Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol ; 144(2): 259-281, 2022 08.
Article in English | MEDLINE | ID: mdl-35666306

ABSTRACT

Oncostatin M (OSM) is an IL-6 family member which exerts neuroprotective and remyelination-promoting effects after damage to the central nervous system (CNS). However, the role of OSM in neuro-inflammation is poorly understood. Here, we investigated OSM's role in pathological events important for the neuro-inflammatory disorder multiple sclerosis (MS). We show that OSM receptor (OSMRß) expression is increased on circulating lymphocytes of MS patients, indicating their elevated responsiveness to OSM signalling. In addition, OSM production by activated myeloid cells and astrocytes is increased in MS brain lesions. In experimental autoimmune encephalomyelitis (EAE), a preclinical model of MS, OSMRß-deficient mice exhibit milder clinical symptoms, accompanied by diminished T helper 17 (Th17) cell infiltration into the CNS and reduced BBB leakage. In vitro, OSM reduces BBB integrity by downregulating the junctional molecules claudin-5 and VE-cadherin, while promoting secretion of the Th17-attracting chemokine CCL20 by inflamed BBB-endothelial cells and reactive astrocytes. Using flow cytometric fluorescence resonance energy transfer (FRET) quantification, we found that OSM-induced endothelial CCL20 promotes activation of lymphocyte function-associated antigen 1 (LFA-1) on Th17 cells. Moreover, CCL20 enhances Th17 cell adhesion to OSM-treated inflamed endothelial cells, which is at least in part ICAM-1 mediated. Together, these data identify an OSM-CCL20 axis, in which OSM contributes significantly to BBB impairment during neuro-inflammation by inducing permeability while recruiting Th17 cells via enhanced endothelial CCL20 secretion and integrin activation. Therefore, care should be taken when considering OSM as a therapeutic agent for treatment of neuro-inflammatory diseases such as MS.


Subject(s)
Blood-Brain Barrier , Encephalomyelitis, Autoimmune, Experimental , Oncostatin M , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mice , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Oncostatin M/metabolism , Oncostatin M/pharmacology , Oncostatin M Receptor beta Subunit/biosynthesis , Oncostatin M Receptor beta Subunit/genetics , Th17 Cells/metabolism , Th17 Cells/pathology
2.
J Neurosci ; 35(34): 12047-62, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26311783

ABSTRACT

Cell-surface receptors provide potential targets for the translation of bench-side findings into therapeutic strategies; however, this approach for the treatment of stroke is disappointing, at least partially due to an incomplete understanding of the targeted factors. Previous studies of oncostatin M (OSM), a member of the gp130 cytokine family, have been limited, as mouse models alone may not strongly resemble the human condition enough. In addition, the precise function of OSM in the CNS remains unclear. Here, we report that human OSM is neuroprotective in vivo and in vitro by recruiting OSMRß in the setting of ischemic stroke. Using gain- and loss-of-function approaches, we demonstrated that decreased neuronal OSMRß expression results in deteriorated stroke outcomes but that OSMRß overexpression in neurons is cerebroprotective. Moreover, administering recombinant human OSM to mice before the onset of I/R showed that human OSM can be protective in rodent models of ischemic stroke. Mechanistically, OSM/OSMRß activate the JAK2/STAT3 prosurvival signaling pathway. Collectively, these data support that human OSM may represent a promising drug candidate for stroke treatment. SIGNIFICANCE STATEMENT: OSM, a member of the gp130 cytokine family, regulates neuronal function and survival. OSM engages a second receptor, either LIFRα or OSMRß, before recruiting gp130. However, it is not clear whether OSM/OSMRß signaling is involved in neuroprotection in the setting of ischemic stroke. Recent studies show that, compared with mouse disease models, the OSM receptor system in rats more closely resembles that in humans. In the present study, we use genetic manipulations of OSMRß in both mouse and rat stroke models to demonstrate that OSMRß in neurons is critical for neuronal survival during cerebral ischemic/reperfusion. Interestingly, administration of human OSM also leads to improved stroke outcomes. Therefore, OSM may represent a promising drug candidate for stroke treatment.


Subject(s)
Brain Ischemia/metabolism , Brain Ischemia/prevention & control , Oncostatin M Receptor beta Subunit/biosynthesis , Oncostatin M/biosynthesis , Stroke/metabolism , Stroke/prevention & control , Animals , Brain Ischemia/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pregnancy , Rats , Rats, Sprague-Dawley , Stroke/pathology
3.
Oncol Rep ; 31(2): 597-604, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24276579

ABSTRACT

Our previous study showed that patients with advanced stages of non-small cell lung cancer (NSCLC) were frequently detected with upregulation of hepatocyte growth factor (HGF). In vitro, HGF reduced expression of apoptosis-inducing factor (AIF) and cisplatin sensitivity in NSCLC cells. The effect of HGF was via HGF receptor (c-MET) and the downstream effector, focal adhesion kinase (FAK). In this study, we determined the prognostic value of AIF in NSCLC patients. AIF expression was determined by immunohistochemistry and immunoblotting. Our data show that AIF expression was associated with better prognosis. Expression of AIF inversely correlated with that of positive NSCLC markers, e.g., dihydrodiol dehydrogenase (DDH), c-MET, short oncostatin M receptor (OSMRs), matrix metalloproteinase (MMP)-1, and HER2/neu, which were closely associated with drug resistance, tumor recurrence, metastasis and poor prognosis. Noteworthy, silence of HER2/neu gene expression increases AIF level and drug sensitivity. Addition of HGF inhibits AIF expression in HER2/neu-silenced cells. These results suggested that both HGF and HER2/neu affect drug resistance by regulating AIF expression in NSCLC.


Subject(s)
Apoptosis Inducing Factor/biosynthesis , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Hepatocyte Growth Factor/genetics , Receptor, ErbB-2/genetics , Adenocarcinoma/genetics , Adenocarcinoma/mortality , Adenocarcinoma of Lung , Animals , Antineoplastic Agents/pharmacology , Apoptosis Inducing Factor/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Cell Cycle Proteins/biosynthesis , Checkpoint Kinase 1 , Cisplatin/pharmacology , Disease-Free Survival , Down-Regulation , Drug Resistance, Neoplasm/genetics , Focal Adhesion Kinase 1/metabolism , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Male , Matrix Metalloproteinase 1/biosynthesis , Mice , Mice, Inbred BALB C , Neoplasm Metastasis/genetics , Neoplasm Recurrence, Local/genetics , Nuclear Proteins/biosynthesis , Oncostatin M Receptor beta Subunit/biosynthesis , Oxidoreductases/biosynthesis , Protein Kinases/biosynthesis , Proto-Oncogene Proteins c-met/biosynthesis , RNA Interference , RNA, Small Interfering , Receptor, ErbB-2/biosynthesis , Receptor, ErbB-2/immunology , Smoking , Survival , Treatment Outcome
4.
J Pathol ; 225(3): 448-62, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21952923

ABSTRACT

Oncostatin M receptor (OSMR) shows frequent copy number gain and overexpression in advanced cervical squamous cell carcinoma (SCC). We used cell-based in vitro assays, RNA interference, and integrative gene expression profiling to investigate the functional significance of this observation. CaSki and SW756 were selected as representative cervical SCC cells that overexpressed OSMR, and ME180 and MS751 as cells that did not. The STAT-dependent pro-angiogenic factors VEGF-A and ID1 were rapidly induced by OSM in CaSki/SW756 but not in ME180/MS751. However, rapid induction did occur in MS751 following forced OSMR overexpression, while depleting OSMR in CaSki abrogated VEGF-A expression. Conditioned medium from both CaSki and SW756 stimulated endothelial tube formation in vitro, effects that were inhibited by depleting OSMR in the SCC cells. For both CaSki and SW756, migration in a wound healing assay and invasion through Matrigel were stimulated by OSM and consistently inhibited by OSMR depletion. The phenotype was rescued by transfection with OSMR containing a silent mutation that provided specific siRNA resistance. Overall, there was a positive correlation between OSMR levels and invasiveness. We used gene expression profiling to identify genes induced by OSM in CaSki/SW756 but not in ME180/MS751. The most prominent gene ontology category groups for the differentially expressed genes were cell motility/invasion, angiogenesis, signal transduction, and apoptosis. We also profiled 23 cervical SCC samples, identifying genes that were differentially expressed in cases with OSMR overexpression versus those without. Integration of the datasets identified 15 genes that showed consistent differential expression in association with OSMR levels in vitro and in vivo. We conclude that OSMR overexpression in cervical SCC cells provides increased sensitivity to OSM, which induces pro-malignant changes. OSMR is a potential prognostic and therapeutic target in cervical SCC. The genes that mediate OSM:OSMR effects will be valuable indicators of the effectiveness of antibody blockade in pre-clinical systems.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Neovascularization, Pathologic/metabolism , Oncostatin M Receptor beta Subunit/biosynthesis , Uterine Cervical Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/blood supply , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Movement/drug effects , Cell Proliferation , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasm Invasiveness , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic/genetics , Oligonucleotide Array Sequence Analysis/methods , Oncostatin M/pharmacology , Oncostatin M Receptor beta Subunit/genetics , RNA, Neoplasm/genetics , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Tumor Cells, Cultured , Uterine Cervical Neoplasms/blood supply , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Vascular Endothelial Growth Factor A/metabolism
5.
Cancer Res ; 70(11): 4687-97, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20484035

ABSTRACT

Recent evidence suggests that a certain type of hepatocellular carcinoma (HCC) is hierarchically organized by a subset of cells with stem cell features (cancer stem cells; CSC). Although normal stem cells and CSCs are considered to share similar self-renewal programs, it remains unclear whether differentiation programs are also maintained in CSCs and effectively used for tumor eradication. In this study, we investigated the effect of oncostatin M (OSM), an interleukin 6-related cytokine known to induce the differentiation of hepatoblasts into hepatocytes, on liver CSCs. OSM receptor expression was detected in the majority of epithelial cell adhesion molecule-positive (EpCAM(+)) HCC with stem/progenitor cell features. OSM treatment resulted in the induction of hepatocytic differentiation of EpCAM(+) HCC cells by inducing signal transducer and activator of transcription 3 activation, as determined by a decrease in stemness-related gene expression, a decrease in EpCAM, alpha-fetoprotein and cytokeratin 19 protein expressions, and an increase in albumin protein expression. OSM-treated EpCAM(+) HCC cells showed enhanced cell proliferation with expansion of the EpCAM-negative non-CSC population. Noticeably, combination of OSM treatment with the chemotherapeutic agent 5-fluorouracil (5-FU), which eradicates EpCAM-negative non-CSCs, dramatically increased the number of apoptotic cells in vitro and suppressed tumor growth in vivo compared with either saline control, OSM, or 5-FU treatment alone. Taken together, our data suggest that OSM could be effectively used for the differentiation and active cell division of dormant EpCAM(+) liver CSCs, and the combination of OSM and conventional chemotherapy with 5-FU efficiently eliminates HCC by targeting both CSCs and non-CSCs.


Subject(s)
Antigens, Neoplasm/biosynthesis , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cell Adhesion Molecules/biosynthesis , Fluorouracil/pharmacology , Liver Neoplasms/drug therapy , Oncostatin M/pharmacology , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Differentiation/drug effects , Cell Line, Tumor , Drug Synergism , Epithelial Cell Adhesion Molecule , Fluorouracil/administration & dosage , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Immunohistochemistry , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Oncostatin M/administration & dosage , Oncostatin M Receptor beta Subunit/biosynthesis , Oncostatin M Receptor beta Subunit/metabolism
6.
Biochem Biophys Res Commun ; 394(2): 272-8, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20206608

ABSTRACT

Oncostatin M (OSM) is a pleiotropic cytokine and a member of the gp130/IL-6 cytokine family that has been found to be involved in both pro- and anti-inflammatory responses in cell-mediated immunity. Maturation of dendritic cells (DCs) is crucial for initiation of primary immune responses and is regulated by several stimuli. In this study, the role of OSM in the phenotypic and functional maturation of DCs was evaluated in vitro. Stimulation with OSM upregulated the expression of CD80, CD86, MHC class I and MHC class II and reduced the endocytic capacity of immature DCs. Moreover, OSM induced the allogeneic immunostimulatory capacity of DCs by stimulating the production of the Th1-promoting cytokine IL-12. OSM also increased the production of IFN-gamma by T cells in mixed-lymphocyte reactions, which would be expected to contribute to the Th1 polarization of the immune response. The expression of surface markers and cytokine production in DCs was mediated by both the MAPK and NF-kappaB pathways. Taken together, these results indicate that OSM may play a role in innate immunity and in acquired immunity by enhancing DCs maturation and promoting Th1 immune responses.


Subject(s)
Dendritic Cells/immunology , Oncostatin M/physiology , Th1 Cells/immunology , Active Transport, Cell Nucleus , Adaptive Immunity , Animals , Dendritic Cells/drug effects , Enzyme Activation , Immunity, Innate , Interleukin-10/metabolism , Interleukin-12/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase Kinases/biosynthesis , NF-kappa B/metabolism , Oncostatin M/genetics , Oncostatin M/pharmacology , Oncostatin M Receptor beta Subunit/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...