Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.655
1.
Sci Total Environ ; 933: 173191, 2024 Jul 10.
Article En | MEDLINE | ID: mdl-38740216

Anticoagulant rodenticides (ARs) are used globally to control rodent pests. Second-generation anticoagulant rodenticides (SGARs) persist in the liver and pose a significant risk of bioaccumulation and secondary poisoning in predators, including species that do not generally consume rodents. As such, there is a clear need to understand the consumption of ARs, particularly SGARs, by non-target consumers to determine the movement of these anticoagulants through ecosystems. We collected and analysed the livers from deceased common brushtail possums (Trichosurus vulpecula) and common ringtail possums (Pseudocheirus peregrinus), native Australian marsupials that constitute the main diet of the powerful owl (Ninox strenua), an Australian apex predator significantly exposed to SGAR poisoning. ARs were detected in 91 % of brushtail possums and 40 % of ringtail possums. Most of the detections were attributed to SGARs, while first-generation anticoagulant rodenticides (FGARs) were rarely detected. SGAR concentrations were likely lethal or toxic in 42 % of brushtail possums and 4 % of ringtail possums with no effect of age, sex, or weight detected in either species. There was also no effect of the landscape type possums were from, suggesting SGAR exposure is ubiquitous across landscapes. The rate of exposure detected in these possums provides insight into the pathway through which ARs are transferred to one of their key predators, the powerful owl. With SGARs entering food-webs through non-target species, the potential for bioaccumulation and broader secondary poisoning of predators is significantly greater and highlights an urgent need for routine rodenticide testing in non-target consumers that present as ill or found deceased. To limit their impact on ecosystem stability the use of SGARs should be significantly regulated by governing agencies.


Anticoagulants , Food Chain , Rodenticides , Animals , Trichosurus , Australia , Marsupialia , Strigiformes , Environmental Monitoring
2.
Ecol Appl ; 34(3): e2949, 2024 Apr.
Article En | MEDLINE | ID: mdl-38442922

Invasive mammal eradications are increasingly attempted across large, complex landscapes. Sequentially controlled management zones can be at risk of reinvasion from adjacent uncontrolled areas, and managers must weigh the relative benefits of ensuring complete elimination from a zone or minimizing reinvasion risk. This is complicated in urban areas, where habitat heterogeneity and a lack of baseline ecological knowledge increase uncertainty. We applied a spatial agent-based model to predict the reinvasion of a well-studied species, the brushtail possum (Trichosurus vulpecula), across an urban area onto a peninsula that is the site of an elimination campaign in Aotearoa New Zealand. We represented fine-scale urban habitat heterogeneity in a land cover layer and tested management scenarios that varied four factors: the density of possums remaining following an elimination attempt, the maintenance trap density on the peninsula, and effort expended toward preventing reinvasion by means of a high-density trap buffer at the peninsula isthmus or control of the source population adjacent to the peninsula. We found that achieving complete elimination on the peninsula was crucial to avoid rapid repopulation. The urban isthmus was predicted to act as a landscape barrier and restrict immigration onto the peninsula, but reliance on this barrier alone would fail to prevent repopulation. In combination, complete elimination, buffer zone, and source population control could reduce the probability of possum repopulation to near zero. Our findings support urban landscape barriers as one tool for sequential invasive mammal elimination but reaffirm that novel methods to expose residual individuals to control will be necessary to secure elimination in management zones. Work to characterize the urban ecology of many invasive mammals is still needed.


Mammals , Trichosurus , Humans , Animals , Ecosystem , New Zealand/epidemiology , Probability
3.
Exp Appl Acarol ; 92(3): 463-477, 2024 Apr.
Article En | MEDLINE | ID: mdl-38361037

Ticks are hematophagous arthropods and, during feeding, may transmit pathogens to vertebrate hosts, including humans. This study aimed to investigate the presence of Rickettsia spp. in ticks collected between 2010 and 2013 from free-ranging capybaras (Hydrochoerus hydrochaeris) and opossums (Didelphis albiventris) that inhabit Sabiá Park in Uberlândia, Brazil. Overall, 1,860 ticks were collected: 1,272 (68.4%) from capybaras (487 of the species Amblyomma sculptum, 475 adults and 12 nymphs; 778 Amblyomma dubitatum, 727 adults and 51 nymphs; and seven larva clusters of the genus Amblyomma); and 588 (31.6%) from opossums (21 A. sculptum, one adult and 20 nymphs; 79 A. dubitatum, all nymphs; 15 Ixodes loricatus, 12 adults and three nymphs; 457 Amblyomma sp. larva clusters; 15 Ixodes sp. larva clusters; and one Argasidae larva cluster). Out of 201 DNA samples tested for the presence of Rickettsia spp. DNA using polymerase chain reaction (PCR) 12 showed amplification of a gtlA gene segment that was specific to Rickettsia bellii, a bacterium non-pathogenic to humans. As there has been a report showing serological evidence of infections caused by Rickettsia species of the spotted fever group (SFG) in capybaras and opossums in the park, including Rickettsia rickettsii, the etiological agent of Brazilian spotted fever, and considering the presence of A. sculptum ticks, which are aggressive to humans, as well as these vertebrate hosts, which are amplifiers of R. rickettsii, it is important to monitor the presence of SFG rickettsiae in the Sabiá Park, which is visited daily by thousands of people.


Didelphis , Ixodidae , Larva , Nymph , Rickettsia , Animals , Brazil , Rickettsia/isolation & purification , Nymph/growth & development , Nymph/microbiology , Nymph/physiology , Larva/microbiology , Larva/growth & development , Larva/physiology , Ixodidae/microbiology , Ixodidae/growth & development , Ixodidae/physiology , Tick Infestations/veterinary , Tick Infestations/parasitology , Tick Infestations/epidemiology , Female , Parks, Recreational , Amblyomma/microbiology , Amblyomma/growth & development , Male , Rodentia/parasitology , Opossums/parasitology
4.
PLoS One ; 19(1): e0295529, 2024.
Article En | MEDLINE | ID: mdl-38236841

Escherichia coli are routine indicators of fecal contamination in water quality assessments. Contrary to livestock and human activities, brushtail possums (Trichosurus vulpecula), common invasive marsupials in Aotearoa/New Zealand, have not been thoroughly studied as a source of fecal contamination in freshwater. To investigate their potential role, Escherichia spp. isolates (n = 420) were recovered from possum gut contents and feces and were compared to those from water, soil, sediment, and periphyton samples, and from birds and other introduced mammals collected within the Makirikiri Reserve, Dannevirke. Isolates were characterized using E. coli-specific real-time PCR targeting the uidA gene, Sanger sequencing of a partial gnd PCR product to generate a gnd sequence type (gST), and for 101 isolates, whole genome sequencing. Escherichia populations from 106 animal and environmental sample enrichments were analyzed using gnd metabarcoding. The alpha diversity of Escherichia gSTs was significantly lower in possums and animals compared with aquatic environmental samples, and some gSTs were shared between sample types, e.g., gST535 (in 85% of samples) and gST258 (71%). Forty percent of isolates gnd-typed and 75% of reads obtained by metabarcoding had gSTs shared between possums, other animals, and the environment. Core-genome single nucleotide polymorphism (SNP) analysis showed limited variation between several animal and environmental isolates (<10 SNPs). Our data show at an unprecedented scale that Escherichia clones are shared between possums, other wildlife, water, and the wider environment. These findings support the potential role of possums as contributors to fecal contamination in Aotearoa/New Zealand freshwater. Our study deepens the current knowledge of Escherichia populations in under-sampled wildlife. It presents a successful application of high-resolution genomic methods for fecal source tracking, thereby broadening the analytical toolbox available to water quality managers. Phylogenetic analysis of isolates and profiling of Escherichia populations provided useful information on the source(s) of fecal contamination and suggest that comprehensive invasive species management strategies may assist in restoring not only ecosystem health but also water health where microbial water quality is compromised.


Animals, Wild , Trichosurus , Animals , Humans , Trichosurus/genetics , Water Quality , Ecosystem , Phylogeny , Escherichia coli/genetics , Genomics , New Zealand
5.
PLoS One ; 19(1): e0288477, 2024.
Article En | MEDLINE | ID: mdl-38206932

Many species of wildlife alter their daily activity patterns in response to co-occurring species as well as the surrounding environment. Often smaller or subordinate species alter their activity patterns to avoid being active at the same time as larger, dominant species to avoid agonistic interactions. Human development can complicate interspecies interactions, as not all wildlife respond to human activity in the same manner. While some species may change the timing of their activity to avoid being active when humans are, others may be unaffected or may benefit from being active at the same time as humans to reduce predation risk or competition. To further explore these patterns, we used data from a coordinated national camera-trapping program (Snapshot USA) to explore how the activity patterns and temporal activity overlap of a suite of seven widely co-occurring mammalian mesocarnivores varied along a gradient of human development. Our focal species ranged in size from the large and often dominant coyote (Canis latrans) to the much smaller and subordinate Virginia opossum (Didelphis virginiana). Some species changed their activity based on surrounding human development. Coyotes were most active at night in areas of high and medium human development. Red fox (Vulpes vulpes) were more active at dusk in areas of high development relative to areas of low or medium development. However, because most species were primarily nocturnal regardless of human development, temporal activity overlap was high between all species. Only opossum and raccoon (Procyon lotor) showed changes in activity overlap with high overlap in areas of low development compared to areas of moderate development. Although we found that coyotes and red fox altered their activity patterns in response to human development, our results showed that competitive and predatory pressures between these seven widespread generalist species were insufficient to cause them to substantially alter their activity patterns.


Coyotes , Foxes , Animals , Humans , Foxes/physiology , Coyotes/physiology , Animals, Wild , Opossums , Predatory Behavior , Raccoons
6.
Am J Trop Med Hyg ; 110(1): 36-39, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-37956445

Chagas disease (CD) is a parasitic infection caused by the parasite Trypanosoma cruzi. Reports of CD cases associated with oral transmission have increased, particularly in Colombia, Brazil, and Venezuela. In this investigation, parasitological, serological, and molecular tests were conducted on samples obtained from humans, mammal reservoirs, and hosts involved in the assessment of a suspected oral transmission outbreak in Cubara, Boyaca, Colombia. Seropositivity was observed in 60% (3 of 5) of index patients and 6.4% (5 of 78) of close contacts. Trypanosoma cruzi DNA was detected by quantitative polymerase chain reaction in 100% of index cases, 6.4% (5 of 78) of close contacts, 60% (6 of 10) of canines, and 100% (5 of 5) of opossums. In all index cases, the TcI lineage was identified, along with two cases of mixed infection (TcI/TcII-TcVI). Hemoculture revealed a flagellate presence in 80% of opossums, whereas all triatomine bugs tested negative. Our findings suggest a potential oral transmission route through contamination with opossum secretions.


Chagas Disease , Trypanosoma cruzi , Humans , Animals , Dogs , Colombia/epidemiology , Trypanosoma cruzi/genetics , Disease Outbreaks , Opossums/parasitology , Mammals , Genotype , Disease Reservoirs/parasitology
7.
Nature ; 625(7996): 788-796, 2024 Jan.
Article En | MEDLINE | ID: mdl-38029793

The expansion of the neocortex, a hallmark of mammalian evolution1,2, was accompanied by an increase in cerebellar neuron numbers3. However, little is known about the evolution of the cellular programmes underlying the development of the cerebellum in mammals. In this study we generated single-nucleus RNA-sequencing data for around 400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse and the marsupial opossum. We established a consensus classification of the cellular diversity in the developing mammalian cerebellum and validated it by spatial mapping in the fetal human cerebellum. Our cross-species analyses revealed largely conserved developmental dynamics of cell-type generation, except for Purkinje cells, for which we observed an expansion of early-born subtypes in the human lineage. Global transcriptome profiles, conserved cell-state markers and gene-expression trajectories across neuronal differentiation show that cerebellar cell-type-defining programmes have been overall preserved for at least 160 million years. However, we also identified many orthologous genes that gained or lost expression in cerebellar neural cell types in one of the species or evolved new expression trajectories during neuronal differentiation, indicating widespread gene repurposing at the cell-type level. In sum, our study unveils shared and lineage-specific gene-expression programmes governing the development of cerebellar cells and expands our understanding of mammalian brain evolution.


Cerebellum , Evolution, Molecular , Mammals , Neurogenesis , Animals , Humans , Mice , Cell Lineage/genetics , Cerebellum/cytology , Cerebellum/embryology , Cerebellum/growth & development , Fetus/cytology , Fetus/embryology , Gene Expression Regulation, Developmental , Neurogenesis/genetics , Neurons/cytology , Neurons/metabolism , Opossums/embryology , Opossums/growth & development , Purkinje Cells/cytology , Purkinje Cells/metabolism , Single-Cell Gene Expression Analysis , Species Specificity , Transcriptome , Mammals/embryology , Mammals/growth & development
8.
J Wildl Dis ; 60(1): 168-170, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37924238

We developed a venipuncture technique of the ventral caudal vein in conscious Virginia opossums (Didelphis virginiana) in cage traps, enabling blood sampling without anesthesia. Blood samples were successfully collected from all 28 opossums in this study by this technique. Draw volume of <0.1 mL occurred in only four opossums (14%).


Anesthesia , Didelphis , Animals , Phlebotomy/veterinary , Virginia , Opossums , Anesthesia/veterinary
9.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article En | MEDLINE | ID: mdl-38068946

The p53 protein is a transcriptional regulatory factor and many of its functions require that it forms a tetrameric structure. Although the tetramerization domain of mammalian p53 proteins (p53TD) share significant sequence similarities, it was recently shown that the tree shrew p53TD is considerably more thermostable than the human p53TD. To determine whether other mammalian species display differences in this domain, we used biophysical, functional, and structural studies to compare the properties of the p53TDs from six mammalian model organisms (human, tree shrew, guinea pig, Chinese hamster, sheep, and opossum). The results indicate that the p53TD from the opossum and tree shrew are significantly more stable than the human p53TD, and there is a correlation between the thermostability of the p53TDs and their ability to activate transcription. Structural analysis of the tree shrew and opossum p53TDs indicated that amino acid substitutions within two distinct regions of their p53TDs can dramatically alter hydrophobic packing of the tetramer, and in particular substitutions at positions corresponding to F341 and Q354 of the human p53TD. Together, the results suggest that subtle changes in the sequence of the p53TD can dramatically alter the stability, and potentially lead to important changes in the functional activity, of the p53 protein.


Tumor Suppressor Protein p53 , Animals , Guinea Pigs , Humans , Opossums/metabolism , Sheep , Tumor Suppressor Protein p53/metabolism , Tupaia/metabolism
10.
Ecohealth ; 20(3): 286-299, 2023 Sep.
Article En | MEDLINE | ID: mdl-38015408

Ecologies of zoonotic vector-borne diseases may shift with climate and land use change. As many urban-adapted mammals can host ectoparasites and pathogens of human and animal health concern, our goal was to compare patterns of arthropod-borne disease among medium-sized mammals across gradients of rural to urban landscapes in multiple regions of California. DNA of Anaplasma phagocytophilum was found in 1-5% of raccoons, coyotes, and San Joaquin kit foxes; Borrelia burgdorferi in one coyote, rickettsiae in two desert kit foxes, and Yersinia pestis in two coyotes. There was serological evidence of rickettsiae in 14-37% of coyotes, Virginia opossums, and foxes; and A. phagocytophilum in 6-40% of coyotes, raccoons, Virginia opossums, and foxes. Of six flea species, one Ctenocephalides felis from a raccoon was positive for Y. pestis, and Ct. felis and Pulex simulans fleas tested positive for Rickettsia felis and R. senegalensis. A Dermacentor similis tick off a San Joaquin kit fox was PCR-positive for A. phagocytophilum. There were three statistically significant risk factors: risk of A. phagocytophilum PCR-positivity was threefold greater in fall vs the other three seasons; hosts adjacent to urban areas had sevenfold increased A. phagocytophilum seropositivity compared with urban and rural areas; and there was a significant spatial cluster of rickettsiae within greater Los Angeles. Animals in areas where urban and rural habitats interconnect can serve as sentinels during times of change in disease risk.


Coyotes , Rickettsia , Siphonaptera , Vector Borne Diseases , Animals , Humans , Foxes , Climate Change , Raccoons , Opossums
11.
PLoS One ; 18(11): e0292919, 2023.
Article En | MEDLINE | ID: mdl-38032980

Co-occurring species often overlap in their use of resources and can interact in complex ways. However, shifts in environmental conditions or resource availability can lead to changes in patterns of species co-occurrence, which may be exacerbated by global escalation of human disturbances to ecosystems, including conservation-directed interventions. We investigated the relative abundance and co-occurrence of two naturally sympatric mammal species following two forms of environmental disturbance: wildfire and introduced predator control. Using 14 years of abundance data from repeat surveys at long-term monitoring sites in south-eastern Australia, we examined the association between a marsupial, the common brushtail possum Trichosurus vulpecula, and a co-occurring native rodent, the bush rat Rattus fuscipes. We asked: In a fox-controlled environment, are the abundances of common brushtail possums and bush rats affected by environmental disturbance and each other's presence? Using Bayesian regression models, we tested hypotheses that the abundance of each species would vary with changes in environmental and disturbance variables, and that the negative association between bush rats and common brushtail possums was stronger than the association between bush rats and disturbance. Our analyses revealed that bush rat abundance varied greatly in relation to environmental and disturbance variables, whereas common brushtail possums showed relatively limited variation in response to the same variables. There was a negative association between common brushtail possums and bush rats, but this association was weaker than the initial decline and subsequent recovery of bush rats in response to wildfires. Using co-occurrence analysis, we can infer negative relationships in abundance between co-occurring species, but to understand the impacts of such associations, and plan appropriate conservation measures, we require more information on interactions between the species and environmental variables. Co-occurrence can be a powerful and novel method to diagnose threats to communities and understand changes in ecosystem dynamics.


Marsupialia , Trichosurus , Animals , Humans , Rats , Ecosystem , Bayes Theorem
12.
Nucleic Acids Res ; 51(22): 12508-12521, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-37971311

Cellular DNA is subject to damage from a multitude of sources and repair or bypass of sites of damage utilize an array of context or cell cycle dependent systems. The recognition and removal of oxidatively damaged bases is the task of DNA glycosylases from the base excision repair pathway utilizing two structural families that excise base lesions in a wide range of DNA contexts including duplex, single-stranded and bubble structures arising during transcription. The mammalian NEIL2 glycosylase of the Fpg/Nei family excises lesions from each of these DNA contexts favoring the latter two with a preference for oxidized cytosine products and abasic sites. We have determined the first liganded crystal structure of mammalian NEIL2 in complex with an abasic site analog containing DNA duplex at 2.08 Å resolution. Comparison to the unliganded structure revealed a large interdomain conformational shift upon binding the DNA substrate accompanied by local conformational changes in the C-terminal domain zinc finger and N-terminal domain void-filling loop necessary to position the enzyme on the DNA. The detailed biochemical analysis of NEIL2 with an array of oxidized base lesions indicates a significant preference for its lyase activity likely to be paramount when interpreting the biological consequences of variants.


DNA Glycosylases , DNA-(Apurinic or Apyrimidinic Site) Lyase , Opossums , Animals , Humans , DNA/chemistry , DNA Damage , DNA Glycosylases/chemistry , DNA Glycosylases/metabolism , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Mammals/genetics , Zinc Fingers , Protein Conformation
13.
Emerg Infect Dis ; 29(12): 2541-2545, 2023 Dec.
Article En | MEDLINE | ID: mdl-37987590

Opossums are considered resistant to rabies. Nonhematophagous bats are reservoirs of rabies in urban areas of South America. We analyzed bats and opossums tested for rabies during 2021 in a highly urbanized city in Brazil to understand spillover in an urban setting. Wildlife surveillance is necessary to prevent rabies in humans and domestic animals.


Didelphis , Rabies , Animals , Brazil/epidemiology , Chiroptera , Opossums , Rabies/epidemiology , Rabies/veterinary
14.
J Wildl Dis ; 59(4): 673-683, 2023 10 01.
Article En | MEDLINE | ID: mdl-37846907

Chagas disease, a significant public health concern in the Americas, is caused by a protozoan parasite, Trypanosoma cruzi. The life cycle of T. cruzi involves kissing bugs (Triatoma spp.) functioning as vectors and mammalian species serving as hosts. Raccoons (Procyon lotor) and opossums (Didelphis virginiana) have been identified as important reservoir species in the life cycle of T. cruzi, but prevalence in both species in the southeastern US is currently understudied. We quantified T. cruzi prevalence in these two key reservoir species across our study area in South Carolina, US, and identified factors that may influence parasite detection. We collected whole blood from 183 raccoons and 126 opossums and used PCR to detect the presence of T. cruzi. We then used generalized linear models with parasite detection status as a binary response variable and predictor variables of land cover, distance to water, sex, season, and species. Our analysis indicated that raccoons experienced significantly higher parasite detection rates than Virginia opossums, with T. cruzi prevalence found to be 26.5% (95% confidence interval [CI], 20.0-33.8) in raccoons and 10.5% (95% CI, 5.51-17.5) in opossums. Overall, our results concur with previous studies, in that T. cruzi is established in reservoir host populations in natural areas of the southeastern US.


Chagas Disease , Didelphis , Triatoma , Trypanosoma cruzi , Animals , Didelphis/parasitology , Raccoons/parasitology , South Carolina/epidemiology , Virginia , Chagas Disease/epidemiology , Chagas Disease/veterinary , Opossums/parasitology
15.
Biomolecules ; 13(9)2023 09 20.
Article En | MEDLINE | ID: mdl-37759820

The glutathione transferase A3-3 (GST A3-3) homodimeric enzyme is the most efficient enzyme that catalyzes isomerization of the precursors of testosterone, estradiol, and progesterone in the gonads of humans and horses. However, the presence of GST A3-3 orthologs with equally high ketosteroid isomerase activity has not been verified in other mammalian species, even though pig and cattle homologs have been cloned and studied. Identifying GSTA3 genes is a challenge because of multiple GSTA gene duplications (e.g., 12 in the human genome); consequently, the GSTA3 gene is not annotated in most genomes. To improve our understanding of GSTA3 gene products and their functions across diverse mammalian species, we cloned homologs of the horse and human GSTA3 mRNAs from the testes of a dog, goat, and gray short-tailed opossum, the genomes of which all currently lack GSTA3 gene annotations. The resultant novel GSTA3 mRNA and inferred protein sequences had a high level of conservation with human GSTA3 mRNA and protein sequences (≥70% and ≥64% identities, respectively). Sequence conservation was also apparent for the 12 residues of the "H-site" in the 222 amino acid GSTA3 protein that is known to interact with the steroid substrates. Modeling predicted that the dog GSTA3-3 may be a more active ketosteroid isomerase than the corresponding goat or opossum enzymes. However, expression of the GSTA3 gene was higher in liver than in other dog tissue. Our results improve understanding of the active sites of mammalian GST A3-3 enzymes, inhibitors of which might be useful for reducing steroidogenesis for medical purposes, such as fertility control or treatment of steroid-dependent diseases.


Glutathione Transferase , Goats , Humans , Horses/genetics , Dogs , Animals , Cattle , Swine , RNA, Messenger/genetics , Glutathione Transferase/metabolism , Goats/genetics , Goats/metabolism , Opossums/genetics , Opossums/metabolism , Steroids/chemistry , Isomerases/genetics , Isomerases/metabolism , Ketosteroids
16.
Aust Vet J ; 101(12): 502-509, 2023 Dec.
Article En | MEDLINE | ID: mdl-37653572

Marsupostrongylus spp. are the metastrongyloid nematodes most commonly associated with verminous pneumonia in Australian marsupials. Currently, there is a scarcity of information regarding this parasite in the common brushtail possum (Trichosurus vulpecula). Thirty-four free-living possums submitted to two wildlife hospitals in Sydney, Australia, between 2008 and 2015 were diagnosed with verminous pneumonia on postmortem examination. The majority of possums presented ill with multiple comorbidities. However, only five cases had clinical signs of respiratory disease. Necropsy and histopathology revealed extensive lung lesions characterised by diffuse, mixed interstitial infiltrates of macrophages, lymphocytes and plasma cells with mild to marked concentrations of eosinophils. Bronchopneumonia, pulmonary oedema, interstitial fibrosis, atelectasis and type II pneumocyte hyperplasia were also present in most cases. Adult nematodes, first-stage larvae and embryonating eggs were present in the large airways and alveolar spaces. The parasites were definitively identified as Marsupostrongylus spp. in eight cases with presumptive diagnoses based on histopathological characteristics reached in a further 26 cases. Twenty-nine of the 34 affected possums were adults with no sex predisposition. A review of the brushtail possum records at Taronga Wildlife Hospital from 1999 to 2015 revealed no lungworm infections were reported in the 45 possums examined before 2008. However, between 2008 and 2015, 30 of 47 possums (63.8%) examined were diagnosed with metastrongyloid lungworms. This case series is the first detailed report of Marsupostrongylus nematodes in common brushtail possums and highlights the clinical and pathological features, along with epidemiological findings.


Pneumonia , Trichosurus , Animals , Trichosurus/parasitology , Australia/epidemiology , Animals, Wild , Pneumonia/veterinary , Lung
17.
Trop Med Int Health ; 28(9): 689-698, 2023 09.
Article En | MEDLINE | ID: mdl-37488635

OBJECTIVE: To analyse acute Chagas disease (CD) outbreaks through a qualitative systematic review and discuss the determinants for its prevention and control. METHODS: Review of studies in which clinical cases of oral transmission were confirmed by parasitological and/or serological tests that included an epidemiological investigation of sources of infection, vectors and reservoirs. RESULTS: Thirty-two outbreaks (1965-2022) were analysed. The main foods involved in oral transmission outbreaks are homemade fruit juices. Different species of vectors were identified. Reservoirs were mainly dogs, rodents and large American opossums (didelphids). CONCLUSION: Under a One Health approach, environmental changes are one of the factors responsible of the rise of oral transmission of CD. Entomological surveillance of vectors and control of the changes in wild and domestic reservoirs and reinforcement of hygiene measures around food in domestic and commercial sites are needed.


Chagas Disease , One Health , Trypanosoma cruzi , Animals , Dogs , Chagas Disease/epidemiology , Chagas Disease/prevention & control , Disease Reservoirs/veterinary , Genotype , Opossums
18.
J Helminthol ; 97: e58, 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37476963

Marmosa constantiae is a species of marsupial restricted to the central portion of South America. In Brazil, it occurs in the northwestern region including five states of the Amazon, Cerrado, and Pantanal biomes. However, there is no study of the helminth fauna or helminth community structure for this marsupial. The aims of this study were to describe the species composition and to analyse the structure of the helminthic community of M. constantiae in an area of the Amazon Arc in Sinop, north of the state of Mato Grosso, Brazil. Parasites were searched in 53 specimens of this marsupial, among which 44 were infected with at least one helminth species. Parasitic helminths were counted and identified. Nine species were collected: seven nematodes, one cestode, and one acanthocephalan. The most abundant species were Gracilioxyuris agilisis, Travassostrongylus scheibelorum, Pterygodermatites sinopiensis, and Subulura eliseae. These species were the only dominant ones in the component community. No significant differences were observed in the abundance and prevalence of helminths between male and female hosts. Host body size significantly influenced helminth abundance in males. The pattern of community structure considering the infracommunities in this locality indicated more species replacement than species loss along the environmental gradient. This is the first study to report the helminth fauna and the helminth community structure of M. constantiae.


Helminthiasis, Animal , Helminths , Marsupialia , Female , Male , Mice , Animals , Brazil/epidemiology , Helminthiasis, Animal/epidemiology , Helminthiasis, Animal/parasitology , Opossums/parasitology
19.
Vector Borne Zoonotic Dis ; 23(7): 390-392, 2023 07.
Article En | MEDLINE | ID: mdl-37327016

A severe epidemic erupted in Coyoacán at the southern end of Lake Texcoco, in Central Mexico, around 1330. Chroniclers of the 16th century reported that after disrupted fish supply, the inhabitants of Coyoacán had suffered high morbidity and mortality. They developed edema of their eyelids, face, and feet, and hemorrhagic diarrhea. Many died, mainly the young and the old. Pregnant women miscarried. The disease is classically considered an illness of nutritional origin. However, its clinical picture and the circumstances of its emergence are remarkably consistent with an outbreak of foodborne Chagas disease, possibly acquired upon the hunting and consumption of alternative food sources, such as infected opossums (Didelphis spp.), unique reservoirs of Trypanosoma cruzi.


Chagas Disease , Didelphis , Trypanosoma cruzi , Pregnancy , Female , Animals , Mexico/epidemiology , Disease Reservoirs , Chagas Disease/epidemiology , Chagas Disease/veterinary , Opossums , Disease Outbreaks
20.
Parasitol Res ; 122(5): 1151-1158, 2023 May.
Article En | MEDLINE | ID: mdl-36890298

Procyonids are reservoirs of many zoonotic infectious diseases, including tick-borne pathogens. The role of coatis (Nasua nasua) in the epidemiology of piroplasmids and Rickettsia has not been fully addressed in Brazil. To molecularly study these agents in coatis and associated ticks, animals were sampled in two urban areas in Midwestern Brazil. Blood (n = 163) and tick (n = 248) DNA samples were screened by PCR assays targeting the 18S rRNA and gltA genes of piroplasmids and Rickettsia spp., respectively. Positive samples were further molecularly tested targeting cox-1, cox-3, ß-tubulin, cytB, and hsp70 (piroplasmid) and ompA, ompB, and htrA 17-kDa (Rickettsia spp.) genes, sequenced and phylogenetically analyzed. All coatis' blood samples were negative for piroplasmids, whereas five pools of ticks (2%) were positive for two different sequences of Babesia spp.. The first from Amblyomma sculptum nymphs was close (i.e., ≥ 99% nucleotide identity) to a Babesia sp. previously found in capybaras (Hydrochoerus hydrochaeris); the second from Amblyomma dubitatum nymphs and Amblyomma spp. larvae was identical (100% nucleotide identity) to a Babesia sp. detected in opossums (Didelphis albiventris) and associated ticks. Four samples (0.8%) were positive by PCR to two different Rickettsia spp. sequences, being the first from Amblyomma sp. larva identical to Rickettsia belli and the second from A. dubitatum nymph identical to Rickettsia species from Spotted Fever Group (SFG). The detection of piroplasmids and SFG Rickettsia sp. highlights the importance of Amblyomma spp. in the maintenance of tick-borne agents in urban parks where humans and wild and domestic animals are living in sympatry.


Babesia , Ixodidae , Procyonidae , Rickettsia , Ticks , Humans , Animals , Rickettsia/genetics , Babesia/genetics , Brazil/epidemiology , Rodentia , Opossums , Amblyomma , Ixodidae/microbiology
...