Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.782
Filter
1.
Drug Res (Stuttg) ; 74(6): 255-268, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968949

ABSTRACT

This comprehensive review endeavors to illuminate the nuanced facets of linalool, a prominent monoterpene found abundantly in essential oils, constituting a massive portion of their composition. The biomedical relevance of linalool is a key focus, highlighting its therapeutic attributes observed through anti-nociceptive effects, anxiolytic properties, and behavioral modulation in individuals affected by dementia. These findings underscore the compound's potential application in biomedical applications. This review further explores contemporary formulations, delineating the adaptability of linalool in nano-emulsions, microemulsions, bio-capsules, and various topical formulations, including topical gels and lotions. This review covers published and granted patents between 2018-2024 and sheds light on the evolving landscape of linalool applications, revealing advancements in dermatological, anti-inflammatory, and antimicrobial domains.


Subject(s)
Acyclic Monoterpenes , Humans , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/therapeutic use , Acyclic Monoterpenes/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Animals , Anti-Infective Agents/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anti-Anxiety Agents/pharmacology , Analgesics/therapeutic use , Analgesics/pharmacology , Patents as Topic , Emulsions , Oils, Volatile/therapeutic use , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Dermatologic Agents/therapeutic use , Dermatologic Agents/pharmacology , Dermatologic Agents/administration & dosage
2.
Sci Rep ; 14(1): 15014, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951169

ABSTRACT

Plants are valuable resources for drug discovery as they produce diverse bioactive compounds. However, the chemical diversity makes it difficult to predict the biological activity of plant extracts via conventional chemometric methods. In this research, we propose a new computational model that integrates chemical composition data with structure-based chemical ontology. For a model validation, two training datasets were prepared from literature on antibacterial essential oils to classify active/inactive oils. Random forest classifiers constructed from the data showed improved prediction performance in both test datasets. Prior feature selection using hierarchical information criterion further improved the performance. Furthermore, an antibacterial assay using a standard strain of Staphylococcus aureus revealed that the classifier correctly predicted the activity of commercially available oils with an accuracy of 83% (= 10/12). The results of this study indicate that machine learning of chemical composition data integrated with chemical ontology can be a highly efficient approach for exploring bioactive plant extracts.


Subject(s)
Anti-Bacterial Agents , Oils, Volatile , Staphylococcus aureus , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Machine Learning , Microbial Sensitivity Tests , Chemometrics/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology
3.
Sci Rep ; 14(1): 16064, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992117

ABSTRACT

Mentha haplocalyx essential oil (MEO) has demonstrated inhibitory effects on Fusarium oxysporum. Despite its environmentally friendly properties as a natural product, the limited water solubility of MEO restricts its practical application in the field. The use of nanoemulsion can improve bioavailability and provide an eco-friendly approach to prevent and control Panax notoginseng root rot. In this study, Tween 80 and anhydrous ethanol (at a mass ratio of 3) were selected as carriers, and the ultrasonic method was utilized to produce a nanoemulsion of MEO (MNEO) with an average particle size of 26.07 nm. Compared to MTEO (MEO dissolved in an aqueous solution of 2% DMSO and 0.1% Tween 80), MNEO exhibited superior inhibition against F. oxysporum in terms of spore germination and hyphal growth. Transcriptomics and metabolomics results revealed that after MNEO treatment, the expression levels of certain genes related to glycolysis/gluconeogenesis, starch and sucrose metabolism were significantly suppressed along with the accumulation of metabolites, leading to energy metabolism disorder and growth stagnation in F. oxysporum. In contrast, the inhibitory effect from MTEO treatment was less pronounced. Furthermore, MNEO also demonstrated inhibition on meiosis, ribosome function, and ribosome biogenesis in F. oxysporum growth process. These findings suggest that MNEO possesses enhanced stability and antifungal activity, which effectively hinders F. oxysporum through inducing energy metabolism disorder, meiotic stagnation, as well as ribosome dysfunction, thus indicating its potential for development as a green pesticide for prevention and control P. notoginseng root rot caused by F.oxyosporum.


Subject(s)
Emulsions , Fusarium , Mentha , Oils, Volatile , Fusarium/drug effects , Fusarium/growth & development , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Mentha/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control
4.
BMC Complement Med Ther ; 24(1): 265, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992651

ABSTRACT

BACKGROUND: Origanum species have been used in various commercial constructions as a remedy against burns and wounds, agriculture, alcoholic drinks, fragrance, and flavoring substances of food products. The essential oil of Origanum onites L. (EOOO) and its component carvacrol (CV) possesses a wide range of biological activities including anti-cancer activity. PURPOSE: The purpose of this study was to investigate the growth inhibitory activity of the essential oil and its major component CV and then hepatotoxicity pathway-related genes in HepG2 cells. METHODS: The effects of the EOOO and CV on cell growth and mRNA expressions of 84 hepatotoxicity pathway-related genes were investigated in HepG2, using trypan blue exclusion/ bromodeoxyuridine (BrdU) incorporation tests and real-time-polymerase chain reaction (RT-PCR) array, respectively. RESULTS: The EOOO and CV inhibited cell growth with IC50 values of 0.08 µg/mL and 45 µg/mL, respectively, after 24 h. Real-time, reverse-transcription-polymerase chain reaction (RT2-PCR) array analysis revealed that expressions of 32 genes out of 84 were changed at least 2-fold or more in the EOOO-treated cells. Among them, expression levels of 17 genes were elevated, while expression levels of 15 genes were diminished. Furthermore, after exposure of cells to 45 µg/mL of CV, the expression of 8 genes was increased while the other 8 genes were decreased. Both the EOOO and carvacrol affected the expression of 48 genes of HepG2 cells which are involved in the hepatotoxicity pathway, indicating their hepatoprotective and possible anti-hepatocarcinogenic effects. CONCLUSION: The present study demonstrates that the essential oil of Origanum onites and carvacrol can be used in various applications such as anticancer or herbal drugs, since its non-hepatotoxicity.


Subject(s)
Cymenes , Monoterpenes , Oils, Volatile , Origanum , Humans , Cymenes/pharmacology , Oils, Volatile/pharmacology , Origanum/chemistry , Hep G2 Cells , Monoterpenes/pharmacology , Cell Proliferation/drug effects
5.
BMC Complement Med Ther ; 24(1): 256, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982425

ABSTRACT

BACKGROUND: One of the most widely used medicinal plants in Iranian traditional medicine, Rosa × damascena Herrm. (mohammadi flower) that the people of Kashan use as a sedative and to treat nervous diseases and constipation. In this research, the yield, chemical composition and antimicrobial activity of the essential oil of this plant were evaluated for the first time from Azaran region, Kashan. METHODS: The essential oil was extracted by means of hydrodistillation (Clevenger), and its chemical compounds were identified and determined by GC/MS. The antimicrobial activity of the essential oil was determined by the diffusion method in agar, the minimum growth inhibitory concentration (MIC) and the minimum concentration capable of killing bacterial/fungal microorganisms (MBC/MFC). RESULTS: The results showed that the yield of essential oil was 0.1586 ± 0.0331% (w/w). Based on the results of the chemical composition analysis of R. x damascena essential oil, 19 different compounds (98.96%) were identified. The dominant and main components of the essential oil were oleic acid (48.08%), palmitic acid (15.44%), stearic acid (10.17%), citronellol (7.37%) and nonadecane (3.70%). Based on the results of diffusion in agar, the highest zone of inhibition against Candida albicans (ATCC 10231) was ~ 9.5 mm. The strongest inhibitory activity of R. x damascena essential oil against Gram-negative Proteus mirabilis (ATCC 43071) was with the diameter of the inhibition zone (~ 9 mm), which was equal to the strength of rifampin (~ 9 mm). CONCLUSION: Therefore, this essential oil is a promising natural option rich in fatty acids, which can be a potential for the production of natural antimicrobials against infectious diseases, especially urinary tract infections.


Subject(s)
Microbial Sensitivity Tests , Oils, Volatile , Proteus mirabilis , Rosa , Proteus mirabilis/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Iran , Rosa/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fatty Acids, Unsaturated/pharmacology , Fatty Acids, Unsaturated/chemistry
6.
BMC Complement Med Ther ; 24(1): 262, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987702

ABSTRACT

BACKGROUND: Bitter orange (Citrus aurantium) is a fruiting shrub native to tropical and subtropical countries around the world and cultivated in many regions due to its nutraceutical value. The current study investigated the metabolic profiling and enzyme inhibitory activities of volatile constituents derived from the C. aurantium peel cultivated in Egypt by three different extraction methods. METHODS: The volatile chemical constituents of the peel of C. aurantium were isolated using three methods; steam distillation (SD), hydrodistillation (HD), and microwave-assisted hydrodistillation (MAHD), and then were investigated by GC-MS. The antioxidant potential was evaluated by different assays such as DPPH, ABTS, FRAP, CUPRAC, and phosphomolybdenum and metal chelating potential. Moreover, the effect of enzyme inhibition of the three essential oils was tested using BChE, AChE, tyrosinase, glucosidase, as well as amylase assays. RESULTS: A total of six compounds were detected by GC/MS analysis. The major constituent obtained by all three extraction methods was limonene (98.86% by SD, 98.68% by HD, and 99.23% by MAHD). Differences in the composition of the compounds of the three oils were observed. The hydrodistillation technique has yielded the highest number of compounds, notably two oxygenated monoterpenes: linalool (0.12%) and α-terpineol acetate (0.1%). CONCLUSION: In our study differences in the extraction methods of C. aurantium peel oils resulted in differences in the oils' chemical composition. Citrus essential oils and their components showed potential antioxidant, anticholinesterase, antimelanogenesis, and antidiabetic activities. The presence of linalool and α-terpineol acetate may explain the superior activity observed for the oil isolated by HD in both radical scavenging and AChE inhibition assays, as well as in the enzyme inhibition assays.


Subject(s)
Antioxidants , Fruit , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Fruit/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Gas Chromatography-Mass Spectrometry , Citrus aurantiifolia/chemistry , Citrus/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Egypt , Monoterpenes/pharmacology , Acyclic Monoterpenes/pharmacology , Limonene/pharmacology
7.
PLoS One ; 19(7): e0301558, 2024.
Article in English | MEDLINE | ID: mdl-38985711

ABSTRACT

Extraction is the first and most important step in obtaining the effective ingredients of medicinal plants. Mentha longifolia (L.) L. is of considerable economic importance as a natural raw material for the food and pharmaceutical industries. Since the effect of different extraction methods (traditional and modern methods) on the quantity, quality and antimicrobial activity of the essential oil of this plant has not been done simultaneously; the present study was designed for the first time with the aim of identifying the best extraction method in terms of these features. For this purpose, extracting the essential oil of M. longifolia with the methods of hydrodistillation with Clevenger device (HDC), steam distillation with Kaiser device (SDK), simultaneous distillation with a solvent (SDE), hydrodistillation with microwave device (HDM), pretreatment of ultrasonic waves and Clevenger (U+HDC) and supercritical fluid (SF) were performed. Chemical compounds were identified by gas chromatography coupled with mass spectrometer (GC-MS). Antimicrobial activity of essential oils against various clinical microbial strains was evaluated by agar diffusion method and determination of the minimum inhibitory concentration and minimum bactericidal concentration (MIC and MBC). The results showed that the highest and lowest yields of M. longifolia leaf essential oil belonged to HDC (1.6083%) and HDM (0.3416%). The highest number of compounds belonged to SDK essential oil and was equal to 72 compounds (with a relative percentage of 87.13%) and the lowest number of compounds was related to the SF essential oil sample (7 compounds with a relative percentage of 100%). Piperitenone (25.2-41.38%), piperitenone oxide (22.02-0%), pulegone (10.81-0%) and 1,8-cineole (5-35.0%) are the dominant and main components of M. longifolia essential oil were subjected to different extraction methods. Antimicrobial activity results showed that the lowest MIC value belonged to essential oils extracted by HDM, SDK, SDE and U+HDC methods with a value of 1000 µg/mL was observed against Gram-negative bacteria Shigella dysenteriae, which was 5 times weaker than rifampin and 7 times weaker than gentamicin. Therefore, it can be concluded that in terms of efficiency of the HDC method, in terms of the percentage of compounds of the HDM method, and in terms of microbial activity, the SDK, HDM and U+HDC methods performed better.


Subject(s)
Anti-Bacterial Agents , Mentha , Microbial Sensitivity Tests , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Mentha/chemistry , Anti-Bacterial Agents/pharmacology , Gas Chromatography-Mass Spectrometry , Distillation/methods , Bacteria/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chromatography, Supercritical Fluid/methods , Plant Oils/pharmacology , Plant Oils/chemistry
8.
Sci Rep ; 14(1): 16325, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009775

ABSTRACT

Mosquitoes are important vectors for the transmission of several infectious diseases that lead to huge morbidity and mortality. The exhaustive use of synthetic insecticides has led to widespread resistance and environmental pollution. Using essential oils and nano-emulsions as novel insecticides is a promising alternative approach for controlling vector borne diseases. In the current study, Lantana camara EO and NE were evaluated for their larvicidal and pupicidal activities against Anopheles culicifacies. The inhibitory effect of EO and NE on AChE, NSE (α/ß), and GST was also evaluated and compared. GC-MS analysis of oil displayed 61 major peaks. The stable nano-emulsion with an observed hydrodynamic diameter of 147.62 nm was formed using the o/w method. The nano-emulsion exhibited good larvicidal (LC50 50.35 ppm and LC90 222.84 ppm) and pupicidal (LC50 54.82 ppm and LC90 174.58 ppm) activities. Biochemical evaluations revealed that LCEO and LCNE inhibited AChE, NSE (α/ß), and GST, displaying LCNE to be a potent binder to AChE and NSE enzyme, whereas LCEO showed higher binding potency towards GST. The nano-emulsion provides us with novel opportunities to target different mosquito enzymes with improved insecticidal efficacy. Due to its natural origin, it can be further developed as a safer and more potent larvicide/insecticide capable of combating emerging insecticide resistance.


Subject(s)
Anopheles , Emulsions , Insecticides , Lantana , Larva , Oils, Volatile , Anopheles/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Animals , Lantana/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Larva/drug effects , Kinetics , Acetylcholinesterase/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/antagonists & inhibitors , Mosquito Vectors/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Mosquito Control/methods
9.
Ann Afr Med ; 23(3): 391-399, 2024 Jul 01.
Article in French, English | MEDLINE | ID: mdl-39034564

ABSTRACT

OBJECTIVES: This study investigated the anti-cryptococcal potential of certain essential oils (EOs)/compounds alone and in combination with fluconazole. MATERIALS AND METHODS: We investigated the antifungal activity of oils of Cinnamomum verum, Cymbopogon citratus, Cymbopogon martini, and Syzygium aromaticum, and their major active ingredients cinnamaldehyde, citral, eugenol, and geraniol against clinical and standard strains of Cryptococcus neoformans (CN). Disc diffusion, broth microdilution, checkerboard methods, and transmission electron microscopy were employed to determine growth inhibition, synergistic interaction, and mechanism of action of test compounds. RESULTS: EOs/compounds showed pronounced antifungal efficacy against azole-resistant CN in the order of cinnamaldehyde > eugenol > S. aromaticum > C. verum > citral > C. citratus > geraniol ≥ C. martini, each exhibiting zone of inhibition >15 mm. These oils/compounds were highly cidal compared to fluconazole. Eugenol and cinnamaldehyde showed the strongest synergy with fluconazole against CN by lowering their MICs up to 32-fold. Transmission electron microscopy indicated damage of the fungal cell wall, cell membrane, and other endomembranous organelles. CONCLUSION: Test oils and their active compounds exhibited potential anti-cryptococcus activity against the azole-resistant strains of CN. Moreover, eugenol and cinnamaldehyde significantly potentiated the anti-cryptococcal activity of fluconazole. It is suggested that multiple sites of action from oils/compounds could turn static fluconazole into a cidal drug combination in combating cryptococcosis.


RésuméObjectifs: Cette étude a étudié le potentiel anti-cryptocoque de certaines huiles essentielles (HE)/composés seuls et en combinaison avec fluconazole. Matériels et méthodes: Nous avons étudié l'activité antifongique des huiles de Cinnamomum verum, Cymbopogon citratus, Cymbopogon martini et Syzygium spiceum , et leurs principaux ingrédients actifs, le cinnamaldéhyde, le citral, l'eugénol et le géraniol, contre les normes cliniques et standards. souches de Cryptococcus neoformans (CN). Diffusion sur disque, microdilution en bouillon, méthodes en damier et microscopie électronique à transmission ont été utilisés pour déterminer l'inhibition de la croissance, l'interaction synergique et le mécanisme d'action des composés testés. Résultats: HE/composés a montré une efficacité antifongique prononcée contre les CN résistantes aux azoles dans l'ordre suivant: cinnamaldéhyde > eugénol > S. spiceum > C. verum > citral > C. citratus > géraniol ≥ C. martini , chacun présentant une zone d'inhibition > 15 mm. Ces huiles/composés étaient hautement cides par rapport au fluconazole. L'eugénol et le cinnamaldéhyde ont montré la synergie la plus forte avec le fluconazole contre le CN en abaissant leurs CMI jusqu'à 32 fois. La microscopie électronique à transmission a indiqué des dommages à la paroi cellulaire fongique, à la membrane cellulaire et à d'autres organites endomembranaires. Conclusion: Les huiles testées et leurs composés actifs ont montré une activité anti-cryptocoque potentielle contre les souches de CN résistantes aux azoles. De plus, l'eugénol et le cinnamaldéhyde ont significativement potentialisé l'activité anticryptococcique du fluconazole. Il est suggéré que plusieurs Les sites d'action des huiles/composés pourraient transformer le fluconazole statique en une combinaison médicamenteuse cide pour lutter contre la cryptococcose.


Subject(s)
Acrolein , Antifungal Agents , Cryptococcus neoformans , Cymbopogon , Drug Resistance, Fungal , Drug Synergism , Eugenol , Fluconazole , Microbial Sensitivity Tests , Oils, Volatile , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/ultrastructure , Fluconazole/pharmacology , Antifungal Agents/pharmacology , Oils, Volatile/pharmacology , Cymbopogon/chemistry , Drug Resistance, Fungal/drug effects , Acrolein/analogs & derivatives , Acrolein/pharmacology , Eugenol/pharmacology , Humans , Acyclic Monoterpenes/pharmacology , Syzygium/chemistry , Cinnamomum zeylanicum/chemistry , Terpenes/pharmacology , Monoterpenes/pharmacology , Microscopy, Electron, Transmission , Plant Oils/pharmacology , Cryptococcosis/drug therapy , Cryptococcosis/microbiology
10.
Curr Microbiol ; 81(8): 256, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955831

ABSTRACT

Antimicrobial resistance is a global health issue, in which microorganisms develop resistance to antimicrobial drugs, making infections more difficult to treat. This threatens the effectiveness of standard medical treatments and necessitates the urgent development of new strategies to combat resistant microbes. Studies have increasingly explored natural sources of new antimicrobial agents that harness the rich diversity of compounds found in plant species. This pursuit holds promise for the discovery of novel treatments for combating antimicrobial resistance. In this context, the chemical composition, antibacterial, and antibiofilm activities of the essential oil from Croton urticifolius Lam. leaves (CuEO) were evaluated. CuEO was extracted via hydrodistillation, and its chemical constituents were identified via gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of CuEO was evaluated in a 96-well plate via the microdilution method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined. The effect of CuEO on biofilm formation was assessed by quantifying the biomass using crystal violet staining and viable cell counting. In addition, alterations in the cellular morphology of biofilms treated with CuEO were examined using scanning electron microscopy (SEM) and laser confocal microscopy. GC/MS analysis identified 26 compounds, with elemicine (39.72%); eucalyptol (19.03%), E-caryophyllene (5.36%), and methyleugenol (4.12%) as the major compounds. In terms of antibacterial activity, CuEO showed bacteriostatic effects against Staphylococcus aureus ATCC 700698, S. aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, and Escherichia coli ATCC 11303, and bactericidal activity against S. aureus ATCC 700698. In addition, CuEO significantly inhibited bacterial biofilm formation. Microscopic analysis showed that CuEO damaged the bacterial membrane by leaching out the cytoplasmic content. Therefore, the results of this study show that the essential oil of C. urticifolius may be a promising natural alternative for preventing infections caused by bacterial biofilms. This study is the first to report the antibiofilm activity of C. urticifolius essential oil.


Subject(s)
Anti-Bacterial Agents , Biofilms , Croton , Microbial Sensitivity Tests , Oils, Volatile , Plant Leaves , Biofilms/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Croton/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Leaves/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Gas Chromatography-Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Membrane/drug effects
11.
Phytopathology ; 114(7): 1502-1514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023506

ABSTRACT

Late blight, caused by the notorious pathogen Phytophthora infestans, poses a significant threat to potato (Solanum tuberosum) crops worldwide, impacting their quality as well as yield. Here, we aimed to investigate the potential use of cinnamaldehyde, carvacrol, and eugenol as control agents against P. infestans and to elucidate their underlying mechanisms of action. To determine the pathogen-inhibiting concentrations of these three plant essential oils (PEOs), a comprehensive evaluation of their effects using gradient dilution, mycelial growth rate, and spore germination methods was carried out. Cinnamaldehyde, carvacrol, and eugenol were capable of significantly inhibiting P. infestans by hindering its mycelial radial growth, zoospore release, and sporangium germination; the median effective inhibitory concentration of the three PEOs was 23.87, 8.66, and 89.65 µl/liter, respectively. Scanning electron microscopy revealed that PEOs caused the irreversible deformation of P. infestans, resulting in hyphal shrinkage, distortion, and breakage. Moreover, propidium iodide staining and extracellular conductivity measurements demonstrated that all three PEOs significantly impaired the integrity and permeability of the pathogen's cell membrane in a time- and dose-dependent manner. In vivo experiments confirmed the dose-dependent efficacy of PEOs in reducing the lesion diameter of potato late blight. Altogether, these findings provide valuable insight into the antifungal mechanisms of PEOs vis-à-vis late blight-causing P. infestans. By utilizing the inherent capabilities of these natural compounds, we could effectively limit the harmful impacts of late blight on potato crops, thereby enhancing agricultural practices and ensuring the resilience of global potato food production.


Subject(s)
Cymenes , Eugenol , Oils, Volatile , Phytophthora infestans , Plant Diseases , Solanum tuberosum , Phytophthora infestans/drug effects , Phytophthora infestans/physiology , Solanum tuberosum/microbiology , Oils, Volatile/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Eugenol/pharmacology , Cymenes/pharmacology , Monoterpenes/pharmacology , Mycelium/drug effects , Mycelium/growth & development , Plant Oils/pharmacology , Hyphae/drug effects , Hyphae/growth & development , Spores/drug effects , Spores/physiology , Acrolein/analogs & derivatives
12.
Molecules ; 29(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38998934

ABSTRACT

Oral malodor still constitutes a major challenge worldwide. A strong effort is invested in eliminating volatile sulfur compound-producing oral bacteria through organic natural products such as essential oils. Fusobacterium nucleatum is a known volatile sulfur compound-producing bacteria that inspires oral malodor. The aim of the present study was to test the effect of lavender essential oil on the bacterium's ability to produce volatile sulfide compounds, the principal components of oral malodor. Lavender (Lavandula angustifolia) essential oil was extracted by hydrodistillation and analyzed using GC-MS. The minimal inhibitory concentration (MIC) of lavender essential oil on Fusobacterium nucleatum was determined in a previous trial. Fusobacterium nucleatum was incubated anaerobically in the presence of sub-MIC, MIC, and above MIC concentrations of lavender essential oil, as well as saline and chlorhexidine as negative and positive controls, respectively. Following incubation, volatile sulfur compound levels were measured using GC (Oralchroma), and bacterial cell membrane damage was studied using fluorescence microscopy. Chemical analysis of lavender essential oil yielded five main components, with camphor being the most abundant, accounting for nearly one-third of the total lavender essential oil volume. The MIC (4 µL/mL) of lavender essential oil reduced volatile sulfur compound secretion at a statistically significant level compared to the control (saline). Furthermore, the level of volatile sulfur compound production attributed to 1 MIC of lavender essential oil was in the range of the positive control chlorhexidine with no significant difference. When examining bacterial membrane damage, 2 MIC of lavender essential oil (i.e., 8 µL/mL) demonstrated the same, showing antibacterial membrane damage values comparative to chlorhexidine. Since lavender essential oil was found to be highly effective in hindering volatile sulfur compound production by Fusobacterium nucleatum through the induction of bacterial cell membrane damage, the results suggest that lavender essential oil may be a suitable alternative to conventional chemical-based anti-malodor agents.


Subject(s)
Fusobacterium nucleatum , Halitosis , Lavandula , Microbial Sensitivity Tests , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Fusobacterium nucleatum/drug effects , Fusobacterium nucleatum/metabolism , Halitosis/microbiology , Halitosis/drug therapy , Halitosis/metabolism , Lavandula/chemistry , Sulfides/pharmacology , Sulfides/chemistry , Humans , Plant Oils/pharmacology , Plant Oils/chemistry , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
13.
Arch Microbiol ; 206(8): 347, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985339

ABSTRACT

Essential oils are among the most well-known phyto-compounds, and since ancient times, they have been utilized in medicine. Over 100 essential oils have been identified and utilized as therapies for various skin infections and related ailments. While numerous commercial medicines are available in different dosage forms to treat skin diseases, the persisting issues include their side effects, toxicity, and low efficacy. As a result, researchers are seeking novel classes of compounds as substitutes for synthetic drugs, aiming for minimal side effects, no toxicity, and high efficacy. Essential oils have shown promising antimicrobial activity against skin-associated pathogens. This review presents essential knowledge and scientific information regarding essential oil's antimicrobial capabilities against microorganisms that cause skin infections. Essential oils mechanisms against different pathogens have also been explored. Many essential oils exhibit promising activity against various microbes, which has been qualitatively assessed using the agar disc diffusion experiment, followed by determining the minimum inhibitory concentration for quantitative evaluation. It has been observed that Staphylococcus aureus and Candida albicans have been extensively researched in the context of skin-related infections and their antimicrobial activity, including established modes of action. In contrast, other skin pathogens such as Staphylococcus epidermidis, Streptococcus pyogens, Propionibacterium acnes, and Malassezia furfur have received less attention or neglected. This review report provides an updated understanding of the mechanisms of action of various essential oils with antimicrobial properties. This review explores the anti-infectious activity and mode of action of essential against distinct skin pathogens. Such knowledge can be valuable in treating skin infections and related ailments.


Subject(s)
Oils, Volatile , Oils, Volatile/pharmacology , Humans , Skin/microbiology , Skin/drug effects , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Anti-Bacterial Agents/pharmacology
14.
Res Vet Sci ; 176: 105353, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972293

ABSTRACT

This study aimed to evaluate the effects of dietary supplementation with essential oils (EOS) on growth performance, antioxidant status in blood serum, intestinal morphology, and whole-body composition of Nile tilapia (Oreochromis niloticus) through a meta-analytic approach. The search and collection of scientific articles were conducted using the PRISMA methodology, and 45 full-text scientific articles were obtained. The data used in the meta-analysis were extracted from these 45 documents. The effect size was assessed through weighted mean differences (WMD) using Der-Simonian and Laird random effects models. Dietary supplementation with EOS increased (P < 0.001) final weight, body weight gain, specific growth rate, feed intake, protein efficiency ratio, and survival but decreased (P < 0.001) feed conversion ratio. In blood serum, EOS supplementation decreased (P < 0.001) the concentration of malondialdehyde and increased (P < 0.001) the concentration of catalase, superoxide dismutase, and glutathione peroxidase. In the foregut, midgut, and hindgut, greater (P < 0.01) villus height, villus width, and number of goblet cells were observed in response to EOS supplementation. EOS supplementation increased (P < 0.01) crude protein content and decreased (P < 0.05) crude lipid content in the whole-body. In conclusion, essential oils can be used as a dietary additive to improve growth performance, antioxidant status in blood serum, and intestinal morphology in Nile tilapia. Likewise, supplementation with essential oils increases the protein content and decreases the fat content in the whole-body of Nile tilapia.


Subject(s)
Animal Feed , Antioxidants , Cichlids , Diet , Dietary Supplements , Intestines , Oils, Volatile , Animals , Animal Feed/analysis , Animal Nutritional Physiological Phenomena/drug effects , Antioxidants/metabolism , Antioxidants/pharmacology , Body Composition/drug effects , Cichlids/growth & development , Diet/veterinary , Intestines/drug effects , Intestines/anatomy & histology , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage
15.
Turkiye Parazitol Derg ; 48(2): 72-76, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38958374

ABSTRACT

Objective: Trichomonas vaginalis is a sexually transmitted protozoan parasite that usually causes infections in women. Metronidazole is used as the first choice in the treatment of this parasitic disease, but there is a need for new drugs since 1980's with increasing numbers of reported resistance. In this study, it was aimed to determine the antitrichomonal activity of the major components of Cinnamomum zeylanicum (cinnamon) and Thymus vulgaris (thyme) essential oils, cinnamaldehyde, carvacrol and thymol against metronidazole resistant and susceptible T. vaginalis strains, and to determine their interaction with metronidazole by checkerboard method. Methods: Cinnamaldehyde, carvacrol, thymol and metronidazole were obtained commercially. Two clinical isolates and one metronidazole resistant T. vaginalis reference strain were used in the study. MIC50 and MLC values of essential oil components and metronidazole were determined by broth microdilution method. The combinations of essential oil components with metronidazole were determined by the checkerboard method. Results: According to in vitro activity tests, cinnamaldehyde was determined to be most effective essential oil component. Clinical isolates were susceptible to metronidazole. In combination study, metronidazole showed synergy with cinnamaldehyde and carvacrol, and partial synergy with thymol. Conclusion: It was determined that cinnamaldehyde, carvacrol and thymol, which are known to have high antimicrobial activity, also have strong activity against T. vaginalis isolates and show a synergistic interaction with metronidazole. The use of metronidazole at lower doses in the synergistic interaction may contribute to the literature in terms of reducing drug side effects, creating a versatile antimicrobial target, and reducing the rate of resistance development.


Subject(s)
Acrolein , Cymenes , Drug Synergism , Metronidazole , Monoterpenes , Oils, Volatile , Thymol , Thymus Plant , Trichomonas vaginalis , Acrolein/analogs & derivatives , Acrolein/pharmacology , Thymol/pharmacology , Cymenes/pharmacology , Metronidazole/pharmacology , Humans , Oils, Volatile/pharmacology , Thymus Plant/chemistry , Trichomonas vaginalis/drug effects , Monoterpenes/pharmacology , Female , Cinnamomum zeylanicum/chemistry , Antiprotozoal Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance
16.
Sci Rep ; 14(1): 16584, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020069

ABSTRACT

In this study, the effect of Thymus vulgaris essential oil (TVO) nanoemulsion (NE, 500 mg/L) in combination with ultrasound (ultrasound-NE) on the microbial and physiological quality of green bell pepper was investigated. The TVO-NE droplet size and zeta potential were 84.26 nm and - 0.77 mV, respectively. The minimum inhibitory concentrations of the TVO and TVO-NE against E. coli and S. aureus were about 0.07 and 7 g/L, respectively. The NE-ultrasound treatment exhibited the lowest peroxidase activity and respiration rate with no detrimental effect on texture, total phenolic content, antioxidant activity, pH, and TSS. Although the NE-ultrasound treatment showed the highest weight loss and electrolytic leakage, it exhibited the best visual color and appearance. The NE-ultrasound treatment descended the total viable/mold and yeast counts significantly compared to control. Results showed that treating the bell peppers with NE-ultrasound can result in bell peppers with good postharvest quality and extended shelf life.


Subject(s)
Capsicum , Escherichia coli , Nanocapsules , Oils, Volatile , Staphylococcus aureus , Thymus Plant , Thymus Plant/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Capsicum/chemistry , Capsicum/microbiology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Food Preservation/methods , Ultrasonics/methods , Antioxidants/pharmacology , Ultrasonic Waves , Emulsions
17.
Anim Sci J ; 95(1): e13981, 2024.
Article in English | MEDLINE | ID: mdl-39030799

ABSTRACT

The current study evaluated the effects of parsley essential oil on broiler growth performance, carcass features, liver and kidney functions, immunity and antioxidant activity, and lipid profile. A total of 160 unsexed 7-day broiler chicks (Cobb500) were distributed into five groups; each group contained five replicates with eight birds each. The treatments were (1) basal diet (no additive, T1), (2) basal diet + 0.5 mL parsley essential oil/kg (T2), (3) basal diet + 1 mL parsley essential oil/kg (T3), (4) basal diet + 1.5 mL parsley essential oil/kg (T4), and (5) basal diet + 2 mL parsley essential oil/kg (T5). According to GC-MS analysis, parsley oil contains D-limonene, hexadecanoic acid, α-cyclocitral, globulol, α-pinene, myristicin, cryophyllene, bergapten, α-chamigrene, etc. The current results indicated that the most abundant molecules in parsley oil were D-limonene (18.82%), oleic acid (14.52%), α-cyclocitral (11.75%), globulol (11.24%), α-guaiene (7.34%), apiol (5.45%), and hexadecanoic acid (4.69%). Adding parsley essential oil to the broiler diet quadratically increased body weight (BW) during 1-3 weeks of age. The T5 group recorded the highest value (869.37 g) of BW in comparison to other treatments and the control group. The cholesterol, triglyceride, low-density lipoprotein (LDL) cholesterol, and total immunoglobulin, including immunoglobulin G (IgG) and immunoglobulin M (IgM) levels in the birds fed parsley essential oil were not affected. The T3 group recorded the highest value (159 ng/mL) of superoxide dismutase (SOD) and the lowest value (2.01 ng/mL) of malondialdehyde (MDA) when compared to the control and other treatment. In conclusion, we recommend using parsley oil at levels of 1 mL/kg diet of broiler chicks.


Subject(s)
Animal Feed , Antioxidants , Chickens , Diet , Kidney , Liver , Oils, Volatile , Petroselinum , Animals , Chickens/growth & development , Chickens/metabolism , Chickens/immunology , Chickens/physiology , Antioxidants/metabolism , Animal Feed/analysis , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Liver/metabolism , Diet/veterinary , Kidney/metabolism , Petroselinum/chemistry , Plant Oils/pharmacology , Plant Oils/administration & dosage , Lipids/blood , Lipids/analysis , Animal Nutritional Physiological Phenomena , Food Additives , Dietary Supplements , Male
18.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 487-515, jul. 2024. ilus, tab
Article in English | LILACS | ID: biblio-1538020

ABSTRACT

Myrtus communis L., commonly known as true myrtle, is a medicinal plant native to the Mediterranean area. Since ancient times, the inhabitant s of this area have been using it for its cultural and medicinal properties. Because of the vast diversity of biomolecules in its aerial parts, it exhibits several biological properties, including antioxidant, antimicrobial, and anticancer properties. This review retrospect the research on the source, biological activities with empirical evidence, chemical composition, applications, and cellular targets of extracts and essential oils obtained from M. communis leaves, which provides a perspective for further studies on the applications and formulations of extract and EO of M. communis leaves. The efficacy of constituents' individually, in association with other bioactive constituents, or in combination with available commercial drugs would provide insights in to the development of these bio - actives as future drugs and their evolving future potential applications in the pharmaceutical, food, and aroma industries.


Myrtus communis L., comúnmente conocido como arrayán verdadero, es una planta medicinal originaria de la zona mediterránea. Desde la antigüedad, los habitantes de esta zona lo utilizan por sus propiedades culturales y medicinales. Debido a la gran div ersidad de biomoléculas en sus partes aéreas, exhibe varias propiedades biológicas, incluidas propiedades antioxidantes, antimicrobianas y anticancerígenas. Esta revisión retrospectiva de la investigación sobre la fuente, las actividades biológicas con evi dencia empírica, la composición química, las aplicaciones y los objetivos celulares de los extractos y aceites esenciales obtenidos de las hojas de M. communis , lo que brinda una perspectiva para futuros estudios sobre las aplicaciones y formulaciones de l os extractos y EO de M. communis . La eficacia de los componentes individualmente, en asociación con otros componentes bioactivos o en combinación con medicamentos comerciales disponibles proporcionaría información sobre el desarrollo de estos bioactivos co mo medicamentos futuros y sus futuras aplicaciones potenciales en las industrias farmacéutica, alimentaria y aromática


Subject(s)
Myrtus communis/pharmacology , Plants, Medicinal , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Plant Leaves/metabolism , Anti-Bacterial Agents , Antifungal Agents , Antioxidants
19.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 568-576, jul. 2024. ilus
Article in Spanish | LILACS | ID: biblio-1538065

ABSTRACT

This study aimed to determine the repellent and insecticidal activity of four essential oils (EOs) from plants collected in the Chocó rain forest, Colombia, against T. castaneum . Conventional hydrodistillation was used to obtain the EOs. The repellent and insecticidal activities were evaluated by the preference area and gas dispersion methods, espectively. Statistical differences (p<0.05) were determined by applying a student's t-test. EOs of Siparuna guianensis, S. conica, Piper marginatum, and Nectandra acutifolia showed excellent repellent properties as the main findings, highlighting S. conicaEO with 84% repellency (1-hµL/cm2), while P. marginatum showed to be bioactive to the dose of 500 µL/mL (72 h), inducing mortality of 100% of the exposed population. In conclusion, the results evidenced the repellent properties of the EOs evaluated against T. castaneum , which allows us to conclude that these plant species are potential natural sources producing bio-repellents that contribute to the integrated control of T. castaneum.


Se evaluaron cuatro aceites esenciales (AEs) de plantas recolectadas en la selva pluvial del Chocó, Colombia, para determinar su actividad repelente e insecticida contra T. castaneum. Los AEs fueron obtenidos por hidrodestilación convencional. Las actividades repelentes e insecticidas se evaluaron por los métodos de área de preferencia y dispersión de gas, respectivamente. Las diferencias significativas (p<0,05) fueron determinadas aplicando una prueba t de student. Los AEs de Siparuna guianensis, S. conica, Piper marginatum y Nectandra acutifolia mostraron excelentes propiedades repelentes, destacando el AE de S. conicacon un 84% de repelencia (1µL/cm2), mientras que el AE de P. marginatummostró ser bioactivo a la dosis de 500 µL/mL (72 h) al inducir la mortalidad del 100% de la población expuesta. Se concluye que estas especies de plantas son fuentes naturales potencialmente viables para la producción de biorepelentes que contribuyan en el control integrado de T. castaneum.


Subject(s)
Tribolium/drug effects , Oils, Volatile/pharmacology , Insecticides/pharmacology , Colombia , Insect Repellents/pharmacology
20.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 636-644, jul. 2024. graf, tab
Article in English | LILACS | ID: biblio-1538072

ABSTRACT

Thechemical composition, antioxidant and antimicrobial activities of the essential oil from aerial parts (leaves and flowers) of Chuquiraga arcuataHarling grown in the Ecuadorian Andes were studied. One hundred and twenty-six compounds were identified in the essential oil. Monoterpene hydrocarbons (45.8%) and oxygenated monoterpenes (44.1%) had the major percentages. The most abundant compounds were camphor (21.6%), myrcene (19.5%), and 1,8-cineole (13.4%). Antioxidant activity was examined using DPPH, ABTS,and FRAP assays. The essential oil had a moderate scavenging effect and reduction of ferric ion capacity through FRAP assay. Antimicrobial activity of the essential oil was observed against four pathogenic bacteria and a fungus. The essential oil exhibited activity against all microorganism strains under test, particularly against Candida albicansand Staphylococcus aureuswith MICs of 2.43-12.10 µg/mL.


Se estudió la composición química, actividades antioxidantes y antimicrobianas del aceite esencial procedente de las partes aérea (hojas y flores) de Chuquiraga arcuataHarling cultivadas en los Andes ecuatorianos. Se identificaron 126 compuestos en el aceite esencial. Los hidrocarburos monoterpénicos (45,8%) y los monoterpenos oxigenados (44,1%) tuvieron el mayor porcentaje. Los compuestos más abundantes fueron alcanfor (21,6%), mirceno (19,5%) y 1,8-cineol (13,4%). La actividadantioxidante se examinó mediante ensayos DPPH, ABTS y FRAP. El aceite esencial tuvo un efecto eliminador moderado y una reducción de la capacidad de iones férricos mediante el ensayo FRAP. Se observó actividad antimicrobiana del aceite esencial contra cuatro bacterias y un hongo patógenos. El aceite esencial mostró actividad contra todas las cepas de microorganismos bajo prueba, particularmente contra Candida albicansy Staphylococcus aureuscon CMI de 2,43-12,10 µg/mL.


Subject(s)
Oils, Volatile/chemistry , Plant Extracts/chemistry , Antioxidants/chemistry , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Flowers/chemistry , Ecuador , Antioxidants/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL