Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.303
1.
Exp Cell Res ; 439(1): 114075, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38710404

Leber's hereditary optic neuropathy (LHON) is a visual impairment associated with mutations of mitochondrial genes encoding elements of the electron transport chain. While much is known about the genetics of LHON, the cellular pathophysiology leading to retinal ganglion cell degeneration and subsequent vision loss is poorly understood. The impacts of the G11778A mutation of LHON on bioenergetics, redox balance and cell proliferation were examined in patient-derived fibroblasts. Replacement of glucose with galactose in the culture media reveals a deficit in the proliferation of G11778A fibroblasts, imparts a reduction in ATP biosynthesis, and a reduction in capacity to accommodate exogenous oxidative stress. While steady-state ROS levels were unaffected by the LHON mutation, cell survival was diminished in response to exogenous H2O2.


DNA, Mitochondrial , Fibroblasts , Galactose , Mutation , Optic Atrophy, Hereditary, Leber , Humans , Fibroblasts/metabolism , Fibroblasts/drug effects , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Optic Atrophy, Hereditary, Leber/pathology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Galactose/metabolism , Mutation/genetics , Cell Proliferation/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/genetics , Cells, Cultured , Glucose/metabolism , Glucose/pharmacology
4.
Biochem Biophys Res Commun ; 721: 150119, 2024 Aug 20.
Article En | MEDLINE | ID: mdl-38768545

Mitochondrial dynamics were examined in human dermal fibroblasts biopsied from a confirmed Leber's Hereditary Optic Neuropathy (LHON) patient with a homoplasmic G11778A mutation of the mitochondrial genome. Expression of the G11778A mutation did not impart any discernible difference in mitochondrial network morphology using widefield fluorescence microscopy. However, at the ultrastructural level, cells expressing this mutation exhibited an impairment of mitochondrial morphological plasticity when forced to utilize oxidative phosphorylation (OXPHOS) by transition to glucose-free, galactose-containing media. LHON fibroblasts also displayed a transient increase in mitophagy upon transition to galactose media. These results provide new insights into the consequences of the G11778A mutation of LHON and the pathological mechanisms underlying this disease.


Fibroblasts , Mitochondria , Mitophagy , Mutation , Optic Atrophy, Hereditary, Leber , Humans , Mitophagy/genetics , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/pathology , Optic Atrophy, Hereditary, Leber/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Oxidative Phosphorylation , Cells, Cultured
5.
Orphanet J Rare Dis ; 19(1): 220, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811977

BACKGROUND: Leber hereditary optic neuropathy (LHON) typically presents in young adults as bilateral painless subacute visual loss. Prevalence data are scarce. The aim of this study was to examine the validity of different ascertainment sources used in population-based rare diseases registries to detect cases, and to explore the impact of a capture-recapture method in the estimation of the prevalence of LHON in the Autonomous Community of Madrid (ACM) in 2022. METHODS: Descriptive cross-sectional population-based study. Potential LHON cases were detected by automatic capture from the healthcare information sources usually explored for the Regional Registry for Rare Diseases (SIERMA). Ophthalmologists provided data from their clinical registry. Positive predictive values (PPV) and sensitivity with 95% confidence intervals (CI) were estimated. Global and by sex prevalences were calculated with confimed cases and with those estimated by the capture-recapture method. RESULTS: A total of 102 potential LHON cases were captured from healthcare information sources, 25 of them (24.5%) finally were confirmed after revision, with an overall PPV of 24.5% (95%CI 17.2-33.7). By source, the electronic clinical records of primary care had the highest PPV (51.2, 95%CI 36.7-65.4). The ophthalmologists clinical registry provided 22 cases, 12 of them not detected in the automatic capture sources. The clinical registry reached a sensitivity of 59.5% (95%CI 43.5-73.6) and the combination of automatic capture sources reached a 67.6% (95%CI: 51.5-80.4). The total confirmed cases were 37, with a mean age of 48.9 years, and a men: women ratio of 2.4:1. Genetic information was recovered in 27 cases, with the m.3460 mutation being the most frequent (12 cases). The global prevalence was 0.55 cases/100,000 inhabitants (95%CI 0.40-0.75), and with the capture-recapture method reached 0.79 cases/100,000 (95%CI 0.60-1.03), a 43.6% higher, 1.15 cases/100,000 (95%CI 0.83-1.58) in men and 0.43 cases/100,000 (95%CI 0.26-0.70) in women. CONCLUSIONS: The prevalence of LHON estimated in the ACM was lower than in other European countries. Population-based registries of rare diseases require the incorporation of confirmed cases provided by clinicians to asure the best completeness of data. The use of more specific coding for rare diseases in healthcare information systems would facilitate the detection of cases. Further epidemiologic studies are needed to assess potential factors that may influence the penetrance of LHON.


Optic Atrophy, Hereditary, Leber , Humans , Optic Atrophy, Hereditary, Leber/epidemiology , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/diagnosis , Spain/epidemiology , Male , Female , Prevalence , Cross-Sectional Studies , Adult , Middle Aged , Young Adult , Adolescent , Registries , Child , Aged
6.
Rom J Ophthalmol ; 68(1): 65-71, 2024.
Article En | MEDLINE | ID: mdl-38617721

Leber's hereditary optic neuropathy (LHON) is the most common maternally inherited disease linked to mitochondrial DNA (mtDNA). The patients present with subacute asymmetric bilateral vision loss. Approximately 95% of the LHON cases are caused by m.3460G>A (MTND1), m.11778G>A (MTND4), and m.14484T>C (MTND6) mutations. The hallmark of hereditary optic neuropathies determined by mitochondrial dysfunction is the vulnerability and degeneration of retinal ganglion cells (RGC). We present the case of a 28-year-old man who came to our clinic complaining of a subacute decrease in visual acuity of his left eye. From his medical history, we found out that one month before he had the same symptoms in the right eye. From the family history, we noted that an uncle has had vision problems since childhood. We carried out complete blood tests, including specific antibodies for autoimmune and infectious diseases. Laboratory tests and MRI were within normal limits. A blood test of the mtDNA showed the presence of 11778 G>A mutation on the mtND6 gene. The medical history, the fundus appearance, the OCT, and the paraclinical investigations, made us diagnose our patient with Leber's hereditary optic neuropathy. As soon as possible, we began the treatment with systemic idebenone, 900 mg/day. We examined the patient 2, 6, and 10 weeks after initiating the treatment. Abbreviations: LHON = Leber's Hereditary Optic Neuropathy, mtDNA = mitochondrial DNA, VA = visual acuity, RE = right eye, LE = left eye, OCT = Optical coherence tomography, pRNFL = peripapillary retinal nerve fiber layer, GCL = retinal ganglion cells layer, MRI = magnetic resonance imaging, VEP = visual evoked potentials, VEP IT = VEP implicit time, VEP A = VEP amplitude.


Optic Atrophy, Hereditary, Leber , Optic Nerve Diseases , Male , Humans , Child , Adult , Optic Atrophy, Hereditary, Leber/diagnosis , Optic Atrophy, Hereditary, Leber/genetics , Diagnosis, Differential , Evoked Potentials, Visual , DNA, Mitochondrial/genetics
7.
Rinsho Shinkeigaku ; 64(5): 326-332, 2024 May 24.
Article Ja | MEDLINE | ID: mdl-38644210

Leber's hereditary optic atrophy (LHON) is a genetic optic neuropathy that is more prevalent in young males but can occur from childhood to old age. The primary cause is mitochondrial genetic mutations, which are associated with dysfunction of mitochondrial electron transport chain complex I. It manifests as acute to subacute visual impairment, often starting unilaterally but progressing to involve both eyes within weeks to months. Visual loss is severe, with many patients having corrected visual acuity below 0.1. The differential diagnosis of optic neuritis is essential, and assessments such as pupillary light reflex, fluorescein fundus angiography, and magnetic resonance imaging can be useful for differentiation. LHON should be considered as one of the differential diagnoses for optic neuritis, and collaboration between neurologists and ophthalmologists is crucial for accurate diagnosis and appropriate treatment.


Magnetic Resonance Imaging , Optic Atrophy, Hereditary, Leber , Optic Atrophy, Hereditary, Leber/diagnosis , Optic Atrophy, Hereditary, Leber/genetics , Humans , Diagnosis, Differential , Male , Mutation , Optic Neuritis/diagnosis , Optic Neuritis/etiology , Optic Neuritis/diagnostic imaging , Fluorescein Angiography , Female , Electron Transport Complex I/genetics , Adult , Mitochondria/genetics , Child
8.
Orphanet J Rare Dis ; 19(1): 148, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582886

BACKGROUND: Most patients suffering from Leber hereditary optic neuropathy carry one of the three classic pathologic mutations, but not all individuals with these genetic alterations develop the disease. There are different risk factors that modify the penetrance of these mutations. The remaining patients carry one of a set of very rare genetic variants and, it appears that, some of the risk factors that modify the penetrance of the classical pathologic mutations may also affect the phenotype of these other rare mutations. RESULTS: We describe a large family including 95 maternally related individuals, showing 30 patients with Leber hereditary optic neuropathy. The mutation responsible for the phenotype is a novel transition, m.3734A > G, in the mitochondrial gene encoding the ND1 subunit of respiratory complex I. Molecular-genetic, biochemical and cellular studies corroborate the pathogenicity of this genetic change. CONCLUSIONS: With the study of this family, we confirm that, also for this very rare mutation, sex and age are important factors modifying penetrance. Moreover, this pedigree offers an excellent opportunity to search for other genetic or environmental factors that additionally contribute to modify penetrance.


DNA, Mitochondrial , Optic Atrophy, Hereditary, Leber , Humans , DNA, Mitochondrial/genetics , Optic Atrophy, Hereditary, Leber/genetics , Pedigree , Mutation/genetics , Phenotype
9.
BMJ Open Ophthalmol ; 9(1)2024 Mar 11.
Article En | MEDLINE | ID: mdl-38471715

BACKGROUND: We investigated Leber hereditary optic neuropathy (LHON) families for variation in peripapillary retinal nerve fibre layer thickness and perfusion, and associated optic nerve dysfunction. METHOD: A group of LHON-affected patients (n=12) and their asymptomatic maternal relatives (n=16) underwent examination including visual acuity (VA), visual-evoked-potential and optic nerve imaging including optical coherence tomography (OCT) and OCT angiography of the peripapillary retinal nerve fibre layer (RNFL). A control sample was also examined (n=10). The software imageJ was used to measure perfusion by assessing vessel density (VD), and statistical software 'R' was used to analyse data. RESULTS: The LHON-affected group (n=12) had significantly reduced peripapillary VD (median 7.9%, p=0.046). Overall, the LHON asymptomatic relatives (n=16) had no significant change in peripapillary VD (p=0.166), though three eyes had VD which fell below the derived normal range at 6% each, with variable VA from normal to blindness; LogMAR median 0, range 0-2.4. In contrast, RNFL thickness was significantly reduced in the LHON-affected group (median 51 µm, p=0.003), and in asymptomatic relatives (median 90 µm, p=0.01), compared with controls (median 101 µm). RNFL thinning had greater specificity compared with reduced perfusion for optic nerve dysfunction in asymptomatic carriers (92% vs 66%). CONCLUSION: Overall, reduced peripapillary retinal nerve fibre layer perfusion was observed in those affected by LHON but was not reduced in their asymptomatic relatives, unlike RNFL thinning which was significantly reduced in both groups versus controls. The presence of RNFL changes was associated with signs of optic neuropathy in asymptomatic relatives.


Optic Atrophy, Hereditary, Leber , Humans , Optic Atrophy, Hereditary, Leber/diagnosis , Retinal Ganglion Cells , Optic Nerve , Perfusion , Nerve Fibers
10.
Sci Rep ; 14(1): 5702, 2024 03 08.
Article En | MEDLINE | ID: mdl-38459091

In order to explore the spectrum of mitochondrial DNA (mtDNA) mutations in Korean patients with Leber's hereditary optic neuropathy (LHON), we investigated the spectrum of mtDNA mutations in 145 Korean probands confirmed with the diagnosis of LHON. Total genomic DNA was isolated from the peripheral blood leukocytes of the patients with suspected LHON, and mtDNA mutations were identified by direct sequencing. Analysis of mtDNA mutations revealed seven primary LHON mutations including the nucleotide positions (nps) 11778A (101 probands, 69.2%), 14484C (31 probands, 21.2%), 3460A (5 probands, 3.4%), and G3635A, G3733A, C4171A, and G13051A mutations in one proband each. In addition, two provisional mtDNA mutations at nps T3472C, and G13259A were each found in one proband, respectively. Another provisional mtDNA mutation at np T3394C was found in two probands. In conclusion, the spectrum of mtDNA mutations in Korean patients with LHON may differ from other ethnicities, which is characterized by high prevalence of 11778A and 14484C mutations, and a low prevalence of the 3460A mutation.


Optic Atrophy, Hereditary, Leber , Humans , Optic Atrophy, Hereditary, Leber/genetics , Mutation , DNA, Mitochondrial/genetics , Mitochondria/genetics , Republic of Korea
11.
Cell Rep Med ; 5(3): 101437, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38428428

Leber hereditary optic neuropathy (LHON) is a mitochondrial disease leading to rapid and severe bilateral vision loss. Idebenone has been shown to be effective in stabilizing and restoring vision in patients treated within 1 year of onset of vision loss. The open-label, international, multicenter, natural history-controlled LEROS study (ClinicalTrials.gov NCT02774005) assesses the efficacy and safety of idebenone treatment (900 mg/day) in patients with LHON up to 5 years after symptom onset (N = 199) and over a treatment period of 24 months, compared to an external natural history control cohort (N = 372), matched by time since symptom onset. LEROS meets its primary endpoint and confirms the long-term efficacy of idebenone in the subacute/dynamic and chronic phases; the treatment effect varies depending on disease phase and the causative mtDNA mutation. The findings of the LEROS study will help guide the clinical management of patients with LHON.


Optic Atrophy, Hereditary, Leber , Ubiquinone/analogs & derivatives , Humans , Optic Atrophy, Hereditary, Leber/drug therapy , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/diagnosis , Antioxidants/therapeutic use , Ubiquinone/therapeutic use , Ubiquinone/genetics , Mutation
12.
Stem Cell Res ; 77: 103406, 2024 Jun.
Article En | MEDLINE | ID: mdl-38552355

Leber hereditary optic neuropathy (LHON) is one of the most common mitochondrial illness, causing retinal ganglion cell degeneration and central vision loss. It stems from point mutations in mitochondrial DNA (mtDNA), with key mutations being m.3460G > A, m.11778G > A, and m.14484 T > C. Fibroblasts from identical twins, sharing m.14484 T > C and m.10680G > A variants each with 70 % heteroplasmy, were used to generate iPSC lines. Remarkably, one twin, a LHON patient, displayed symptoms, while the other, a carrier, remained asymptomatic. These iPSCs offer a valuable tool for studying factors influencing disease penetrance and unravelling the role of m.10680G > A, which is still debated.


DNA, Mitochondrial , Induced Pluripotent Stem Cells , Optic Atrophy, Hereditary, Leber , Twins, Monozygotic , Humans , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/pathology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , DNA, Mitochondrial/genetics , Male , Mitochondria/metabolism , Mitochondria/genetics , Female , Point Mutation , Adult
13.
Sci Rep ; 14(1): 5079, 2024 03 01.
Article En | MEDLINE | ID: mdl-38429319

The differential diagnosis for optic atrophy can be challenging and requires expensive, time-consuming ancillary testing to determine the cause. While Leber's hereditary optic neuropathy (LHON) and optic neuritis (ON) are both clinically significant causes for optic atrophy, both relatively rare in the general population, contributing to limitations in obtaining large imaging datasets. This study therefore aims to develop a deep learning (DL) model based on small datasets that could distinguish the cause of optic disc atrophy using only fundus photography. We retrospectively reviewed fundus photographs of 120 normal eyes, 30 eyes (15 patients) with genetically-confirmed LHON, and 30 eyes (26 patients) with ON. Images were split into a training dataset and a test dataset and used for model training with ResNet-18. To visualize the critical regions in retinal photographs that are highly associated with disease prediction, Gradient-Weighted Class Activation Map (Grad-CAM) was used to generate image-level attention heat maps and to enhance the interpretability of the DL system. In the 3-class classification of normal, LHON, and ON, the area under the receiver operating characteristic curve (AUROC) was 1.0 for normal, 0.988 for LHON, and 0.990 for ON, clearly differentiating each class from the others with an overall total accuracy of 0.93. Specifically, when distinguishing between normal and disease cases, the precision, recall, and F1 scores were perfect at 1.0. Furthermore, in the differentiation of LHON from other conditions, ON from others, and between LHON and ON, we consistently observed precision, recall, and F1 scores of 0.8. The model performance was maintained until only 10% of the pixel values of the image, identified as important by Grad-CAM, were preserved and the rest were masked, followed by retraining and evaluation.


Deep Learning , Optic Atrophy, Hereditary, Leber , Optic Disk , Optic Neuritis , Humans , Optic Disk/diagnostic imaging , Optic Disk/pathology , Retrospective Studies , Optic Atrophy, Hereditary, Leber/pathology , Optic Neuritis/pathology , Photography , Atrophy/pathology
14.
Doc Ophthalmol ; 148(3): 133-143, 2024 Jun.
Article En | MEDLINE | ID: mdl-38451375

PURPOSE: Leber hereditary optic neuropathy (LHON) affects retinal ganglion cells causing severe vision loss. Pattern electroretinogram and photopic negative response (PhNR) of the light-adapted (LA) full-field electroretinogram (ERG) are typically affected in LHON. In the present study, we evaluated dark-adapted (DA) and LA oscillatory potentials (OPs) of the flash ERG in genetically characterized LHON patients to dissociate slow from fast components of the response. METHODS: Seven adult patients (mean age = 28.4 ± 5.6) in whom genetic diagnosis confirmed LHON with mtDNA or nuclear DNAJC30 (arLHON) pathogenic variants were compared to 12 healthy volunteers (mean age = 35.0 ± 12.1). Full-field ERGs were recorded from both eyes. Offline digital filters at 50, 75 and 100 Hz low cutoff frequencies were applied to isolate high-frequency components from the original ERG signals. RESULTS: ERG a-waves and b-waves were comparable between LHON patients and controls, while PhNR was significantly reduced (p = 0.009) in LHON patients compared to controls, as expected. OPs derived from DA signals (75 Hz low cutoff frequency) showed reduced peak amplitude for OP2 (p = 0.019). LA OP differences between LHON and controls became significant (OP2: p = 0.047, OP3: p = 0.039 and OP4: p = 0.013) when the 100 Hz low-cutoff frequency filter was applied. CONCLUSIONS: Reduced OPs in LHON patients may represent disturbed neuronal interactions in the inner retina with preserved photoreceptoral (a-wave) to bipolar cell (b-wave) activation. Reduced DA OP2 and high-cutoff LA OP alterations may be further explored as functional measures to characterize LHON status and progression.


Dark Adaptation , Electroretinography , Optic Atrophy, Hereditary, Leber , Photic Stimulation , Retinal Ganglion Cells , Humans , Electroretinography/methods , Optic Atrophy, Hereditary, Leber/physiopathology , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/diagnosis , Male , Adult , Female , Retinal Ganglion Cells/physiology , Young Adult , Dark Adaptation/physiology , Middle Aged , Visual Acuity/physiology
15.
Brain ; 147(6): 1967-1974, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38478578

Leigh syndrome spectrum (LSS) is a primary mitochondrial disorder defined neuropathologically by a subacute necrotizing encephalomyelopathy and characterized by bilateral basal ganglia and/or brainstem lesions. LSS is associated with variants in several mitochondrial DNA genes and more than 100 nuclear genes, most often related to mitochondrial complex I (CI) dysfunction. Rarely, LSS has been reported in association with primary Leber hereditary optic neuropathy (LHON) variants of the mitochondrial DNA, coding for CI subunits (m.3460G>A in MT-ND1, m.11778G>A in MT-ND4 and m.14484T>C in MT-ND6). The underlying mechanism by which these variants manifest as LSS, a severe neurodegenerative disease, as opposed to the LHON phenotype of isolated optic neuropathy, remains an open question. Here, we analyse the exome sequencing of six probands with LSS carrying primary LHON variants, and report digenic co-occurrence of the m.11778G > A variant with damaging heterozygous variants in nuclear disease genes encoding CI subunits as a plausible explanation. Our findings suggest a digenic mechanism of disease for m.11778G>A-associated LSS, consistent with recent reports of digenic disease in individuals manifesting with LSS due to biallelic variants in the recessive LHON-associated disease gene DNAJC30 in combination with heterozygous variants in CI subunits.


Leigh Disease , Optic Atrophy, Hereditary, Leber , Humans , Leigh Disease/genetics , Optic Atrophy, Hereditary, Leber/genetics , Male , Female , Adult , DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Child , Adolescent , NADH Dehydrogenase/genetics , Mutation , Young Adult , Exome Sequencing , Child, Preschool
16.
Acta Neuropathol Commun ; 12(1): 37, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38429841

Leber's hereditary optic neuropathy (LHON) is driven by mtDNA mutations affecting Complex I presenting as progressive retinal ganglion cell dysfunction usually in the absence of extra-ophthalmic symptoms. There are no long-term neuroprotective agents for LHON. Oral nicotinamide provides a robust neuroprotective effect against mitochondrial and metabolic dysfunction in other retinal injuries. We explored the potential for nicotinamide to protect mitochondria in LHON by modelling the disease in mice through intravitreal injection of the Complex I inhibitor rotenone. Using MitoV mice expressing a mitochondrial-tagged YFP in retinal ganglion cells we assessed mitochondrial morphology through super-resolution imaging and digital reconstruction. Rotenone induced Complex I inhibition resulted in retinal ganglion cell wide mitochondrial loss and fragmentation. This was prevented by oral nicotinamide treatment. Mitochondrial ultrastructure was quantified by transition electron microscopy, demonstrating a loss of cristae density following rotenone injection, which was also prevented by nicotinamide treatment. These results demonstrate that nicotinamide protects mitochondria during Complex I dysfunction. Nicotinamide has the potential to be a useful treatment strategy for LHON to limit retinal ganglion cell degeneration.


Optic Atrophy, Hereditary, Leber , Rotenone , Mice , Animals , Rotenone/toxicity , Rotenone/metabolism , Niacinamide/adverse effects , Niacinamide/metabolism , Mitochondria/metabolism , Retinal Ganglion Cells , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Optic Atrophy, Hereditary, Leber/therapy , Electron Transport Complex I/metabolism
17.
J Chin Med Assoc ; 87(3): 261-266, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38305450

BACKGROUND: Leber hereditary optic neuropathy (LHON) is mainly the degeneration of retinal ganglion cells (RGCs) associated with high apoptosis and reactive oxygen species (ROS) levels, which is accepted to be caused by the mutations in the subunits of complex I of the mitochondrial electron transport chain. The treatment is still infant while efforts of correcting genes or using antioxidants do not bring good and consistent results. Unaffected carrier carries LHON mutation but shows normal phenotype, suggesting that the disease's pathogenesis is complex, in which secondary factors exist and cooperate with the primary complex I dysfunction. METHODS: Using LHON patient-specific induced pluripotent stem cells (iPSCs) as the in vitro disease model, we previously demonstrated that circRNA_0087207 had the most significantly higher expression level in the LHON patient-iPSC-derived RGCs compared with the unaffected carrier-iPSC-derived RGCs. To elaborate the underlying pathologies regulated by circRNA_008720 mechanistically, bioinformatics analysis was conducted and elucidated that circRNA_0087207 could act as a sponge of miR-548c-3p and modulate PLSCR1/TGFB2 levels in ND4 mutation-carrying LHON patient-iPSC-derived RGCs. RESULTS: Using LHON iPSC-derived RGCs as the disease-based platform, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis on targeted mRNA of miR-548c-3p showed the connection with apoptosis, suggesting downregulation of miR548c-3p contributes to the apoptosis of LHON patient RGCs. CONCLUSION: We showed that the downregulation of miR548c-3p plays a critical role in modulating cellular dysfunction and the apoptotic program of RGCs in LHON.


MicroRNAs , Optic Atrophy, Hereditary, Leber , Humans , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/pathology , RNA, Circular/genetics , Mitochondria , Apoptosis , Mutation , MicroRNAs/genetics , MicroRNAs/metabolism , Transforming Growth Factor beta2/genetics , Transforming Growth Factor beta2/metabolism
18.
Semin Ophthalmol ; 39(4): 320-323, 2024 May.
Article En | MEDLINE | ID: mdl-38420942

The prognosis of 11,778 mitochondrial mutations in Leber hereditary optic neuropathy (LHON) is poor. Patients with favorable outcomes (visual acuity better than 20/100) who could be observed for more than 6 months were analyzed. Among 74 patients (57 male, 17 female), 6 (8.1%) showed improvement in visual acuity of 20/100 or higher. The patients with favorable outcomes have better visual acuity at nadir (logMAR 0.98 ± 0.69 in the favorable patients and logMAR 2.32 ± 0.93 in the unfavorable patients, p = .003). Among the favorable group, four patients (36, 32, 19, and 7 years of age at onset) took idebenone within 6 months of onset. However, fifty-one percent of the patients with unfavorable outcomes took idebenone (p = .008). Although the age at onset in the favorable patients is relatively younger than that of the unfavorable patients (20.3 ± 10.8 versus 28.8 ± 12.8 years), a significant difference was not found (p = .138). In conclusion, better visual acuity in nadir and administration of idebenone may affect vision recovery.


Optic Atrophy, Hereditary, Leber , Humans , Male , Female , Infant , Adolescent , Young Adult , Adult , Optic Atrophy, Hereditary, Leber/genetics , Antioxidants , Prognosis , Mutation , Visual Acuity , DNA, Mitochondrial/genetics
20.
Genes (Basel) ; 15(2)2024 01 30.
Article En | MEDLINE | ID: mdl-38397177

Inherited optic neuropathies affect around 1 in 10,000 people in England; in these conditions, vision is lost as retinal ganglion cells lose function or die (usually due to pathological variants in genes concerned with mitochondrial function). Emerging gene therapies for these conditions have emphasised the importance of early and expedient molecular diagnoses, particularly in the paediatric population. Here, we report our real-world clinical experience of such a population, exploring which children presented with the condition, how they were investigated and the time taken for a molecular diagnosis to be reached. A retrospective case-note review of paediatric inherited optic neuropathy patients (0-16 years) in the tertiary neuro-ophthalmology service at Moorfields Eye Hospital between 2016 and 2020 identified 19 patients. Their mean age was 9.3 ± 4.6 (mean ± SD) years at presentation; 68% were male, and 32% were female; and 26% had comorbidities, with diversity of ethnicity. Most patients had undergone genetic testing (95% (n = 18)), of whom 43% (n = 8) received a molecular diagnosis. On average, this took 54.8 ± 19.5 weeks from presentation. A cerebral MRI was performed in 70% (n = 14) and blood testing in 75% (n = 15) of patients as part of their workup. Continual improvement in the investigative pathways for inherited optic neuropathies will be paramount as novel therapeutics become available.


Ophthalmology , Optic Atrophy, Autosomal Dominant , Optic Atrophy, Hereditary, Leber , Optic Nerve Diseases , Humans , Male , Female , Child , Child, Preschool , Adolescent , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Autosomal Dominant/genetics , Retrospective Studies , Optic Nerve Diseases/diagnosis , Optic Nerve Diseases/genetics , Optic Nerve Diseases/therapy
...