adults and nymphs. DcFLV was vertically transmitted to offspring from female D. citri and was temporarily detected in Citrus macrophylla and grapefruit leaves from greenhouse and field. The incidences of DcFLV and CLas were positively correlated in field-collected D. citri samples, suggesting that DcFLV might be associated with CLas in the vector. These results provide new insights on the interactions between DcFLV, the D. citri, and CLas.


Subject(s)
Citrus/microbiology , Flavivirus/genetics , Hemiptera/virology , Insect Vectors/virology , Liberibacter/genetics , Nymph/virology , Animals , DNA, Bacterial/genetics , Female , Hemiptera/microbiology , Insect Vectors/microbiology , Intestines/microbiology , Intestines/virology , Liberibacter/pathogenicity , Nymph/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , RNA, Viral/genetics , Salivary Glands/microbiology , Salivary Glands/virology , Symbiosis/physiology
3.
Ticks Tick Borne Dis ; 12(6): 101820, 2021 11.
Article in English | MEDLINE | ID: mdl-34555711

ABSTRACT

Ticks are vectors of a wide range of zoonotic viruses of medical and veterinary importance. Recently, metagenomics studies demonstrated that they are also the source of potentially pathogenic novel viruses. During the period from 2015 to 2017, questing ticks were collected by dragging the vegetation from geographically distant locations in the Republic of Korea (ROK) and a target-independent high-throughput sequencing method was utilized to study their virome. A total of seven viruses, including six putative novel viral entities, were identified. Genomic analysis showed that the novel viruses were most closely related to members in the orders Jingchuvirales and Bunyavirales. Phylogenetic reconstruction showed that the Bunyavirales-like viruses grouped in the same clade with other viruses within the Nairovirus and Phlebovirus genera, while the novel Jingchuvirales-like virus grouped together with other viruses within the family Chuviridae. Real-time RT-PCR was used to determine the geographic distribution and prevalence of these viruses in adult ticks. These novel viruses have a wide geographic distribution in the ROK with prevalences ranging from 2% to 18%. Our study expands the knowledge about the composition of the tick virome and highlights the wide diversity of viruses they harbor in the ROK. The discovery of novel viruses associated with ticks in the ROK highlights the need for an active tick-borne disease surveillance program to identify possible reservoirs of putative novel human pathogens.


Subject(s)
Ixodidae/virology , Viruses/isolation & purification , Animals , Ixodidae/growth & development , Larva/growth & development , Larva/virology , Nymph/growth & development , Nymph/virology , Republic of Korea , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/transmission , Tick-Borne Diseases/virology
4.
Virology ; 562: 87-91, 2021 10.
Article in English | MEDLINE | ID: mdl-34280809

ABSTRACT

Vertical transmission of Homalodisca vitripennis reovirus (HoVRV) from glassy-winged sharpshooter (GWSS, Homalodisca vitripennis (Germar)) females to progeny occurred in laboratory assays at frequencies too low (2.6%-15.4%) to account for HoVRV incidence (90-100%) in field populations resident in citrus. Because citrus is immune to HoVRV and no plant host is known, horizontal transmission of HoVRV from insect-to-insect was evaluated. Exposure of colony-reared, virus-free test nymphs to HoVRV-infected source adults held in the same cage for 10 days on virus-immune cowpea resulted in HoVRV transmission (13.3%-30.7%) to test nymphs. HoVRV was not transmitted when exposure was indirect and required passive movement of virions through the xylem of immune citrus seedlings. Collectively, these results demonstrate direct insect-to-insect horizontal transmission of HoVRV, providing a plausible explanation for high incidence of HoVRV in GWSS field populations in the absence of efficient vertical transmission or a plant host.


Subject(s)
Hemiptera/virology , Insect Vectors/virology , Reoviridae/physiology , Animals , Citrus , Disease Transmission, Infectious , Female , Nymph/virology , Vigna
5.
PLoS One ; 16(1): e0244668, 2021.
Article in English | MEDLINE | ID: mdl-33411799

ABSTRACT

BACKGROUND: Tick-borne encephalitis (TBE) is the most important tick-borne viral disease in Eurasia and causes disease in humans and in a number of animals, among them dogs and horses. There is still no good correlation between tick numbers, weather conditions and human cases. There is the hypothesis that co-feeding due to simultaneous occurrence of larvae and nymphs may be a factor for the increased transmission of the virus in nature and for human disease. Based on long-term data from a natural TBEV focus, phylogenetic results and meteorological data we sought to challenge this hypothesis. METHODS: Ticks from an identified TBE natural focus were sampled monthly from 04/2009 to 12/2018. Ticks were identified and pooled. Pools were tested by RT-qPCR. Positive pools were confirmed by virus isolation and/or sequencing of additional genes (E gene, NS2 gene). Temperature data such as the decadal (10-day) mean daily maximum air temperature (DMDMAT) were obtained from a nearby weather station and statistical correlations between tick occurrence and minimal infection rates (MIR) were calculated. RESULTS: In the study period from 04/2009 to 12/2018 a total of 15,530 ticks (2,226 females, 2,268 males, 11,036 nymphs) were collected. The overall MIR in nymphs over the whole period was 77/15,530 (0.49%), ranging from 0.09% (2009) to 1.36% (2015). The overall MIR of female ticks was 0.76% (17/2,226 ticks), range 0.14% (2013) to 3.59% (2016). The overall MIR of males was 0.57% (13/2,268 ticks), range from 0.26% (2009) to 0.97% (2015). The number of nymphs was statistically associated with a later start of spring/vegetation period, indicated by the onset of forsythia flowering. CONCLUSION: There was no particular correlation between DMDMAT dynamics in spring and/or autumn and the MIR of nymphs or adult ticks detected. However, there was a positive correlation between the number of nymphs and the number of reported human TBE cases in the following months, but not in the following year. The hypothesis of the importance of co-feeding of larvae and nymphs for the maintenance of transmission cycle of TBEV in nature is not supported by our findings.


Subject(s)
Climate , Encephalitis, Tick-Borne/epidemiology , Ixodes/virology , Temperature , Animals , Arachnid Vectors/virology , Encephalitis, Tick-Borne/virology , Germany/epidemiology , Humans , Incidence , Nymph/virology , Population Dynamics , Seasons
6.
Ticks Tick Borne Dis ; 12(1): 101585, 2021 01.
Article in English | MEDLINE | ID: mdl-33113476

ABSTRACT

Trombidiformes and Mesostigmata mites, as well as Ixodida ticks, infest ectothermic tetrapods worldwide, potentially acting as vectors of bacteria, viruses and protozoa. The relationship among ectoparasites, transmitted pathogenic agents (e.g., Borrelia spp., Coxiella spp., Hepatozoon spp., and Rickettsia spp.) and ectothermic hosts has been scarcely investigated. This research focuses on a large collection of Brazilian herpetofauna screened for the presence of arthropod ectoparasites and vector-borne microbial agents. Reptiles (n = 121) and amphibians (n = 49) from various locations were infested by ectoparasites. Following genomic extraction, microbial agents were detected in 81 % of the Acari (i.e. n = 113 mites and n = 26 ticks). None of the mites, ticks and tissues from amphibians yielded positive results for any of the screened agents. Blood was collected from reptiles and processed through blood cytology and molecular analyses (n = 48). Of those, six snakes (12.5 %) showed intraerythrocytic alterations compatible with Hepatozoon spp. gamonts and Iridovirus inclusions. Hepatozoon spp. similar to Hepatozoon ayorgbor and Hepatozoon musa were molecularly identified from seven hosts, two mite and two tick species. Rickettsia spp. (e.g., Rickettsia amblyommatis, Rickettsia bellii-like, Rickettsia sp.) were detected molecularly from four mite species and Amblyomma rotundatum ticks. Phylogenetic analyses confirmed the molecular identification of the above-mentioned microbial agents of mites and ticks related to snakes and lizards. Overall, our findings highlighted that the Brazilian herpetofauna and its ectoparasites harbour potentially pathogenic agents, particularly from the northern and south-eastern regions. The detection of several species of spotted fever group Rickettsia pointed out the potential role of ectothermic hosts and related arthropod ectoparasites in the epidemiological cycle of these bacteria in Brazil.


Subject(s)
Eucoccidiida/isolation & purification , Iridoviridae/isolation & purification , Ixodidae , Mites , Reptiles , Rickettsia/isolation & purification , Animals , Brazil , Disease Reservoirs , Eucoccidiida/classification , Female , Iridoviridae/classification , Ixodidae/growth & development , Ixodidae/microbiology , Ixodidae/parasitology , Ixodidae/virology , Larva/growth & development , Larva/microbiology , Larva/parasitology , Larva/virology , Male , Mites/growth & development , Mites/microbiology , Mites/parasitology , Mites/virology , Nymph/growth & development , Nymph/microbiology , Nymph/parasitology , Nymph/virology , Phylogeny , Reptiles/microbiology , Reptiles/parasitology , Reptiles/virology , Rickettsia/classification
7.
PLoS One ; 15(11): e0242775, 2020.
Article in English | MEDLINE | ID: mdl-33253247

ABSTRACT

Spissistilus festinus (Say) (Hemiptera: Membracidae) was shown to transmit Grapevine red blotch virus (GRBV) in a greenhouse study. Grapevines infected with GRBV exhibit reduced sugar accumulation, altered secondary metabolite production and delayed berry maturation that negatively impacts wine quality and economics. Augmentative biocontrol may be a useful integrated pest management (IPM) tool for suppressing S. festinus populations in vineyards, but minimal research has been conducted on testing potential predators against the different life stages of S. festinus. The susceptibility of S. festinus adults and nymphs (1st through 5th instar) to predation by six commercially available biocontrol agents in petri dish and bell bean plant arenas was determined under greenhouse conditions. No significant mortality of S. festinus nymphs or adults occurred when exposed to Cryptolaemus montrouzieri adults, C. montrouzieri larvae and Sympherobius barberi adults in petri dish or bell bean plant arenas. Significant mortality of 1st and 2nd instar nymphs of S. festinus in the presence of Zelus renardii nymphs was observed in petri dish but not in bell bean arenas. Hippodamia convergens adults and Chrysoperla rufilabris larvae both consumed a significant number of S. festinus nymphs in petri dish and bell bean arenas. No significant predation of S. festinus adults was documented in this experiment. Results of this study aid in identifying predators that may be suitable candidates for additional field testing to determine their potential efficacy as biocontrol agents of S. festinus in a vineyard setting.


Subject(s)
Coleoptera/physiology , Food Chain , Hemiptera/physiology , Models, Biological , Predatory Behavior , Animals , Geminiviridae , Hemiptera/virology , Nymph/physiology , Nymph/virology
8.
Parasit Vectors ; 13(1): 504, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33023633

ABSTRACT

BACKGROUND: In the South of Kazakhstan, Almaty Oblast' (region) is endemic for tick-borne encephalitis, with 0.16-0.32 cases/100,000 population between 2016-2018. The purpose of this study was to determine the prevalence and circulating subtypes of tick-borne encephalitis virus (TBEV) in Almaty Oblast' and Kyzylorda Oblast'. METHODS: In 2015 we investigated 2341 ticks from 7 sampling sites for the presence of TBEV. Ticks were pooled in 501 pools and isolated RNA was tested for the presence of TBEV by RT-qPCR. For the positive samples, the E gene was amplified, sequenced and a phylogenetic analysis was carried out. RESULTS: A total of 48 pools were TBEV-positive by the RT-qPCR. TBEV-positive ticks were only detected in three districts of Almaty Oblast' and not in Kyzylorda Oblast'. The positive TBEV pools were found within Ixodes persulcatus, Haemaphysalis punctata and Dermacentor marginatus. These tick species prevailed only in Almaty Oblast' whereas in Kyzylorda Oblast' Hyalomma asiaticum and D. marginatus are endemic. The minimum infection rates (MIR) in the sampling sites were 4.4% in Talgar, 2.8% in Tekeli and 1.1% in Yenbekshikazakh, respectively. The phylogenetic analysis of the generated sequences indicates that TBEV strains found in Almaty Oblast' clusters in the Siberian subtype within two different clades. CONCLUSIONS: We provided new data about the TBEV MIR in ticks in Almaty Oblast' and showed that TBEV clusters in the Siberian Subtype in two different clusters at the nucleotide level. These results indicate that there are different influences on the circulating TBEV strains in south-eastern Kazakhstan. These influences might be caused by different routes of the virus spread in ticks which might bring different genetic TBEV lineages to Kazakhstan. The new data about the virus distribution and vectors provided here will contribute to an improvement of monitoring of tick-borne infections and timely anti-epidemic measures in Kazakhstan.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne/epidemiology , Ixodidae/virology , Animals , Arachnid Vectors/virology , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/transmission , Genes, Viral , Humans , Ixodes/virology , Kazakhstan/epidemiology , Molecular Epidemiology , Nymph/virology , Pathology, Molecular/methods , Phylogeny , Real-Time Polymerase Chain Reaction
9.
Ticks Tick Borne Dis ; 11(6): 101510, 2020 11.
Article in English | MEDLINE | ID: mdl-32993930

ABSTRACT

Brazilian spotted fever (BSF) is the deadliest rickettsiosis in the world. Although the epidemiology of the disease has been established in Brazil, there are still limited data available on distribution of tick vectors and tick species parasitizing humans in the country, particularly in Paraná State. The State of Paraná is located in the southern region of the country and is covered by two biomes: Atlantic rainforest and Cerrado. Thus, the aims of this study were i) to map the distribution of SF tick vectors, ii) to describe and map the distribution of human parasitism by ticks, and iii) to map the distribution of fatal and non-fatal spotted fever (SF) cases in Paraná State, southern Brazil. Data were reviewed and compiled from previous published reports, and also from two scientific collections of Paraná State. SF cases were retrieved from the Brazilian Notifiable Diseases Information System. A total of 50 cases of human parasitism by ticks were recorded, with a total of 64 (22 males, 12 females, 30 nymphs) ticks collected. The following 12 tick species were identified: Amblyomma aureolatum, Amblyomma brasiliense, Amblyomma calcaratum, Amblyomma dubitatum, Amblyomma incisum, Amblyomma longirostre, Amblyomma ovale, Amblyomma parkeri, Amblyomma scalpturatum, Amblyomma sculptum, Haemaphysalis juxtakochi and Rhipicephalus sanguineus sensu lato (s.l.). The most prevalent tick species associated to cases of human parasitism were A. sculptum (13/50; 26 %), A. aureolatum (10/50; 20 %), A. brasiliense (5/50; 10 %), A. ovale (5/50; 10 %) and A. parkeri (4/50; 8%). A total of 51 non-fatal and five fatal SF cases were recorded. Data from this study highlights the need for monitoring ticks parasitizing humans aiming early detection of tick-borne diseases cases, particularly BSF in Paraná State, southern Brazil.


Subject(s)
Arachnid Vectors/physiology , Ixodidae/physiology , Spotted Fever Group Rickettsiosis/epidemiology , Tick Infestations/epidemiology , Ticks/physiology , Animals , Arachnid Vectors/growth & development , Arachnid Vectors/virology , Brazil/epidemiology , Female , Humans , Ixodidae/growth & development , Male , Nymph/growth & development , Nymph/physiology , Nymph/virology , Spotted Fever Group Rickettsiosis/parasitology , Tick Infestations/parasitology , Ticks/growth & development , Ticks/virology
10.
Ticks Tick Borne Dis ; 11(6): 101516, 2020 11.
Article in English | MEDLINE | ID: mdl-32993936

ABSTRACT

Haemaphysalis longicornis, the Asian longhorned tick, is an invasive tick species that has spread rapidly across the northeastern and southeastern regions of the United States in recent years. This invasive pest species, known to transmit several tick-borne pathogens in its native range, is a potential threat to wildlife, livestock, domestic animals, and humans. Questing larval (n = 25), nymph (n = 10), and adult (n = 123), along with host-derived adult (n = 25) H. longicornis ticks were collected from various locations on Staten Island, NY. The pathobiome of each specimen was examined using two different high throughput sequencing approaches, virus enrichment and shotgun metagenomics. An average of 45,828,061 total reads per sample were recovered from the virus enriched samples and an average of 11,381,144 total reads per sample were obtained using shotgun metagenomics. Aside from endogenous viral sequences, no viruses were identified through either approach. Through shotgun metagenomics, Coxiella-like bacteria, Legionella, Sphingomonas, and other bacterial species were recovered. The Coxiella-like agent was ubiquitous and present at high abundances in all samples, suggesting it may be an endosymbiont. The other bacterial agents are not known to be transmitted by ticks. From these analyses, H. longicornis do not appear to host any endemic human tick-borne pathogens in the New York City region.


Subject(s)
Ixodidae/microbiology , Metagenome , Microbiota , Virome , Animals , Ixodidae/growth & development , Ixodidae/virology , Larva/growth & development , Larva/microbiology , Larva/virology , Metagenomics , New York City , Nymph/growth & development , Nymph/microbiology , Nymph/virology
11.
Ticks Tick Borne Dis ; 11(5): 101490, 2020 09.
Article in English | MEDLINE | ID: mdl-32723628

ABSTRACT

Haemaphysalis longicornis (Acari: Ixodidae) is an important vector of pathogens causing tick-borne diseases such as severe fever with thrombocytopenia syndrome (SFTS) in eastern Asia. Although an understanding of the overwintering ecology of ticks is fundamental to management of this vector, its winter biology remains unclear. Therefore, we conducted a field survey from eight provinces in South Korea to characterize overwintering sites of H. longicornis and investigate their SFTS virus infection rates. First, we conducted flagging which consists of horizontal sweeping of a 1 m2 cloth back-and-forth to collect ticks that may exhibit questing behaviors in four different landscapes: grassland, shrub, coniferous forest, and deciduous forest. From 640 sweeps of flagging (where each sweep covered 3.8 m2), we collected five unfed ixodid ticks. However, H. longicornis was not found. After the flagging, to locate overwintering ticks, we inspected a total of 679 samples consisting of three different structures: ground (leaf litter, soil surface, and topsoil layer), rocks, and dead trees. From the samples inspected, 85 unfed overwintering ixodid ticks were found. Haemaphysalis longicornis was the dominant species (88 %), and mostly nymphs were collected (94 %). This species was collected from ground samples, especially from the topsoil layer. Most H. longicornis were found in herbaceous landscapes such as grassland (46 %) and shrub (52 %). SFTS virus was found in 3 out of 38 pools of unfed nymphs (minimal infection rate: 4 %). Our results can serve as baseline information for the development of vector management programs.


Subject(s)
Animal Distribution , Ixodidae/physiology , Ixodidae/virology , Phlebovirus/isolation & purification , Animals , Ixodidae/growth & development , Larva/growth & development , Larva/physiology , Larva/virology , Nymph/growth & development , Nymph/physiology , Nymph/virology , Republic of Korea , Seasons
12.
Ticks Tick Borne Dis ; 11(5): 101448, 2020 09.
Article in English | MEDLINE | ID: mdl-32723637

ABSTRACT

We conducted orthonairovirus RNA screening of 7043 tick specimens-representing 16 species-collected from various regions of Anatolia. In 602 pools, Crimean-Congo hemorrhagic fever virus (CCHFV) Europe 1 and 2 lineages were detected in seven pools (1.1 %) comprising Hyalomma marginatum, Hyalomma scupense, Rhipicephalus bursa, Rhipicephalus sanguineus sensu lato and Rhipicephalus turanicus ticks. In pools of Hyalomma aegyptium, we detected Tamdy virus (TAMV) and an unclassified nairovirus sequence. Next-generation sequencing revealed complete coding regions of three CCHFV Europe 2 (AP92-like) viruses, TAMV and the novel orthonairovirus, tentatively named herein as Meram virus. We further performed in silico functional analysis of all available CCHFV Europe 2, TAMV, Meram and related virus genomes. The CCHFV Europe 2 viruses possessed several conserved motifs, including those with OTU-like cysteine protease activity. Probable recombinations were identified in L genome segments of CCHFV and TAMV. Through phylogeny reconstruction using individual genome segments, Meram virus emerged as a distinct virus among species within the Orthonairovirus genus. It further exhibited conserved motifs associated with RNA binding, encapsidation, signal peptidase cleavage, post-translational modification, RNA-dependent RNA polymerase and OTU-like activities. Bole tick virus 3 was also detected in two pools with CCHFV reactivity. Hereby, we describe a novel tick-associated orthonairovirus, in a CCHFV-endemic region with confirmed TAMV activity. Human and animal health impact of these viruses need to be addressed.


Subject(s)
Genome, Viral , Ixodidae/virology , Nairovirus/isolation & purification , Animals , Computer Simulation , Female , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , High-Throughput Nucleotide Sequencing , Ixodidae/growth & development , Larva/growth & development , Larva/virology , Male , Nairovirus/classification , Nairovirus/genetics , Nymph/growth & development , Nymph/virology , Phylogeny , Rhipicephalus/growth & development , Rhipicephalus/virology , Turkey
13.
Ticks Tick Borne Dis ; 11(5): 101449, 2020 09.
Article in English | MEDLINE | ID: mdl-32723639

ABSTRACT

In 2015 a long-term, nationwide tick and tick-borne pathogen (TBP) monitoring project was started by the Finnish Tick Project and the Finnish Research Station network (RESTAT), with the goal of producing temporally and geographically extensive data regarding exophilic ticks in Finland. In the current study, we present results from the first four years of this collaboration. Ticks were collected by cloth dragging from 11 research stations across Finland in May-September 2015-2018 (2012-2018 in Seili). Collected ticks were screened for twelve different pathogens by qPCR: Borrelia afzelii, Borrelia garinii, Borrelia valaisiana, Borrelia burgdorferi sensu stricto, Borrelia miyamotoi, Babesia spp., Anaplasma phagocytophilum, Rickettsia spp., Candidatus Neoehrlichia mikurensis, Francisella tularensis, Bartonella spp. and tick-borne encephalitis virus (TBEV). Altogether 15 067 Ixodes ricinus and 46 Ixodes persulcatus were collected during 68 km of dragging. Field collections revealed different seasonal activity patterns for the two species. The activity of I. persulcatus adults (only one nymph detected) was unimodal, with activity only in May-July, whereas Ixodes ricinus was active from May to September, with activity peaks in September (nymphs) or July-August (adults). Overall, tick densities were higher during the latter years of the study. Borrelia burgdorferi sensu lato were the most common pathogens detected, with 48.9 ±â€¯8.4% (95% Cl) of adults and 25.3 ±â€¯4.4% of nymphs carrying the bacteria. No samples positive for F. tularensis, Bartonella or TBEV were detected. This collaboration project involving the extensive Finnish Research Station network has ensured enduring and spatially extensive, long-term tick data collection to the foreseeable future.


Subject(s)
Babesia/isolation & purification , Encephalitis Viruses, Tick-Borne/isolation & purification , Gram-Negative Bacteria/isolation & purification , Ixodes/microbiology , Animals , Epidemiological Monitoring , Finland , Ixodes/growth & development , Ixodes/virology , Nymph/growth & development , Nymph/microbiology , Nymph/virology , Population Dynamics , Seasons
14.
J Insect Sci ; 20(2)2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32282036

ABSTRACT

We report a new positive-sense single-stranded RNA (ss RNA+) virus from the brown citrus aphid Aphis citricidus. The 20,300 nucleotide (nt)-long viral genome contains five open-reading frames and encodes six conserved domains (TM2, 3CLpro, TM3, RdRp, Zm, and HEL1). Phylogenetic analysis and amino acid sequence analysis revealed this virus might belong to an unassigned genus in the family Mesoniviridae. The presence of the virus was also confirmed in the field population. Importantly, analysis of the virus-derived small RNAs showed a 22-nt peak, implying that viral infection triggers the small interfering RNA pathway as antiviral immunity in aphids. This is the first report of a mesonivirus in invertebrates other than mosquitoes.


Subject(s)
Aphids/virology , Host Specificity , Nidovirales/physiology , RNA, Viral/analysis , Animals , Aphids/growth & development , Nymph/growth & development , Nymph/virology , Plant Viruses/physiology , Sequence Analysis, RNA
15.
Parasitol Res ; 119(4): 1387-1392, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32211989

ABSTRACT

Southern Germany is known as tick-borne encephalitis (TBE) risk area; however, the north of the country is almost free of human TBE cases. Due to its location in the transition zone between TBE risk areas and areas with only sporadic cases, Saxony is of importance in the surveillance of TBE. Roe deer (Capreolus capreolus), showing high seroprevalence of TBE virus (TBEV) antibodies, are considered to be sentinels for TBE risk assessment. Thus, roe deer could be used as indicators helping to better understand the focality of the TBEV in nature and as a possible source to isolate TBEV. Therefore, the aims of this study were to examine roe deer coats for the presence of ticks to establish the tick burden and to detect the TBEV in attached ticks. One hundred thirty-four roe deer coats were provided by hunters from the Hunting Association in Saxony (August 2017-January 2019). The coats were frozen at - 80 °C and after de-freezing examined on both sides-inside and outside. Attached and nonattached ticks were collected, morphologically identified and tested using real-time RT-PCR for the presence of TBEV. In total, 1279 ticks were found on 48 coats. The predominant species was Ixodes ricinus (99.76%; n = 1276). Three remaining specimens were Ixodes spp. (0.16%, 1 female and 1 nymph) and Dermacentor reticulatus (0.08%, 1 male). The average infestation rate was 26.7 (SD = 69.5), with maximum of 439 ticks per animal. Females were the dominant life stage of ticks (n = 536; 42%), followed by nymphs (n = 397; n = 31.1%), males (n = 175; 13.7%), and larvae (n = 168; 13.2%). Only half of collected ticks were attached (n = 662; 51.8%). TBEV was detected only in one tick out of 1279 tested ticks. It was a female infesting a roe deer from Saxon Switzerland-East Ore Mountain. The results show that the method used in this study is not sufficient as a sentinel marker to predict TBEV spreading in nature. Although previous studies demonstrated the usefulness of serological testing of roe deer in order to trace TBE-endemic regions, using ticks attached to them to get virus isolates is not productive.


Subject(s)
Deer/parasitology , Dermacentor/classification , Encephalitis, Tick-Borne/veterinary , Ixodes/classification , Parasite Load/methods , Animals , Dermacentor/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/parasitology , Female , Germany/epidemiology , Humans , Ixodes/virology , Larva/virology , Male , Nymph/virology , Seroepidemiologic Studies , Switzerland/epidemiology
16.
Ticks Tick Borne Dis ; 11(4): 101414, 2020 07.
Article in English | MEDLINE | ID: mdl-32173297

ABSTRACT

Tick-borne encephalitis virus (TBEV; family Flaviviridae) is the most medically important tick-borne virus in Europe and Asia. Ixodes ricinus and I. persulcatus ticks are considered to be the main vector ticks of TBEV in nature due to their specific ecological associations with the vertebrate hosts. Nevertheless, recent TBEV prevalence studies in ticks suggest that Dermacentor reticulatus ticks might play a relevant role in the maintenance of TBEV in nature. The goal of this study was to evaluate the vector competency of D. reticulatus for TBEV through experimental tick infections and comparative in vivo transmission studies involving D. reticulatus and I. ricinus ticks. We observed that after a transcoxal micro-capillary inoculation, adult female D. reticulatus ticks efficiently replicated TBEV during the observed period of 21 days. The mean virus load reached up to 2.5 × 105 gene copies and 6.4 × 104 plaque forming units per tick. The infected D. reticulatus ticks were able to transmit the virus to mice. The course of infection in mice was comparable to the infection after a tick bite by I. ricinus while the virus spread and clearance was slightly faster. Moreover, D. reticulatus ticks were capable of tick-to-tick non-viraemic transmission of TBEV to the Haemaphysalis inermis nymphs during co-feeding on the same animal. The co-feeding transmission efficiency was overall slightly lower (up to 54 %) in comparison with I. ricinus (up to 94 %) and peaked 1 day later, at day 3. In conclusion, our study demonstrated that D. reticulatus is a biologically effective vector of TBEV. In line with the recent reports of its high TBEV prevalence in nature, our data indicate that in some endemic foci, D. reticulatus might be an underrecognized TBEV vector which contributes to the expansion of the TBEV endemic areas.


Subject(s)
Arachnid Vectors/physiology , Dermacentor/physiology , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/transmission , Animals , Arachnid Vectors/growth & development , Arachnid Vectors/virology , Dermacentor/growth & development , Dermacentor/virology , Female , Mice , Mice, Inbred BALB C , Nymph/growth & development , Nymph/physiology , Nymph/virology
17.
Parasit Vectors ; 13(1): 106, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32106890

ABSTRACT

BACKGROUND: Ixodes ricinus is the most common tick species in Europe and the main vector for Borrelia burgdorferi (sensu lato) and tick-borne encephalitis virus (TBEV). It is involved also in the transmission of Borrelia miyamotoi, a relapsing fever spirochete that causes health disorders in humans. Little is known regarding the circulation of Borrelia species and the natural foci of TBEV in north-eastern Germany. The goal of this study was to investigate the infection rates of Borrelia spp. and of TBEV in I. ricinus ticks from north-eastern Germany. METHODS: Ticks were collected by flagging from 14 forest sites in Mecklenburg-Western Pomerania between April and October 2018. RNA and DNA extraction was performed from individual adult ticks and from pools of 2-10 nymphs. Real time reverse transcription PCR (RT-qPCR) targeted the 3' non-coding region of TBEV, while DNA of Borrelia spp. was tested by nested PCR for the amplification of 16S-23S intergenic spacer. Multilocus sequence typing (MLST) was performed on B. miyamotoi isolates. RESULTS: In total, 2407 ticks were collected (239 females, 232 males and 1936 nymphs). Female and male I. ricinus ticks had identical infection rates (both 12.1%) for Borrelia spp., while nymphal pools showed a minimum infection rate (MIR) of 3.3%. Sequencing revealed four Borrelia species: B. afzelii, B. garinii, B. valaisiana and B. miyamotoi. Borrelia afzelii had the highest prevalence in adult ticks (5.5%) and nymphs (MIR of 1.8%). Borrelia miyamotoi was identified in 3.0% of adults and registered the MIR of 0.8% in nymphs. Borrelia valaisiana was confirmed in 2.5% adult ticks and nymphs had the MIR of 0.7%, while B. garinii was present in 1.1% of adults and showed a MIR of 0.1% in nymphs. The MLST of B. miyamotoi isolates showed that they belong to sequence type 635. No tick sample was positive after RT-qPCR for TBEV RNA. CONCLUSIONS: The prevalence of B. miyamotoi in I. ricinus ticks registered similar levels to other reports from Europe suggesting that this agent might be well established in the local tick population. The detection of B. burgdorferi (s.l.) indicates a constant circulation in tick populations from this region.


Subject(s)
Borrelia burgdorferi/genetics , Borrelia burgdorferi/isolation & purification , Borrelia/isolation & purification , Ticks/microbiology , Ticks/virology , Animals , Borrelia/classification , Borrelia/genetics , Encephalitis Viruses, Tick-Borne , Female , Forests , Germany , Ixodes/microbiology , Ixodes/virology , Male , Multilocus Sequence Typing , Nymph/microbiology , Nymph/virology , Real-Time Polymerase Chain Reaction
18.
BMC Infect Dis ; 20(1): 34, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31931734

ABSTRACT

BACKGROUND: Impact of climate change on tick-borne encephalitis (TBE) prevalence in the tick-host enzootic cycle in a given region depends on how the region-specific climate change patterns influence tick population development processes and tick-borne encephalitis virus (TBEV) transmission dynamics involving both systemic and co-feeding transmission routes. Predicting the transmission risk of TBEV in the enzootic cycle with projected climate conditions is essential for planning public health interventions including vaccination programs to mitigate the TBE incidence in the inhabitants and travelers. We have previously developed and validated a mathematical model for retroactive analysis of weather fluctuation on TBE prevalence in Hungary, and we aim to show in this research that this model provides an effective tool for projecting TBEV transmission risk in the enzootic cycle. METHODS: Using the established model of TBEV transmission and the climate predictions of the Vas county in western Hungary in 2021-2050 and 2071-2100, we quantify the risk of TBEV transmission using a series of summative indices - the basic reproduction number, the duration of infestation, the stage-specific tick densities, and the accumulated (tick) infections due to co-feeding transmission. We also measure the significance of co-feeding transmission by observing the cumulative number of new transmissions through the non-systemic transmission route. RESULTS: The transmission potential and the risk in the study site are expected to increase along with the increase of the temperature in 2021-2050 and 2071-2100. This increase will be facilitated by the expected extension of the tick questing season and the increase of the numbers of susceptible ticks (larval and nymphal) and the number of infected nymphal ticks co-feeding on the same hosts, leading to compounded increase of infections through the non-systemic transmission. CONCLUSIONS: The developed mathematical model provides an effective tool for predicting TBE prevalence in the tick-host enzootic cycle, by integrating climate projection with emerging knowledge about the region-specific tick ecological and pathogen enzootic processes (through model parametrization fitting to historical data). Model projects increasing co-feeding transmission and prevalence of TBEV in a recognized TBE endemic region, so human risk of TBEV infection is likely increasing unless public health interventions are enhanced.


Subject(s)
Climate Change , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/transmission , Ixodes/virology , Animals , Encephalitis, Tick-Borne/virology , Endemic Diseases , Humans , Hungary/epidemiology , Incidence , Ixodes/physiology , Larva/virology , Models, Theoretical , Nymph/virology , Prevalence , Seasons , Temperature , Weather
19.
Ticks Tick Borne Dis ; 10(6): 101265, 2019 10.
Article in English | MEDLINE | ID: mdl-31447316

ABSTRACT

Here, we report the first confirmed autochthonous tick-borne encephalitis case diagnosed in Moscow in 2016 and describe the detection of tick-borne encephalitis virus (TBEV) in ticks and small mammals in a Moscow park. The paper includes data from two patients who were bitten by TBEV-infected ticks in Moscow city; one of these cases led to the development of the meningeal form of TBE. Both TBEV-infected ticks attacked patients in the same area. We collected ticks and trapped small mammals in this area in 2017. All samples were screened for the presence of pathogens causing tick-borne diseases by PCR. The TBEV-positive ticks and small mammals' tissue samples were subjected to virus isolation. The sequencing of the complete polyprotein gene of the positive samples was performed. A total of 227 questing ticks were collected. TBEV was detected in five specimens of Ixodes ricinus. We trapped 44 small mammals, mainly bank voles (Myodes glareolus) and pygmy field mice (Apodemus uralensis). Two samples of brain tissue from bank voles yielded a positive signal in RT-PCR for TBEV. We obtained six virus isolates from the ticks and brain tissue of a bank vole. Complete genome sequencing showed that the obtained isolates belong to the European subtype and have low diversity with sequence identities as high as 99.9%. GPS tracking showed that the maximum distance between the exact locations where the TBEV-positive ticks were collected was 185 m. We assume that the forest park had been free of TBEV and that the virus was recently introduced.


Subject(s)
Arachnid Vectors/virology , Arvicolinae , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/veterinary , Ixodes/virology , Murinae , Rodent Diseases/epidemiology , Adult , Animals , Arachnid Vectors/growth & development , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Female , Humans , Ixodes/growth & development , Larva/growth & development , Larva/virology , Male , Moscow/epidemiology , Nymph/growth & development , Nymph/virology , Rodent Diseases/virology , Treatment Outcome
20.
Parasit Vectors ; 12(1): 338, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31288866

ABSTRACT

The taiga tick, Ixodes persulcatus, has previously been limited to eastern Europe and northern Asia, but recently its range has expanded to Finland and northern Sweden. The species is of medical importance, as it, along with a string of other pathogens, may carry the Siberian and Far Eastern subtypes of tick-borne encephalitis virus. These subtypes appear to cause more severe disease, with higher fatality rates than the central European subtype. Until recently, the meadow tick, Dermacentor reticulatus, has been absent from Scandinavia, but has now been detected in Denmark, Norway and Sweden. Dermacentor reticulatus carries, along with other pathogens, Babesia canis and Rickettsia raoultii. Babesia canis causes severe and often fatal canine babesiosis, and R. raoultii may cause disease in humans. We collected 600 tick nymphs from each of 50 randomly selected sites in Denmark, southern Norway and south-eastern Sweden in August-September 2016. We tested pools of 10 nymphs in a Fluidigm real time PCR chip to screen for I. persulcatus and D. reticulatus, as well as tick-borne pathogens. Of all the 30,000 nymphs tested, none were I. persulcatus or D. reticulatus. Our results suggest that I. persulcatus is still limited to the northern parts of Sweden, and have not expanded into southern parts of Scandinavia. According to literature reports and supported by our screening results, D. reticulatus may yet only be an occasional guest in Scandinavia without established populations.


Subject(s)
Dermacentor/physiology , Ixodes/physiology , Animal Distribution , Animals , Arthropod Vectors/microbiology , Arthropod Vectors/parasitology , Babesiosis/prevention & control , Dermacentor/microbiology , Dermacentor/parasitology , Dogs , Encephalitis, Tick-Borne/prevention & control , Epidemiological Monitoring , Grassland , Ixodes/microbiology , Ixodes/parasitology , Norway/epidemiology , Nymph/virology , Scandinavian and Nordic Countries/epidemiology , Sweden/epidemiology , Tick Infestations/epidemiology , Tick-Borne Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...