Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Reprod Domest Anim ; 59(8): e14706, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39157940

ABSTRACT

The present study describes the morphological and immunohistochemical characteristics of a case of diffuse seminoma in a 16-year-old male mixed-breed horse. According to the owner, the animal's left testicle had been gradually increasing in size over a period of 2 months. On palpation, the testicle had a firm consistency, with no sensitivity to digital pressure, was adhered to the scrotum and measuring 16 cm × 8 cm. In the ultrasound examination, it presented a heterogeneous texture and areas of hypoechogenic echogenicity without visualization of the mediastinum. Therefore, the bilateral orchiectomy was performed. After the surgical procedure, it was found that the affected testicle presented a firm mass measuring 9 cm × 7 cm × 3.5 cm. Histologically, a multilobulated, non-encapsulated and invasive tumour mass was found, which replaced the seminiferous tubules, consisting of polygonal cells arranged in a mantle that varied from cohesive to loosely cohesive, supported by a scarce fibrous stroma. In the immunohistochemical examination, the neoplastic cells showed positive immunolabelling for OCT4 and C-KIT. In this report, the physical examination combined with the ultrasonographic examination were fundamental to the therapeutic management of the case, and the final diagnosis was made after histopathological and immunohistochemical tests.


Subject(s)
Horse Diseases , Orchiectomy , Seminoma , Testicular Neoplasms , Male , Animals , Seminoma/veterinary , Seminoma/pathology , Seminoma/surgery , Horses , Testicular Neoplasms/veterinary , Testicular Neoplasms/pathology , Testicular Neoplasms/surgery , Orchiectomy/veterinary , Horse Diseases/pathology , Horse Diseases/surgery , Horse Diseases/diagnostic imaging , Ultrasonography/veterinary , Immunohistochemistry/veterinary , Proto-Oncogene Proteins c-kit/analysis , Proto-Oncogene Proteins c-kit/metabolism , Octamer Transcription Factor-3/analysis , Octamer Transcription Factor-3/metabolism
2.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928444

ABSTRACT

Long non-coding RNAs (lncRNAs) are nucleotide sequences that participate in different biological processes and are associated with different pathologies, including cancer. Long intergenic non-protein-coding RNA 662 (LINC00662) has been reported to be involved in different cancers, including colorectal, prostate, and breast cancer. However, its role in gallbladder cancer has not yet been described. In this article, we hypothesize that LINC00662 has an important role in the acquisition of aggressiveness traits such as a stem-like phenotype, invasion, and chemoresistance in gallbladder cancer. Here, we show that LINC00662 is associated with larger tumor size and lymph node metastasis in patients with gallbladder cancer. Furthermore, we show that the overexpression of LINC00662 promotes an increase in CD133+/CD44+ cell populations and the expression of stemness-associated genes. LINC00662 promotes greater invasive capacity and the expression of genes associated with epithelial-mesenchymal transition. In addition, the expression of LINC00662 promotes resistance to cisplatin and 5-fluorouracil, associated with increased expression of chemoresistance-related ATP-binding cassette (ABC) transporters in gallbladder cancer (GBC) cell lines. Finally, we show that the mechanism by which LINC00662 exerts its function is through a decrease in microRNA 335-5p (miR-335-5p) and an increase in octamer-binding transcription factor 4 (OCT4) in GBC cells. Thus, our data allow us to propose LINC00662 as a biomarker of poor prognosis and a potential therapeutic target for patients with GBC.


Subject(s)
Gallbladder Neoplasms , Gene Expression Regulation, Neoplastic , MicroRNAs , Octamer Transcription Factor-3 , RNA, Long Noncoding , Humans , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/pathology , Gallbladder Neoplasms/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Female , Epithelial-Mesenchymal Transition/genetics , Drug Resistance, Neoplasm/genetics , Male , Neoplasm Invasiveness , Cisplatin/pharmacology , Middle Aged , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Fluorouracil/pharmacology , Lymphatic Metastasis
3.
Sci Rep ; 14(1): 10420, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38710730

ABSTRACT

In the mouse embryo, the transition from the preimplantation to the postimplantation epiblast is governed by changes in the gene regulatory network (GRN) that lead to transcriptional, epigenetic, and functional changes. This transition can be faithfully recapitulated in vitro by the differentiation of mouse embryonic stem cells (mESCs) to epiblast-like cells (EpiLCs), that reside in naïve and formative states of pluripotency, respectively. However, the GRN that drives this conversion is not fully elucidated. Here we demonstrate that the transcription factor OCT6 is a key driver of this process. Firstly, we show that Oct6 is not expressed in mESCs but is rapidly induced as cells exit the naïve pluripotent state. By deleting Oct6 in mESCs, we find that knockout cells fail to acquire the typical morphological changes associated with the formative state when induced to differentiate. Additionally, the key naïve pluripotency TFs Nanog, Klf2, Nr5a2, Prdm14, and Esrrb were expressed at higher levels than in wild-type cells, indicating an incomplete dismantling of the naïve pluripotency GRN. Conversely, premature expression of Oct6 in naïve cells triggered a rapid morphological transformation mirroring differentiation, that was accompanied by the upregulation of the endogenous Oct6 as well as the formative genes Sox3, Zic2/3, Foxp1, Dnmt3A and FGF5. Strikingly, we found that OCT6 represses Nanog in a bistable manner and that this regulation is at the transcriptional level. Moreover, our findings also reveal that Oct6 is repressed by NANOG. Collectively, our results establish OCT6 as a key TF in the dissolution of the naïve pluripotent state and support a model where Oct6 and Nanog form a double negative feedback loop which could act as an important toggle mediating the transition to the formative state.


Subject(s)
Cell Differentiation , Gene Regulatory Networks , Mouse Embryonic Stem Cells , Nanog Homeobox Protein , Animals , Mice , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Cell Differentiation/genetics , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Gene Expression Regulation, Developmental , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Germ Layers/metabolism , Germ Layers/cytology , Mice, Knockout
4.
BMC Res Notes ; 16(1): 309, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37919788

ABSTRACT

AKT/PKB is a kinase crucial for pluripotency maintenance in pluripotent stem cells. Multiple post-translational modifications modulate its activity. We have previously demonstrated that AKT1 induces the expression of the pluripotency transcription factor Nanog in a SUMOylation-dependent manner in mouse embryonic stem cells. Here, we studied different cellular contexts and main candidates that could mediate this induction. Our results strongly suggest the pluripotency transcription factors OCT4 and SOX2 are not essential mediators. Additionally, we concluded that this induction takes place in different pluripotent contexts but not in terminally differentiated cells. Finally, the cross-matching analysis of ESCs, iPSCs and MEFs transcriptomes and AKT1 phosphorylation targets provided new clues about possible factors that could be involved in the SUMOylation-dependent Nanog induction by AKT.


Subject(s)
Proto-Oncogene Proteins c-akt , Sumoylation , Animals , Mice , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Differentiation/genetics , Transcription Factors/metabolism , Octamer Transcription Factor-3/genetics , Homeodomain Proteins/genetics
5.
Genes (Basel) ; 14(9)2023 08 26.
Article in English | MEDLINE | ID: mdl-37761837

ABSTRACT

The transcription factors Oct4, Sox2, Klf4, and c-Myc enable the reprogramming of somatic cells into induced pluripotent cells. Reprogramming generates newly differentiated cells for potential therapies in cancer, neurodegenerative diseases, and rejuvenation processes. In cancer therapies, these transcription factors lead to a reduction in the size and aggressiveness of certain tumors, such as sarcomas, and in neurodegenerative diseases, they enable the production of dopaminergic cells in Parkinson's disease, the replacement of affected neuronal cells in olivopontocerebellar atrophy, and the regeneration of the optic nerve. However, there are limitations, such as an increased risk of cancer development when using Klf4 and c-Myc and the occurrence of abnormal dyskinesias in the medium term, possibly generated by the uncontrolled growth of differentiated dopaminergic cells and the impairment of the survival of the new cells. Therefore, the Yamanaka transcription factors have shown therapeutic potential through cell reprogramming for some carcinomas, neurodegenerative diseases, and rejuvenation. However, the limitations found in the studies require further investigation before the use of these transcription factors in humans.


Subject(s)
Carcinoma , Sarcoma , Humans , Aggression , Cell Differentiation/genetics , Laboratories , Octamer Transcription Factor-3/genetics , Kruppel-Like Factor 4 , SOXB1 Transcription Factors , Proto-Oncogene Proteins c-myc
6.
Stem Cell Res Ther ; 14(1): 42, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927767

ABSTRACT

BACKGROUND: The generation of induced pluripotent stem cells has opened the field of study for stem cell research, disease modeling and drug development. However, the epigenetic signatures present in somatic cells make cell reprogramming still an inefficient process. This epigenetic memory constitutes an obstacle in cellular reprogramming. Here, we report the effect of hydralazine (HYD) and valproic acid (VPA), two small molecules with proven epigenetic activity, on the expression of pluripotency genes in adult (aHF) and neonatal (nbHF) human fibroblasts. METHODS: aHF and nbHF were treated with HYD and/or VPA, and viability and gene expression assays for OCT4, NANOG, c-MYC, KLF4, DNMT1, TET3, ARID1A and ARID2 by quantitative PCR were performed. aHF and nbHF were transfected with episomal plasmid bearing Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) and exposed to HYD and VPA to determine the reprogramming efficiency. Methylation sensitive restriction enzyme (MSRE) qPCR assays were performed on OCT4 and NANOG promoter regions. Immunofluorescence assays were carried out for pluripotency genes on iPSC derived from aHF and nbHF. RESULTS: HYD upregulated the expression of OCT4 (2.5-fold) and NANOG (fourfold) genes but not c-Myc or KLF4 in aHF and had no significant effect on the expression of all these genes in nbHF. VPA upregulated the expression of NANOG (twofold) in aHF and c-MYC in nbHF, while it downregulated the expression of NANOG in nbHF. The combination of HYD and VPA canceled the OCT4 and NANOG overexpression induced by HYD in aHF, while it reinforced the effects of VPA on c-Myc expression in nbHF. The HYD-induced overexpression of OCT4 and NANOG in aHDF was not dependent on demethylation of gene promoters, and no changes in the reprogramming efficiency were observed in both cell populations despite the downregulation of epigenetic genes DNMT1, ARID1A, and ARID2 in nbHF. CONCLUSIONS: Our data provide evidence that HYD regulates the expression of OCT4 and NANOG pluripotency genes as well as ARID1A and ARID2 genes, two members of the SWI/SNF chromatin remodeling complex family, in normal human dermal fibroblasts.


Subject(s)
Chromatin Assembly and Disassembly , Induced Pluripotent Stem Cells , Infant, Newborn , Humans , Kruppel-Like Factor 4 , Cellular Reprogramming/genetics , Induced Pluripotent Stem Cells/metabolism , Fibroblasts/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism
7.
PeerJ ; 11: e14349, 2023.
Article in English | MEDLINE | ID: mdl-36655039

ABSTRACT

Background: Ameloblastoma (AME) is characterized by a locally invasive growth pattern. In an attempt to justify the aggressiveness of neoplasms, the investigation of the role of stem cells has gained prominence. The SOX-2, NANOG and OCT4 proteins are important stem cell biomarkers. Methodology: To verify the expression of these proteins in tissue samples of AME, dentigerous cyst (DC) and dental follicle (DF), immunohistochemistry was performed and indirect immunofluorescence were performed on the human AME (AME-hTERT) cell line. Results: Revealed expression of SOX-2, NANOG and OCT4 in the tissue samples and AME-hTERT lineage. Greater immunostaining of the studied proteins was observed in AME compared to DC and DF (p < 0.001). Conclusions: The presence of biomarkers indicates a probable role of stem cells in the genesis and progression of AME.


Subject(s)
Ameloblastoma , Neoplastic Stem Cells , Humans , Ameloblastoma/genetics , Ameloblastoma/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Immunohistochemistry , Nanog Homeobox Protein/genetics , Stem Cells/metabolism , Biomarkers/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Neoplastic Stem Cells/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism
8.
BMC Biol ; 20(1): 6, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996451

ABSTRACT

BACKGROUND: The cytoskeleton is a key component of the system responsible for transmitting mechanical cues from the cellular environment to the nucleus, where they trigger downstream responses. This communication is particularly relevant in embryonic stem (ES) cells since forces can regulate cell fate and guide developmental processes. However, little is known regarding cytoskeleton organization in ES cells, and thus, relevant aspects of nuclear-cytoskeletal interactions remain elusive. RESULTS: We explored the three-dimensional distribution of the cytoskeleton in live ES cells and show that these filaments affect the shape of the nucleus. Next, we evaluated if cytoskeletal components indirectly modulate the binding of the pluripotency transcription factor OCT4 to chromatin targets. We show that actin depolymerization triggers OCT4 binding to chromatin sites whereas vimentin disruption produces the opposite effect. In contrast to actin, vimentin contributes to the preservation of OCT4-chromatin interactions and, consequently, may have a pro-stemness role. CONCLUSIONS: Our results suggest roles of components of the cytoskeleton in shaping the nucleus of ES cells, influencing the interactions of the transcription factor OCT4 with the chromatin and potentially affecting pluripotency and cell fate.


Subject(s)
Actins , Chromatin , Actins/metabolism , Cell Differentiation , Chromatin/metabolism , Cytoskeleton/metabolism , Embryonic Stem Cells/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Vimentin/metabolism
9.
BMC Cancer ; 21(1): 1248, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34798868

ABSTRACT

BACKGROUND: Glioblastoma is a fatal brain tumour with a poor patient survival outcome. Hypoxia has been shown to reprogram cells towards a stem cell phenotype associated with self-renewal and drug resistance properties. Activation of hypoxia-inducible factors (HIFs) helps in cellular adaptation mechanisms under hypoxia. Similarly, miRNAs are known to be dysregulated in GBM have been shown to act as critical mediators of the hypoxic response and to regulate key processes involved in tumorigenesis. METHODS: Glioblastoma (GBM) cells were exposed to oxygen deprivation to mimic a tumour microenvironment and different cell aspects were analysed such as morphological changes and gene expression of miRNAs and survival genes known to be associated with tumorigenesis. RESULTS: It was observed that miR-128a-3p, miR-34-5p, miR-181a/b/c, were down-regulated in 6 GBM cell lines while miR-17-5p and miR-221-3p were upregulated when compared to a non-GBM control. When the same GBM cell lines were cultured under hypoxic microenvironment, a further 4-10-fold downregulation was observed for miR-34-5p, miR-128a-3p and 181a/b/c while a 3-6-fold upregulation was observed for miR-221-3p and 17-5p for most of the cells. Furthermore, there was an increased expression of SOX2 and Oct4, GLUT-1, VEGF, Bcl-2 and survivin, which are associated with a stem-like state, increased metabolism, altered angiogenesis and apoptotic escape, respectively. CONCLUSION: This study shows that by mimicking a tumour microenvironment, miRNAs are dysregulated, stemness factors are induced and alteration of the survival genes necessary for the cells to adapt to the micro-environmental factors occurs. Collectively, these results might contribute to GBM aggressiveness.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , MicroRNAs/metabolism , Tumor Hypoxia/genetics , Tumor Microenvironment/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Down-Regulation , Genotype , Glioblastoma/metabolism , Glioblastoma/pathology , Glucose Transporter Type 1/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Octamer Transcription Factor-3/metabolism , Phenotype , Proto-Oncogene Proteins c-bcl-2/metabolism , SOXB1 Transcription Factors/metabolism , Survivin/metabolism , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism
10.
Mol Biol Rep ; 48(10): 6863-6870, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34468911

ABSTRACT

BACKGROUND: Human endometrium harbors stem/progenitor cells (SPCs) that may contribute to the establishment of endometriosis when seeded outside the uterus. Oct-4, C-kit and Musashi-1 are some of the many proteins used to characterize SPCs, but their association with endometriosis is uncertain. OBJECTIVE AND DESIGN: In this study, specimens of normal endometrium (n = 12), eutopic endometrium from women with endometriosis (n = 9), superficial peritoneal endometriosis (SUP, n = 12) and deep endometriosis (DE, n = 13) lesions were evaluated for localization and intensity of immunostaining for Oct-4, C-kit and Musashi-1. RESULTS: The three markers were abundantly expressed in normal endometrium, eutopic endometrium from endometriosis patients, SUP and DE specimens. Oct-4 and C-kit expression did not vary across groups as regards intensity or frequency. C-kit staining signal was seldom detected in vascular endothelium of normal or eutopic endometrium from endometriosis patients; however, it was positive in 67% of the SUP lesions and in 25% of the DE lesions (p = 0.042). Musashi-1 was expressed in some endometriotic glands as cell clusters, but its signal was similar between the four types of tissue (p = 0.971) CONCLUSION: The wide distribution of Oct-4, C-kit and Musashi-1 in endometria of patients with and without endometriosis and in SUP and DE endometriotic lesions suggests that these markers are not suitable for the in situ characterization of endometrial SPCs and should not be taken as surrogates for the study of SPCs in the pathogenesis of endometriosis.


Subject(s)
Endometriosis/metabolism , Nerve Tissue Proteins/metabolism , Octamer Transcription Factor-3/metabolism , Proto-Oncogene Proteins c-kit/metabolism , RNA-Binding Proteins/metabolism , Stem Cells/metabolism , Adult , Biomarkers/metabolism , Biopsy , Endometriosis/pathology , Female , Humans , Immunohistochemistry , Middle Aged
11.
Braz Oral Res ; 35: e073, 2021.
Article in English | MEDLINE | ID: mdl-34161412

ABSTRACT

The aim of this study was to identify tumor parenchyma cells exhibiting immunohistochemical profile of stem cells by evaluating the immunoreactivity of OCT4 and CD44 in a number of cases of salivary gland neoplasms. The sample consisted of 20 pleomorphic adenomas, 20 mucoepidermoid carcinomas, and 20 adenoid cystic carcinomas located in major and minor salivary glands. The expression of OCT4 and CD44 was evaluated by the percentage of positive cells and the intensity of expression. All studied cases showed positive expression of OCT4 and CD44 and higher values than the control groups. For OCT4, luminal and non-luminal cells were immunostained in the case of pleomorphic adenomas and adenoid cystic carcinomas. Moreover, the immunoreactivity of CD44 was particularly evident in the non-luminal cells of these lesions. In mucoepidermoid carcinomas, there was immunoreactivity for both markers in squamous and intermediate cells and absence of staining in mucous cells. For both markers, a significantly higher immunostaining was verified in neoplasms located in the major salivary glands compared with lesions in minor salivary glands (p<0.001). In the total sample and in minor salivary glands, malignant neoplasms exhibited higher immunoreactivity for OCT4 than pleomorphic adenoma. A significant moderate positive correlation (r = 0.444 and p ≤ 0.001) was found between OCT4 and CD44 immunoexpression in the total sample. The high expression of OCT4 and CD44 may indicate that these proteins play an important role in identifying tumor stem cells.


Subject(s)
Adenoma, Pleomorphic , Carcinoma, Adenoid Cystic , Carcinoma, Mucoepidermoid , Hyaluronan Receptors/genetics , Octamer Transcription Factor-3/genetics , Salivary Gland Neoplasms , Humans , Immunohistochemistry
12.
FEBS Lett ; 595(14): 1949-1961, 2021 07.
Article in English | MEDLINE | ID: mdl-34056710

ABSTRACT

In embryonic stem (ES) cells, oxidative stress control is crucial for genomic stability, self-renewal, and cell differentiation. Heme oxygenase-1 (HO-1) is a key player of the antioxidant system and is also involved in stem cell differentiation and pluripotency acquisition. We found that the HO-1 gene is expressed in ES cells and induced after promoting differentiation. Moreover, downregulation of the pluripotency transcription factor (TF) OCT4 increased HO-1 mRNA levels in ES cells, and analysis of ChIP-seq public data revealed that this TF binds to the HO-1 gene locus in pluripotent cells. Finally, ectopic expression of OCT4 in heterologous systems repressed a reporter carrying the HO-1 gene promoter and the endogenous gene. Hence, this work highlights the connection between pluripotency and redox homeostasis.


Subject(s)
Gene Expression Regulation , Heme Oxygenase-1/genetics , Membrane Proteins/genetics , Mouse Embryonic Stem Cells/metabolism , Octamer Transcription Factor-3/genetics , Pluripotent Stem Cells/metabolism , RNA, Messenger/genetics , Animals , Benzamides/pharmacology , Cell Differentiation/drug effects , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Embryo, Mammalian , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heme Oxygenase-1/metabolism , Luciferases/genetics , Luciferases/metabolism , Membrane Proteins/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , NIH 3T3 Cells , Nanog Homeobox Protein/antagonists & inhibitors , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/antagonists & inhibitors , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Promoter Regions, Genetic , Pyridines/pharmacology , Pyrimidines/pharmacology , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , SOXB1 Transcription Factors/antagonists & inhibitors , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Signal Transduction , Transcription, Genetic
13.
Clin Transl Oncol ; 23(9): 1743-1751, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33721187

ABSTRACT

OBJECTIVES: The promoting roles of cyclin dependent kinase 1 (CDK1) have been revealed in various tumors, however, its effects in the progression of cancer stem cells are still confusing. This work aims to explore the roles of CDK1 in regulating the stemness of lung cancer cells. METHODS: Online dataset analysis was performed to evaluate the correlation between CDK1 exression and the survival of lung cancer patients. RT-qPCR, western blot, cell viability, sphere-formation analysis and ALDH activity detection were used to investigate the roles of CDK1 on lung cancer cell stemness, viability and chemotherapeutic sensitivity. Immunocoprecipitation (Co-IP) analysis and rescuing experiments were performed to reveal the underlying mechanisms contributing to CDK1-mediated effects on lung cancer cell stemness. RESULTS: CDK1 mRNA expression was negatively correlated with the overall survival of lung cancer patients and remarkably increased in tumor spheres formed by lung cancer cells compared to the parental cells. Additionally, CDK1 positively regulated the stemness of lung cancer cells. Mechanistically, CDK1 could interact with Sox2 protein, but not other stemness markers (Oct4, Nanog and CD133). Furthermore, CDK1 increased the phosphorylation, cytoplasm-nuclear translocation and transcriptional activity of Sox2 protein in lung cancer cells. Moreover, CDK1 positively regulated the stemness of lung cancer cells in a Sox2-dependent manner. Finally, we revealed that inhibition of CDK1 enhanced the chemotherapeutic sensitivity, which was also rescued by Sox2 overexpression. CONCLUSIONS: This work reveals a novel CDK1/Sox2 axis responsible for maintaining the stemness of lung cancer cells.


Subject(s)
CDC2 Protein Kinase/metabolism , Lung Neoplasms/pathology , Neoplastic Stem Cells/pathology , SOXB1 Transcription Factors/metabolism , A549 Cells , AC133 Antigen/metabolism , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Aldehyde Dehydrogenase/metabolism , CDC2 Protein Kinase/antagonists & inhibitors , CDC2 Protein Kinase/genetics , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Survival , Disease Progression , Humans , Immunoprecipitation/methods , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Nanog Homeobox Protein/metabolism , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/drug effects , Octamer Transcription Factor-3/metabolism , Phosphorylation , RNA, Messenger/metabolism , Spheroids, Cellular/pathology
14.
Braz. oral res. (Online) ; 35: e073, 2021. tab, graf
Article in English | LILACS, BBO - Dentistry | ID: biblio-1278595

ABSTRACT

Abstract The aim of this study was to identify tumor parenchyma cells exhibiting immunohistochemical profile of stem cells by evaluating the immunoreactivity of OCT4 and CD44 in a number of cases of salivary gland neoplasms. The sample consisted of 20 pleomorphic adenomas, 20 mucoepidermoid carcinomas, and 20 adenoid cystic carcinomas located in major and minor salivary glands. The expression of OCT4 and CD44 was evaluated by the percentage of positive cells and the intensity of expression. All studied cases showed positive expression of OCT4 and CD44 and higher values than the control groups. For OCT4, luminal and non-luminal cells were immunostained in the case of pleomorphic adenomas and adenoid cystic carcinomas. Moreover, the immunoreactivity of CD44 was particularly evident in the non-luminal cells of these lesions. In mucoepidermoid carcinomas, there was immunoreactivity for both markers in squamous and intermediate cells and absence of staining in mucous cells. For both markers, a significantly higher immunostaining was verified in neoplasms located in the major salivary glands compared with lesions in minor salivary glands (p<0.001). In the total sample and in minor salivary glands, malignant neoplasms exhibited higher immunoreactivity for OCT4 than pleomorphic adenoma. A significant moderate positive correlation (r = 0.444 and p ≤ 0.001) was found between OCT4 and CD44 immunoexpression in the total sample. The high expression of OCT4 and CD44 may indicate that these proteins play an important role in identifying tumor stem cells.


Subject(s)
Humans , Salivary Gland Neoplasms , Carcinoma, Mucoepidermoid , Carcinoma, Adenoid Cystic , Adenoma, Pleomorphic , Hyaluronan Receptors/genetics , Octamer Transcription Factor-3/economics , Immunohistochemistry
15.
Acta Histochem ; 122(8): 151636, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33132168

ABSTRACT

INTRODUCTION: Mesenchymal stem cells (MSCs) are characterized by the potential to differentiate into multiple cell lineages, high proliferation rates, and self-renewal capacity, in addition to the ability to maintain their undifferentiated state. These cells have been identified in physiological oral tissues such as pulp tissue, dental follicle, apical papilla and periodontal ligament, as well as in pathological situations such as chronic periapical lesions (CPLs). The criteria used for the identification of MSCs include the positive expression of specific surface antigens, with CD73, CD90, CD105, CD44, CD146, STRO-1, CD166, NANOG and OCT4 being the most specific for these cells. AIM: The aim of this review was to explore the literature on markers able to identify MSCs as well as the presence of these cells in the healthy periodontal ligament and CPLs, highlighting their role in regenerative medicine and implications in the progression of these lesions. METHODS: Narrative literature review searching the PubMed and Medline databases. Articles published in English between 1974 and 2020 were retrieved. CONCLUSION: The included studies confirmed the presence of MSCs in the healthy periodontal ligament and in CPLs. Several surface markers are used for the characterization of these cells which, although not specific, are effective in cell recognition. Mesenchymal stem cells participate in tissue repair, exerting anti- inflammatory, immunosuppressive and proangiogenic effects, and are therefore involved in the progression and attenuation of CPLs or even in the persistence of these lesions.


Subject(s)
Mesenchymal Stem Cells/cytology , Periapical Diseases/pathology , Periodontal Ligament/cytology , Regenerative Endodontics/methods , Adipocytes/cytology , Adipocytes/immunology , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Surface/genetics , Antigens, Surface/immunology , Biomarkers/metabolism , Cell Differentiation , Cell Lineage/genetics , Cell Lineage/immunology , Chondrocytes/cytology , Chondrocytes/immunology , Dental Pulp/cytology , Dental Pulp/immunology , Gene Expression , Humans , Mesenchymal Stem Cells/immunology , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/immunology , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/immunology , Osteoblasts/cytology , Osteoblasts/immunology , Osteogenesis/genetics , Osteogenesis/immunology , Periapical Diseases/genetics , Periapical Diseases/immunology , Periapical Diseases/therapy , Periodontal Ligament/immunology
16.
Reprod Toxicol ; 98: 117-124, 2020 12.
Article in English | MEDLINE | ID: mdl-32956838

ABSTRACT

Understanding the effects of Bisphenol A (BPA) on early germ cell differentiation and their consequences in adult life is an area of growing interest in the field of endocrine disruption. Herein, we investigate whether perinatal exposure to BPA affects the differentiation of male germ cells in early life using a transgenic mouse expressing the GFP reporter protein under the Oct4 promoter. In this model, the expression of GFP reflects the expression of the Oct4 gene. This pluripotency gene is required to maintain the spermatogonial stem cells in an undifferentiated stage. Thus, GFP expression was used as a parameter to evaluate the effect of BPA on early germ cell development. Female pregnant transgenic mice were exposed to BPA by oral gavage, from embryonic day 5.5 to postnatal day 7 (PND7). The effects of BPA on male germ cell differentiation were evaluated at PND7, while sperm quality, testicular morphology, and protein expression of androgen receptor and proliferating cell nuclear antigen were studied at PND130. We found that perinatal/lactational exposure to BPA up-regulates the expression of Oct4-driven GFP in testicular cells at PND7. This finding suggests a higher proportion of undifferentiated spermatogonia in BPA-treated animals compared with non-exposed mice. Moreover, in adulthood, the number of spermatozoa per epididymis was reduced in those animals perinatally exposed to BPA. This work shows that developmental exposure to BPA disturbed the normal differentiation of male germ cells early in life, mainly by altering the expression of Oct4 and exerted long-lasting sequelae at the adult stage, affecting sperm count and testis.


Subject(s)
Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Germ Cells/drug effects , Phenols/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Animals , Cell Differentiation , Cell Proliferation/drug effects , Female , Germ Cells/cytology , Germ Cells/growth & development , Germ Cells/metabolism , Male , Maternal-Fetal Exchange , Mice, Transgenic , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Pregnancy , Receptors, Androgen/metabolism , SOXB1 Transcription Factors/genetics , Sperm Count , Sperm Motility/drug effects , Testis/drug effects , Testis/growth & development , Testis/metabolism
17.
Stem Cell Res Ther ; 11(1): 247, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32586372

ABSTRACT

BACKGROUND: Induced pluripotent stem cells (iPSCs) have enormous potential in developmental biology studies and in cellular therapies. Although extensively studied and characterized in human and murine models, iPSCs from animals other than mice lack reproducible results. METHODS: Herein, we describe the generation of robust iPSCs from equine and bovine cells through lentiviral transduction of murine or human transcription factors Oct4, Sox2, Klf4, and c-Myc and from human and murine cells using similar protocols, even when different supplementations were used. The iPSCs were analyzed regarding morphology, gene and protein expression of pluripotency factors, alkaline phosphatase detection, and spontaneous and induced differentiation. RESULTS: Although embryonic-derived stem cells are yet not well characterized in domestic animals, generation of iPS cells from these species is possible through similar protocols used for mouse or human cells, enabling the use of pluripotent cells from large animals for basic or applied purposes. Herein, we also infer that bovine iPS (biPSCs) exhibit similarity to mouse iPSCs (miPSCs), whereas equine iPSs (eiPSCs) to human (hiPSCs). CONCLUSIONS: The generation of reproducible protocols in different animal species will provide an informative tool for producing in vitro autologous pluripotent cells from domestic animals. These cells will create new opportunities in animal breeding through transgenic technology and will support a new era of translational medicine with large animal models.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Animals, Domestic , Cattle , Cell Differentiation , Cellular Reprogramming , Embryonic Stem Cells , Fibroblasts , Horses , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Mice , Octamer Transcription Factor-3/genetics , SOXB1 Transcription Factors/genetics
18.
PLoS One ; 15(5): e0222373, 2020.
Article in English | MEDLINE | ID: mdl-32437472

ABSTRACT

Posttranscriptional regulation plays a fundamental role in the biology of embryonic stem cells (ESCs). Many studies have demonstrated that multiple mRNAs are coregulated by one or more RNA-binding proteins (RBPs) that orchestrate mRNA expression. A family of RBPs, which is known as the Pumilio-FBF (PUF) family, is highly conserved among different species and has been associated with the undifferentiated and differentiated states of different cell lines. In humans, two homologs of the PUF family have been found: Pumilio 1 (PUM1) and Pumilio 2 (PUM2). To understand the role of these proteins in human ESCs (hESCs), we first assessed the influence of the silencing of PUM1 and PUM2 on pluripotency genes and found that the knockdown of Pumilio genes significantly decreased the OCT4 and NANOG mRNA levels and reduced the amount of nuclear OCT4, which suggests that Pumilio proteins play a role in the maintenance of pluripotency in hESCs. Furthermore, we observed that PUM1-and-PUM2-silenced hESCs exhibited improved efficiency of in vitro cardiomyogenic differentiation. Through an in silico analysis, we identified mRNA targets of PUM1 and PUM2 that are expressed at the early stages of cardiomyogenesis, and further investigation will determine whether these target mRNAs are active and involved in the progression of cardiomyogenesis. Our findings contribute to the understanding of the role of Pumilio proteins in hESC maintenance and differentiation.


Subject(s)
Human Embryonic Stem Cells/metabolism , RNA-Binding Proteins/physiology , Cell Differentiation , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/cytology , Humans , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/metabolism , RNA, Messenger/metabolism
19.
Sci Rep ; 10(1): 5195, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32251342

ABSTRACT

Pluripotency maintenance requires transcription factors (TFs) that induce genes necessary to preserve the undifferentiated state and repress others involved in differentiation. Recent observations support that the heterogeneous distribution of TFs in the nucleus impacts on gene expression. Thus, it is essential to explore how TFs dynamically organize to fully understand their role in transcription regulation. Here, we examine the distribution of pluripotency TFs Oct4 and Sox2 in the nucleus of embryonic stem (ES) cells and inquire whether their organization changes during early differentiation stages preceding their downregulation. Using ES cells expressing Oct4-YPet or Sox2-YPet, we show that Oct4 and Sox2 partition between nucleoplasm and a few chromatin-dense foci which restructure after inducing differentiation by 2i/LIF withdrawal. Fluorescence correlation spectroscopy showed distinct changes in Oct4 and Sox2 dynamics after differentiation induction. Specifically, we detected an impairment of Oct4-chromatin interactions whereas Sox2 only showed slight variations in its short-lived, and probably more unspecific, interactions with chromatin. Our results reveal that differentiation cues trigger early changes of Oct4 and Sox2 nuclear distributions that also include modifications in TF-chromatin interactions. This dynamical reorganization precedes Oct4 and Sox2 downregulation and may contribute to modulate their function at early differentiation stages.


Subject(s)
Cell Nucleus/metabolism , Chromatin Assembly and Disassembly , Embryonic Stem Cells/cytology , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/metabolism , SOXB1 Transcription Factors/metabolism , Transcription, Genetic , Animals , Cell Cycle , Cell Differentiation , Cell Nucleus/ultrastructure , Cells, Cultured , Doxycycline/pharmacology , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental/drug effects , Genes, Reporter , Mice , Microscopy, Fluorescence , Octamer Transcription Factor-3/genetics , Pluripotent Stem Cells/cytology , Recombinant Fusion Proteins/metabolism , SOXB1 Transcription Factors/genetics , Transfection
20.
DNA Cell Biol ; 39(1): 37-49, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31750745

ABSTRACT

Cloning using somatic cell nuclear transfer (SCNT) has many potential applications such as in transgenic and genomic-edited animal production. Abnormal epigenetic reprogramming of somatic cell nuclei is probably the major cause of the low efficiency associated with SCNT. Strategies to alter DNA reprogramming in donor cell nuclei may help improve the cloning efficiency. In the present study, we aimed to characterize the effects of procaine and S-adenosyl-l-homocysteine (SAH) as demethylating agents during the cell culture of bovine skin fibroblasts. We characterized the effects of procaine and SAH on the expression of genes related to the epigenetic machinery, including the DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3 alpha (DNMT3A), DNA methyltransferase 3 beta (DNMT3B), TET1, TET2, TET3, and OCT4 genes, and on DNA methylation levels of bovine skin fibroblasts. We found that DNA methylation levels of satellite I were reduced by SAH (p = 0.0495) and by the combination of SAH and procaine (p = 0.0479) compared with that in the control group. Global DNA methylation levels were lower in cells that were cultivated with both compounds than in control cells (procaine [p = 0.0116], SAH [p = 0.0408], and both [p = 0.0163]). Regarding gene expression, there was a decrease in the DNMT1 transcript levels in cells cultivated with SAH (p = 0.0151) and SAH/procaine (0.0001); a decrease in the DNMT3A transcript levels in cells cultivated with SAH/procaine (p = 0.016); and finally, a decrease in the DNMT3B transcript levels in cells cultivated with procaine (p = 0.0007), SAH (p = 0.0060), and SAH/procaine (p = 0.0021) was found. Higher levels of TET3 transcripts in cells cultivated with procaine (p = 0.0291), SAH (p = 0.0373), and procaine/SAH (p = 0.0013) compared with the control were also found. Regarding the OCT4 gene, no differences were found. Our results showed that the use of procaine and SAH during bovine cell culture was able to alter the epigenetic profile of the cells. This approach may be a useful alternative strategy to improve the efficiency of reprogramming the somatic nuclei after fusion, which in turn will improve the SCNT efficiency.


Subject(s)
DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Procaine/pharmacology , S-Adenosylhomocysteine/pharmacology , Animals , Cattle , Cells, Cultured , DNA (Cytosine-5-)-Methyltransferases/genetics , Dioxygenases/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Octamer Transcription Factor-3/genetics , Proto-Oncogene Proteins/genetics , Skin/cytology
SELECTION OF CITATIONS
SEARCH DETAIL